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Abstract. Emerging macro-molecular simulations, such as in supercoil-
ing of DNA and in protein unfolding, have an opportunity to profit from
two decades of experience with geometric models within computer-aided
geometric design (CAGD). For CAGD, static models are often sufficient,
while form and function are inextricably related in biochemistry, result-
ing in greater attention to critical topological characteristics of these
dynamic models. The greater emphasis upon dynamic change in macro-
molecular simulations imposes increased demands for faithful integra-
tion of topology and geometry, as well as much stricter requirements
for computational efficiency. This article presents transitions from the
CAGD domain to meet the greater fidelity and performance demands
for macro-molecular simulations.

1 Introduction and Motivation

Within geometric modeling, the use of the term ‘topology’ is often informal,
sometimes to the point of being misleading. Hence, it is important to decide
which topological characteristics of a model should be preserved or changed,
as will be expressed here for connectivity and embedding within the domain of
molecular modeling and simulations. As context for these considerations, it has
been observed [8] that many problems in modern CAGD systems result from
poor integration of computational topology and geometry, where fundamental
difficulties are often identified only after analyzing unexpected results from a
simulation performed on the model.
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As a motivating example, consider connecting six line segments, represented
by ordered pairs of their endpoints as, (4, B), (C,D),...,(K, L), where each al-
phabetic symbol denotes one point of R?. However, the lengths and orientations
of the line segments can be modified, so that the geometric co-ordinates associ-
ated with these vertices may change. Figure 1 shows two very different ways to
achieve the same connectivity between vertices which result in different embed-
dings. The distinctions between these two structures are critical to molecular
modeling. Indeed, the two structures are homeomorphic but are not isotopic [9,
19].

D=E
B=C F=G
A=L H=1
J=K F=G D=E
(a) (b)

Fig. 1. (a) A planar unknot. (b) A non-planar trefoil.

2 Applications to Molecular Modeling Using 1-complexes

The traditional ball-and-stick model from introductory chemistry serves a valu-
able role in contemporary molecular modeling, with vertices corresponding to
atoms and connecting line segments representing the bonds between atoms. Ge-
ometrically, these are, of course, just simplicial 1-complexes [4].

2.1 Preserving topology during molecular dynamics

In some molecular simulations, it is desirable to modify the position of individ-
ual atoms, while preserving the simplicial topology of the molecule. The ball-
and-stick models and their corresponding 1-complexes will serve as an initial
abstraction for considering molecular dynamics. Large molecules may have in
excess of ten thousand atoms, so performance considerations are crucial in de-
signing simulation software. Global constraints previously presented [2,5] may
be overly restrictive for such macro-molecules with representations having thou-
sands of vertices. Hence, a new approach which offers more efficient computation



by perturbing only a small number of vertices in a localized region is considered
now.

Let v be a vertex of interest from a 1-complex, denoted as M. It is essen-
tial to ensure that no new self-intersections are introduced in M during the
geometric perturbations of v in order to preserve the isotopy class of M [2,5].
Prior to perturbing v, find Star(v), which is defined as the union of all segments
that have v as one endpoint. This is trivially done by use of the connectivity
information given for v. Once Star(v) is determined, the next step is to per-
turb v to its new position v* and then find the bounding box that contains
the union of Star(v) and Star(v*). If this bounding box, denoted B, is disjoint
from all edges of M that were not in Star(v), then the topological equivalence
has been preserved. (This follows since the perturbation of v to v* has com-
pact support that is disjoint from M — Convex_Hull(Star(v)UStar(v*)), as can
be shown from a slight extension of a previously presented argument [2], where
Convexr_Hull(Star(v)UStar(v*)) denotes the convex hull of Star(v)UStar(v*).)
If the intersection of B with M — Star(v) is not disjoint, then a more detailed
analysis is needed, considering each segment of M that intersects B. Fortunately,
identification of all these segments is done efficiently within standard clipping
techniques from computer graphics [3]. The above description is captured in the
following pseudo-code.

Pseudo-code:
For each v € M to be moved to a new position v* :
Create Star(v) ; // Uses connectivity data for v //

Create Star(v*) ; // Uses connectivity data for v //
Create B = Bounding_Box(Star(v) U Star(v*));
if BN (M — Star(v)) # 0, return false,
else, return true.

A return of false for any vertex means that a more detailed collision detection
algorithm must be performed. The more detailed geometric analysis would then
be completed by testing whether any of the identified segments are intersected
during any part of the perturbation being performed on Star(v). If all vertices
return true, then the selected perturbations are permissible.

2.2 Changes of topology

There are also cases in molecular dynamics where it is critical to change the
isotopy equivalence to reflect the chemical properties of a particular molecule.
This is a distinct problem area requiring attention to self-intersections produced
by perturbations.

The chemical importance of changing both connective and embedding char-
acteristics is shown in Figure 2, as reported elsewhere [21]. Figure 2(a) shows a
knotted molecular model. Under the chemical action known as a ‘strand switch’
[21], the result would be Figure 2(b). Both connectivity and embedding changes



have occurred. In Figure 2(a), five vertices are cyclically connected to form the
knot. After the strand switch, three new vertices have been introduced. Of
the original vertices, the top-most and the bottom left-most have been newly
connected to an added vertex to form a triangle. The other two new vertices
have been introduced to avoid intersection with this triangle. Furthermore, even
though the triangle and the five sided figure are disjoint, they form interlocking
objects that cannot be separated from one another by any action that leaves both
of them intact and also does not cause any intermediate intersection between
them. This example was chosen to illustrate the critical role for the identification
of crossings, where the general problem of identifying crossings is computation-
ally difficult [18].

A X

(a) (b)

Fig. 2. (a) A knotted molecule. (b) A resulting catenane.

3 Extending to 3D Molecular Representations

While the 1-complexes for ball-and-stick models are useful initial abstractions,
more interesting and useful images can be created from models of the boundary
surfaces of 3D molecules. As is typical in graphics, a static model might be cre-
ated and then triangulated. Then, for animations of such a triangulated model,
the algorithm outlined in the Section 2.1 is extensible to 3 dimensions. This is
similar to work already published [17], where the advantage of the algorithm
of Section 2.1 is in its performance improvements for local, rather than global,
perturbations. These local considerations are expected to be useful in simulating
properties of macro-molecules having in excess of ten thousand atoms. In partic-
ular, earlier work [2,17] relied upon the expensive computation of all distances
between disjoint vertices, edges and faces. It was specifically noted [2] that these
pairwise distance computations could be done prior to any single perturbation.
However, when many perturbations are being executed, the overhead associ-
ated with repeating all these distance computations for each iteration may be
prohibitive, particularly for the dynamic updates expected in simulations. The
more localized methods presented here afford significant performance advantages
when much of the geometry can be culled by use of neighborhoods of compact



support. This is consonant with the spirit of many algorithms in graphics and
animation, where acceptable performance is achieved by significant culling of
geometric objects that are irrelevant to a particular operation.

Yet another challenge for surface models of molecules has been presented in
a review article [20]. There it is observed that contemporary 3D models of DNA
that rely upon tubular models of constant circular cross section for computing
stress and strain are overly simplistic, despite their significant value in provid-
ing first order dynamic approximations at modest computational expense. This
convenience arises since the engineering equations for stress and strain exist in
closed form and are easy to implement for efficient performance. A more ambi-
tious goal, though, is to create a more realistic geometric model and subject it
to a comprehensive finite element analysis.

From CAGD, splines have proven to be valuable as general geometric rep-
resentations, though recently alternatives have arisen in form of a-shapes [7],
subdivision surfaces [6], and point-cloud data [11]. Future work is to determine
the best use of the mathematics underlying these various representations to de-
velop optimal geometric representations for simulations of macro-molecules. We
note that our past interest in spline modeling offers the perspective that low
degree splines are likely to be preferred for simulations, but that implies that
any model of a large molecule will need to be composed of many spline surfaces,
typically requiring their pairwise intersection to determine common boundaries
where they can be joined, as has been typical in CAGD [14]. This raises the
algorithmic issue that such intersections are only approximated [13] , and it will
be necessary to ensure that appropriate error bounds on those approximations
are preserved during simulation in order to maintain the topological integrity of
the model.

There are also promising developments from computational topology that
may contribute to this problem. It has been shown [1] that it is possible to
change the knot equivalence class when creating a PL approximation of a smooth
unknot. That example is repeated here. Figure 3 shows two simple homeomorphic
space curves, where the PL curve is an approximation of the smooth curve.
However, these curves are not isotopic because they depict different knots: the
smooth curve is the unknot, whereas the PL approximation is the figure-8 knot.

In the right half of Figure 3, the z coordinates of some vertices are specifically
indicated to emphasize the four knot crossings in R? (all other end points have
z = 0). All end points of the line segments in the PL approximation are also
points on the original curve. Since many graphic and simulation algorithms are
executed upon PL approximations of complex geometric models, it should be
clear that having this knotted curve as an approximant to the original unknot
would be undesirable in those circumstances.

Similar pathologies can occur when approximating surfaces. For example,
consider a surface created by sweeping a circle of constant radius, along the un-
knot curve shown in Figure 3 to form a pipe surface [12], where the radius of the
curve would be constrained so that the resulting pipe surface would be non-self-
intersecting [10]. Then it should be clear that an ill-advised tessellation of this



Fig. 3. NONEQUIVALENT KNOTS

swept surface could, itself, become knotted. Recently published constraints [15,
16] establish when approximations of 2-manifolds preserve the original isotopy
class. The proofs of these theorems establish a tubular neighborhood in which
the approximation is guaranteed to be isotopic to the original surface. For each
manifold, its tubular neighborhood will be explored as a constraint within which
the isotopy class of dynamically changing molecules can be preserved. When mul-
tiple surfaces are combined in a model, the issue of how these constraints should
interact is a non-trivial open problem. Such techniques may be useful for macro-
molecular simulations where preservation of topology is required for dynamically
changing molecules.

There is a subtle, but significant, point to observe about this unknot example.
It is easy to visually inspect the original curve of Figure 3 to determine that it
was the unknot by the change of isotopy class discussed previously. However,
it has been shown that even identifying the unknot is not an easy algorithmic
process [18]. Hence, the strategy when working with molecular models should
not rely upon being able to give a mathematical specification of the knot type.
Indeed, such a notion would likely be quite foreign to most practitioners.

4 Concluding Remarks

Our exploratory efforts to date are promising. The formalisms discussed here can
lead to software tools to ensure that if the topology of a model is judged to be
correct, then subsequent geometric approximations and dynamic perturbations
will not alter that topology if the approximations and perturbations are appropri-
ately constrained. Although it is clear that approaches to these molecular prob-
lems will rely upon dynamic intersection detection, the specialized techniques



described here avoid many of the well-known performance problems associated
with the general geometric intersection detection problem. The challenging task
remains to formulate broad algorithms that preserve the efficiencies presented
for these known molecular cases, but which are sufficiently extensible to cover
the range of input data.

References

10.

11.

12.
13.

14.

15.

16.

17.

. Amenta, N., Peters, T. J., and Russell, A. C., Computational topology: ambient iso-

topic approzimation of 2-manifolds, invited paper, Theoretical Computer Science,
305, 3-15, 2003.

. Andersson, L-E., S. M. Dorney, Peters, T. J., Stewart, N. F., Polyhedral perturba-

tions that preserve topological form, CAGD, 12, 785-799, 1995.

Angel, E., Interactive Computer Graphics, Second Edition, Addison-Wesley,
Reading, MA, 2000.

R. H. Bing, The Geometric Topology of 3-Manifolds. American Mathematical So-
ciety, Providence, RI, 1983.

Andersson, L-E., Peters, T. J., Stewart, N. F., Equivalence of topological form for
curvilinear geometric objects, International Journal of Computational Geometry
and Applications, 10 (6), 609-622, 2000.

Desbrun, M., Schréder, Barr, A., Interactive animation of structured deformable
objects, Proceedings of Graphics Interface, 1 — 8, 1999.

Edelsbrunner, H. and Miicke, E. P., Three-dimensional alpha shapes, ACM Trans-
actions on Graphics 13, 43 — 72, 1994.

Farouki, R. T., Closing the gap between CAD model and downstream application,
SIAM News, 32(5), June 1999

Flappan, E., When Topology Meets Chemistry, Cambridge University Press, 2000.
Maekawa T., Patrikalakis N. M., Sakkalis T., Yu G., Analysis and applications of
pipe surfaces, Computer Aided Geometric Design, 15, 437-458, 1998

Mitra, N. J., Nguyen, A., and Guibas, L., Estimating surface normals in noisy
point cloud data, to appear, special issue of International Journal of Computational
Geometry and Applications.

Monge, G., Application de I’Analys & la Geometrie. Bachelier, Paris, 1850.

Mow, C., Peters, T. J., Stewart, N. F., Specifying Useful Error Bounds for Geom-
etry Tools: An Intersector Ezemplar, Computer Aided Geometric Design, 20 (5),
2003, 247-251.

Peters, T.J., et al, Computational topology for regular closed sets (within the I-
TANGO project), Topology Atlas Invited Contributions vol. 9, no. 1 (2004) 12 pp.
http://at.yorku.ca/t/a/i/c/50.htm

Sakkalis, T. and Peters, T. J., Ambient isotopic approzimations for surface recon-
struction and interval solids, Proceedings of the Eighth ACM Symposium on Solid
Modeling and Applications, 176-184, June, 2003.

Sakkalis, T., Peters, T. J. and Bisceglio, J., Application of ambient isotopy to
surface approzimation and interval solids, invited paper, CAD, Special Issue, Solid
Modeling Theory and Applications, G. Elber and V. Shapiro, (ed.), 36 (11), 1089
— 1100, 2004.

Peters, T. J., et al, Propagating topological tolerances for rapid prototyping, 1996
ASME IMECE Conference Proceedings, MED-Vol. 4, 487 — 498.




18.

19.
20.

21.

Pippenger, N., Hass, J. and Lagarias, J. C., The computational complexity of knot
and link problems, Journal of the ACM, 46 (1999) 185-211.

Rolfsen, D., Knots and Links, Publish or Perish Press, Berkeley, 1976.

Schlick, T., Modeling superhelical DNA: recent analytical & dynamic approaches,
Current Opinion in Structural Biology, 1995, 5: 245 — 262.

Seeman, N., seemanlab4.chem.nyu.edu



