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Abstract. In this paper we attempt to find and investigate the most
general class of posets which satisfy a properly generalized version of the
Hofmann-Mislove theorem. For that purpose, we generalize and study
some notions (like compactness, the Scott topology, Scott open filters,
prime elements, the spectrum etc.), and adjust them for use in general
posets. Then we characterize the posets satisfying the Hofmann-Mislove
theorem by the relationship between the generalized Scott closed prime
subsets and the generalized prime elements of the poset. The theory be-
come classic for distributive lattices. Remark that the topologies induced
on the generalized spectra in general need not be sober.
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1 Introduction and Terminology

The Hofmann-Mislove theorem is one of the most often applied results in the
theoretical computer science and the computer science motivated topology. Nev-
ertheless, the recent developments in the topic turn out that the frame structure
of a poset or the sobriety of a topological space may perform an unwanted
limitation of the classic theory in some cases. The author can maintenance this
assertion by his personal experience with investigating the properties of de Groot
dual, or in solving the question of D. E. Cameron, whether every compact topol-
ogy is contained in some maximal compact topology [2]. In both cases, some
modification of the Hofmann-Mislove theorem is useful. However, the author
believes that the utility of the presented generalization is not limited only to
these two topics and also some other applications, perhaps more close to the
theoretical computer science, could be found later. In this paper we attempt to
reach the boundaries of possible generalizations which, however, still leave the
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core and the main principles of the Hofmann-Mislove theorem untouched. The
presented generalized version turns to the classic theory if the considered poset
is a distributive lattice. The topological formulation of the Hofmann-Mislove
theorem will be studied in more detail in some separate paper.

In this section we explain the most of the used terminology, with an exception
of some primitives and notions that we touch only marginally. These notions
are not essential for understanding the paper. However, for more complex and
detailed explanation and introductory to the topics the reader is referred to the
books and monographs [3], [7] and [8].

Let P be a set, ≤ a reflexive and transitive, but not necessarily antisymmetric
binary relation on P . Then we say that ≤ is a preorder on P and (P,≤) is a
preordered set. For any subset A of a preordered set (P,≤) we denote ↑A =
{x| x > y for some y ∈ A} and ↓A = {x| x 6 y for some y ∈ A}. An important
example of a preordered set is given by a preorder of specialization of a topological
space (X, τ), which is defined by x ≤ y if and only if x ∈ cl {y}. This preorder is
a partial order in the usual sense if and only if the space (X, τ) is T0. For any
x ∈ X it is obvious that ↓{x} = cl {x}. A set is said to be saturated in (X, τ) if it
is an intersection of open sets. One can easily verify that a set A ⊆ X is saturated
in (X, τ) if and only if A = ↑A, that is, if and only if A is an upper set with
respect to the preorder of specialization of (X, τ). Thus for every set B ⊆ X,
the set ↑B we call a saturation of B. Compactness is understood without any
separation axiom. The family of all compact saturated sets in (X, τ) is a closed
base for a topology τd, which is called de Groot dual of the original topology τ .
A topological space is said to be sober if it is T0 and every irreducible closed set
is a closure of a (unique) singleton.

Let (X, τ) be a topological space. Let Ψ ⊆ 2X . We say that the family Φ
is Ψ -up-conservative (Ψ -down-conservative, respectively) if for every A ∈ Φ and
B ∈ Ψ it follows ↑ (A ∩ B) ∈ Φ (↓ (A ∩ B) ∈ Φ, respectively). We say that Ψ
is upper-closed (lower-closed, respectively) if for every A ∈ Ψ it follows A =↑ A
(A =↓ A, respectively). The family Ψ is said to be up-compact (down-compact,
respectively) if every A ∈ Ψ is compact with respect to the family {↑ {x} |x ∈ X}
({↓ {x} |x ∈ X}, respectively). The family Ψ is said to be up-complete (down-
complete, respectively) if {↑ {x} |x ∈ X} ⊆ Ψ ({↓ {x} |x ∈ X} ⊆ Ψ , respec-
tively).

Let (X,≤) be a partially ordered set, or briefly, a poset. If (X,≤) has, in
addition, finite meets, then any element p ∈ X is said to be prime if x ∧ y ≤ p
implies x ≤ p or y ≤ p for every x, y ∈ X. The set P of all prime elements of
(X,≤) is called the spectrum of (X,≤). We say that the poset (X,≤) is directed
complete, or DCPO, if every directed subset of X has a least upper bound – a
supremum. A subset U ⊆ X is said to be Scott open, if U =↑U and whenever
D ⊆ X is a directed set with sup D ∈ U , then U ∩D 6= ∅. One can easily check
that the Scott open sets of a DCPO form a topology. This topology we call the
Scott topology. Thus a set A ⊆ X is closed in the Scott topology if and only if
A =↓A and if D ⊆ A is directed, then sup D ∈ A. It follows from Zorn’s Lemma
that in a DCPO, every element of a Scott closed subset is comparable with some
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maximal element. It is easy to see that the closure of a singleton {x} in the Scott
topology is ↓{x}, thus the original order ≤ of X can be recovered from the Scott
topology as the preorder of specialization.

Let us describe some other important topologies on posets. The upper topol-
ogy [3], which is also referred as the weak topology [7] or the lower interval
topology [6] has the collection of all principal lower sets ↓{x}, where x ∈ X, as
the subbase for closed sets. The preorder of specialization of the lower interval
topology coincides with the original order of (X ≤). Hence, the saturation of a
subset A ⊆ X with respect to this topology is ↑A. Similarly, the lower topology,
also referred as the weakd topology [7] or the upper interval topology [6], arises
from its subbase for closed sets which consists of all principal upper sets ↑{x},
where x ∈ X. Note that the weakd topology is not the de Groot dual of the weak
topology in general; the weakd topology is the weak topology with respect to the
inverse partial order. The preorder of specialization of the upper interval topol-
ogy is a binary relation inverse to the original order of (X,≤). Consequently, the
saturation of a subset A ⊆ X with respect to this topology is ↓A. The topology
on the spectrum P of a directed complete ∧-semilattice (X,≤), induced by the
upper interval topology, is called the hull-kernel topology [7].

Let (X,≤) be a poset. The set F ⊆ X is is said to be filtered, if every finite
subset of F has a lower bound in F . Since the empty set is included, it has an
upper bound in F which is, therefore, non-empty. If, in addition, F =↑F then
F is called a filter on (X,≤). In this setting, a filter base in a topological space
(X, τ) can be defined as a filtered set ϕ ⊆ 2X in the poset (2X ,⊆), such that
∅ /∈ ϕ.

2 Filtered Compactness and the generalized Scott
topology

We will start with an example which illustrates the relationship between the
Scott topology and compactness in terms of de Groot dual. In [5] the author
proved that for a given topological space (X, τ) with the family of compact
saturated sets K it holds τ = τdd if and only if (X, τ) has an up-compact,
K-down-conservative closed subbase. We need this result for the example.

Example 2.1. Let (X,≤) be a frame, ω be the upper-interval topology on X, σ
be the Scott topology on X. We leave to the reader to show that the compact
saturated sets in (X,ω) are exactly the Scott closed sets, so σ = ωd (the reader
can, e.g., adjust the proof of Proposition 2.3). For every a ∈ X, the principal
filter ↑{a} is up-compact and, for every Scott closed K ⊆ X, ↑(↑{a}∩K) =↑{a},
so the family of principal filters is down-conservative with respect to the family
of the Scott closed sets. By the previously mentioned result, ω = ωdd. Hence, ω
and σ are the de Groot duals of each other. ut

However, this relation between the upper-interval topology and the Scott
topology need not remain true in none of the both directions if we replace the
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frames by more general posets. This fact naturally leads to the following, slightly
adjusted modification of compactness.

Definition 2.1. Let X be a set, Φ ⊆ 2X . We say that K ⊆ X is filtered compact
with respect to the family Φ if K ∩ (

⋂
ϕ) 6= ∅ for every filter base ϕ ⊆ Φ such

that every its element meets K. In a poset (X,≤) we say that K ⊆ X is up-
filtered compact, if it is filtered compact with respect to the family {↑{x} |x ∈ X}
of principal upper sets.

Throughout the paper we work especially with up-filtered compactness of
general posets, but we may be interested what this notion means in terms of
topological spaces and how it differs from usual compactness. The following
analogue of Alexander’s subbase theorem describes filtered compactness in terms
of convergence of more general families than filter bases consisting of members
of the given closed subbase.

Proposition 2.1. Let (X, τ) be a topological space, C the family of all closed
sets, C0 ⊆ C its closed subbase. The following statements are equivalent for a
subset K ⊆ X:

(i) K is filtered compact with respect to C0.
(ii) For every filter base ϕ ⊆ C whose every element meets K such that ϕ∩C0

is a filter base, K ∩ (
⋂

ϕ) 6= ∅.
(iii) For every family ϕ ⊆ C such that ϕ∪{K} has f.i.p. and ϕ∩C0 is a filter

base, K ∩ (
⋂

ϕ) 6= ∅.

Proof. It is clear that (iii) → (ii) → (i). Suppose (i). We say that a family ϕ ⊆ C
has a property P if ϕ∪{K} has f.i.p. and ϕ∩C0 is a filter base. Let L be a chain
of closed families having the property P, linearly ordered by the set inclusion.
It is easy to check that

⋃L again has P. Let ϕ ⊆ C be a family with P. By
Zorn’s Lemma, ϕ is contained in some maximal family having P, say ψ. We
put ψ0 = ψ ∩ C0. It follows from (i) that there exists some p ∈ K ∩ (

⋂
ψ0).

Suppose that p /∈ ⋂
ϕ. Then there exists F ∈ ϕ such that p /∈ F . But F ∈ C,

so there exists a set A, for every α ∈ A a finite set Iα, and for every i ∈ Iα

a closed set Ci ∈ C0, such that F =
⋂

α∈A Fα, where Fα =
⋃

i∈Iα
Ci. There

exists some β ∈ A such that p /∈ Fβ . We have F ⊆ Fβ and ψ ∪ {K} has f.i.p., so
∅ 6= K∩F∩P1∩P2∩· · ·∩Pk ⊆ K∩Fβ∩P1∩P2∩· · ·∩Pk for every P1, P2, . . . , Pk ∈
ψ. Hence, there exists m ∈ Iβ such that Cm has the same property as Fβ , i.e.,
for every P1, P2, . . . , Pk ∈ ψ we have K ∩ Cm ∩ P1 ∩ P2 ∩ · · · ∩ Pk 6= ∅. We
put ψ′ = ψ ∪ {Cm} ∪ {Cm ∩ (

⋂k
j=1 Pj)|Pj ∈ ψ0, j = 1, . . . , k}. Then ψ′ has

the property P, so from the maximality of ψ it follows ψ′ = ψ and we have
Cm ∈ ψ∩C0. Then p ∈ Cm ⊆ Fβ , which is a contradiction. Hence, p ∈ K∩(

⋂
ϕ),

which yields (iii).

Corollary 2.1. Let (X, τ) be a topological space, τ0 ⊆ τ an open subbase of τ .
The following statements are equivalent for a subset K ⊆ X:

(i) K is filtered compact with respect to C0 = {X r U |U ∈ τ0}.
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(ii) For every directed open cover O ⊆ τ such that O ∩ τ0 is directed, there
exists U ∈ O containing K.

(iii) For every open cover O ⊆ τ such that O ∩ τ0 is directed, there exists
finite O′ ⊆ O covering K.

In the following example we will show that in general, compactness and fil-
tered compactness are different properties. Note that the construction of the
topological space is due to B. Burdick [1], who used it as an example of a space
whose iterations of the de Groot dual (including the original topology) can gen-
erate four different topologies.

Example 2.2. Let (X, τ) be the first uncountable ordinal X = ω1 equipped with
the topology τ = {〈0, α) r F | 0 6 α 6 ω1, F is finite}. Then any closed set in
(X, τ) have the form C = 〈α, ω1) ∪ F , where 0 6 α 6 ω1 and F is finite. It
is easy to see that (X, τ) is a T1 space. Suppose that C is a non-empty closed
set which is not a singleton. If α = ω1, then C = F has at least two elements
and it is easy to decompose it into two strictly smaller non-empty closed sets. If
α < ω1, we have C = {α} ∪ 〈α + 1, ω1) ∪ F . In any case, C is not irreducible.
Then (X, τ) is sober. We leave to the reader to check that τd is the cocountable
topology.

Now we will continue directly with the previously constructed space (X, τ),
but alternatively, instead of (X, τ) one can use also any sober space whose de
Groot dual is not compact. Since the family Φ of all compact saturated sets is a
closed base for (X, τd), by Alexander’s subbase theorem X is not compact with
respect to Φ. However, in a sober space, any filter base consisting of non-empty
compact saturated sets has a non-empty intersection (see [4], Corollary 2), so X
is filtered compact with respect to Φ. ut

Note that if the closed subbase C0 of (X, τ) is closed under binary intersec-
tions, the filtered compactness with respect to C0 coincides with compactness.
If the poset (X,≤) has binary joins, the family {↑{x}|x ∈ X} is closed under
binary intersections. Hence, in this case, up-filtered compact means the same as
compact with respect to the upper interval topology. Similarly as compactness,
up-filtered compactness of a set is equivalent to up-filtered compactness of its
saturation.

Proposition 2.2. Let (X,≤) be a poset. Then K ⊆ X is up-filtered compact if
and only if ↓K is up-filtered compact.

Proof. Suppose that K is up-filtered compact. Let ϕ = {↑ {a}| a ∈ A} be a
filter base such that ↓K∩ ↑{a} 6= ∅ for every a ∈ A. Let a ∈ A. There exists
b ∈↓K∩ ↑ {a}, which means that a ≤ b and there exists c ∈ K such that
b ≤ c. Hence, a ≤ c, so c ∈ K∩ ↑ {a}. Since K is up-filtered compact, we
have ∅ 6= K ∩ (

⋂
ϕ) ⊆↓K ∩ (

⋂
ϕ). It follows that ↓K is up-filtered compact.

Conversely, suppose that ↓K is up-filtered compact. Let ϕ = {↑{a}| a ∈ A}
be a filter base such that K∩ ↑{a} 6= ∅ for every a ∈ A. Then, of course,
↓K∩ ↑{a} 6= ∅ for every a ∈ A. Since ↓K is up-filtered compact, there exists
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x ∈↓K ∩ (
⋂

ϕ) 6= ∅. Then there is some y ∈ K, such that a ≤ x ≤ y for every
a ∈ A. Then y ∈ K ∩ (

⋂
ϕ), so K is up-filtered compact.

We would like to have a similar relationship between the upper interval topol-
ogy and the Scott topology as it is demonstrated for frames in Example 2.1. In
a DCPO, as one can prove, the Scott closed sets are exactly the up-filtered com-
pact saturated sets with respect to the upper interval topology. However, how
to extend the Scott topology to posets which are not directed complete? There
are, at least, two outmost possibilities. For instance, one can establish that a
lower set is Scott closed if its each directed subset has a supremum, which is
contained in the lower set. In this case we can get very few Scott closed sets. An-
other, rather extreme possibility is to define that the lower set contains suprema
of its directed subsets only if the suprema exist. This definition may generate
too large family of Scott closed sets. In DCPO’s both cases coincide with the
original definition of the Scott closed set, but, unfortunately, for general posets
they need not work properly. We can demonstrate it by the example.

Example 2.3. Let X = R r {0, 2} and let ≤ be the natural linear order of the
real numbers. We put A = {x|x ∈ X, x ≤ −1}, B = {x|x ∈ X, x ≤ 1} and
C = {x|x ∈ X, x ≤ 2}. Then only the set A matches the first, the strongest
possibility. All the three sets A, B, C match the second, the weakest possible
definition of a Scott closed set. The upper interval topology on (X,≤) is the
family τ = {∅, X} ∪ {(−∞, a) ∩X| a ∈ X}. Clearly, all the three sets A, B, C
are saturated. However, the sets A, B are compact in this topology, but C is
not compact. Hence, choosing the first possibility, there would be more compact
saturated sets than the Scott closed sets, while choosing the second possibility
would cause too many Scott closed sets and some of them would not be compact.

ut
In the previous example, a compromise solution which works well is repre-

sented by the set B. In general, it is given by the following definition.

Definition 2.2. Let (X,≤) be a poset. We say that A ⊆ X is a Scott closed
basic set, if A =↓A and each directed D ⊆ A has an upper bound in A. A set
B ⊆ X is said to be a Scott open basic set, if X rB is a Scott closed basic set.

For our convenience, we will use the shortcuts ‘SCB set’ for ‘Scott closed
basic set’ and ‘SOB set’ for ‘Scott open basic set’. We leave to the reader to
check that the family of the Scott closed basic sets is closed under finite unions.
However, in a general case it need not be closed under intersections, as we can
see from the following example. Hence, the Scott open basic sets form a base for
open sets of some topology, but it itself need not be a topology in general.

Example 2.4. Let (N,≤) be the set of natural numbers with their natural order,
and let a, b /∈ N, a 6= b. We put X = N ∪ {a, b}. For any x, y ∈ X we put x 6 y
if and only if any of the following cases is fulfilled:

(i) x, y ∈ N, x < y,
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(ii) x ∈ N, y ∈ {a, b},
(iii) x = y.

We leave to the reader to check that 6 is a reflexive, antisymmetric and transitive
relation. Let A = N ∪ {a}, B = N ∪ {b}. Then A, B are SCB sets, but in A ∩B
its directed subset N ⊆ A ∩ B has no upper bound, so A ∩ B is not an SCB
set. ut
Definition 2.3. The topology generated by the family of SOB sets we call the
generalized Scott topology.

Proposition 2.3. Let (X,≤) be a poset. Then K ⊆ X is an SCB set if and
only if K is saturated in the upper interval topology and up-filtered compact.

Proof. Let K ⊆ X be an SCB set. Then F = X r K is an upper set and so
F =

⋃
a∈F ↑{a} which means that K = X r

⋃
a∈F ↑{a} =

⋂
a∈F (Xr ↑{a}).

Then K is an intersection of open sets in the upper interval topology, so it is
saturated. Let ϕ = {↑{a} | a ∈ A} be a filter base such that K∩ ↑{a} 6= ∅ for
every a ∈ A. Since ϕ is a filter base then if a, b ∈ A there exists c ∈ A such that
↑{c} ⊆↑{a}∩{b}, that is, c ≥ a, b. So A is directed. Further, if a ∈ A, then there
is some x ∈ K∩ ↑{a}. It follows that a ≤ x and since K is a lower set, we have
a ∈ K. Hence A ⊆ K. Then A has an upper bound u ∈ K since K is an SCB
set. But then u ∈ K ∩ (

⋂
a∈A ↑{a}). It means that K is up-filtered compact.

Conversely, let K ⊆ X be up-filtered compact and saturated in the upper
interval topology. Then there exists F ⊆ X such that K =

⋂
a∈F (Xr ↑{a}) and,

consequently, K is a lower set. Let A ⊆ K be directed. Then Φ = {↑{a} | a ∈ A}
is a closed filter base and every its element clearly meets K. Since K is up-filtered
compact, there exists u ∈ K ∩ (

⋂
a∈A ↑{a}). Then u ≥ a for every a ∈ A, so u is

an upper bound of A which is contained in K. Hence, K is an SCB set.

One can state a natural question whether the filtered version of the de Groot
dual applied on the generalized Scott topology always returns back to the original
upper interval topology of the poset similarly as we described in Example 2.1
for frames. The author so far has no definitive answer for that simple question,
although the expected answer is ‘no’. The general iteration properties of this
modified de Groot dual still remain open, too.

3 The Hofmann-Mislove posets

The Hofmann-Mislove Theorem says that there is a 1-1 correspondence between
Scott open filters of a frame and compact saturated sets of its abstract points
which can be naturally represented as the prime elements of the frame. Then
the set of the prime elements is known as the spectrum of the frame. However,
if we have a more general poset than a frame, this correspondence either need
not work at all or, at least, not so straightforward. In this chapter we attempt
to find the most general class of posets that satisfy a proper generalization of
the Hofmann-Mislove Theorem. To be able to do this, we need to adjust some
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notions which are very simple and clearly understood in frames but a rather
more complicated in general setting. In the following definition we modify and
extend the notion of a prime element to be relevant also for those posets which
do not necessarily have the finite meets.

Definition 3.1. Let (X,≤) be a poset, L ⊆ X. We say that L is prime if
↓L 6= X and for every a, b ∈ X

↓{a}∩ ↓{b} ⊆↓L ⇒ (a ∈↓L) ∨ (b ∈↓L).

It can be easily seen that if (X,≤) has finite meets, any element p ∈ X is
prime if and only if the singleton {p} is prime as a set. Hence, we can extend
the notion of a prime element also to those posets which do not necessarily have
finite meets. Thus in the following text we mean that an element p of a poset
(X,≤) is prime if and only if {p} is prime in the sense of the previous definition.
As the following proposition shows, the notions of a prime set and of a filter are
dual.

Proposition 3.1. Let (X,≤) be a poset. Then L ⊆ X is prime if and only if
F = Xr ↓L is a filter.

Proof. Let L ⊆ X be prime. Then F = Xr ↓L is a nonempty upper set. Let
a, b ∈ F . Then a, b /∈↓L, which implies that there is some c ∈↓{a}∩ ↓{b} such
that c /∈↓L, i.e. c ∈ F . Conversely, let F be a filter. Then ↓L = X r F 6= X.
Suppose that ↓{a}∩ ↓{b} ⊆↓L for some a, b ∈ X. Then a, b /∈↓L implies a, b ∈ F ,
which means that there is some c ≤ a, c ≤ b, c ∈ F . Then c ∈↓{a}∩ ↓{b}, but
c /∈↓L, which is a contradiction.

In the direct proof of the topological formulation of the Hofmann-Mislove
Theorem (see, e.g. [4]), the sobriety of a topological space is needed to ensure
that if an open set contains an intersection of a Scott open filter, then this open
set is an element of the filter. We may say that such a filter is “wide” enough. If
a topological space is not sober, its topology can have Scot-open filters which are
not wide in this sense, but, on the other hand, the Scott open filters generated
by compact sets are always wide. We want to model this situation in a poset
equipped with the upper-interval topology. However, all the elements of a poset
need not necessarily correspond to the points of a certain topological space in
the analogy that we want to model. It will be more convenient to relativize the
“wideness” of a filter to subsets of posets and then study, which subsets have
the desired properties, whatever they are.

Definition 3.2. Let (X,≤) be a poset, P ⊆ X. Denote ψ(x) = Pr ↑{x} for
every x ∈ X. We say that F ⊆ X is wide relative P , if for every a ∈ X,⋂

x∈F ψ(x) ⊆ ψ(a) ⇒ a ∈ F .

Since we will often work with the prime sets rather than with filters, according
to Proposition 3.1 we need a notion dual to relative wideness. In particular, a
Scott closed prime set should have that property if and only if its complement
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is a relatively wide Scott open filter. This is a motivation for the next definition
and the consecutive proposition, which only shows that the new notion has the
expected and desired properties.

Definition 3.3. Let (X,≤) be a poset, P ⊆ X. We say that K ⊆ X is narrow
relative P if K ⊆↓(P ∩K).

Proposition 3.2. Let (X,≤) be a poset, K ⊆ X a lower set. Then K is narrow
relative P if and only if F = X rK is wide relative P .

Proof. Let K ⊆ X narrow relative P , K =↓K. Then F = X rK is an upper
set and

⋂
x∈F ψ(x) =

⋂
x∈F (Pr ↑{x}) = P r

⋃
x∈F ↑{x} = P r F = P ∩ K.

Suppose that
⋂

x∈F ψ(x) ⊆ ψ(a) for some a ∈ X. Then P ∩ K ⊆ Pr ↑{a},
which means that P ∩ K∩ ↑ {a} = ∅. Then a /∈↓ (P ∩ K), and since K is
narrow relative P , a /∈ K. It follows a ∈ F , which yields that F is wide relative
P . Conversely, suppose that F is wide relative P . Let a ∈ K = X r F . Then⋂

x∈F ψ(x) = P ∩K * ψ(a) = Pr ↑{a}. Then P ∩K∩ ↑{a} 6= ∅, so there exists
some t ∈ P ∩K∩ ↑{a}. Then a ≤ t and t ∈ P ∩K, which gives a ∈↓(P ∩K).
Hence, K ⊆↓(P ∩K).

Another, also useful characterization of relative narrowness is given by the
following proposition.

Proposition 3.3. Let (X,≤) be a poset, K ⊆ X a lower set. Then K is narrow
relative P if and only if there exists L ⊆ P such that K =↓L.

Proof. Let K ⊆ X be narrow relative P . Then K ⊆↓(P ∩K). We put L = P ∩K
and since K is a lower set, we have K =↓L. Conversely, suppose that K =↓L,
where L ⊆ P . Let x ∈ K. Then there exists some t ∈ L ⊆ P ∩K such that x ≤ t.
Then x ∈↓(P ∩K), which gives K ⊆↓(P ∩K). Hence, K is narrow relative P .

Now, we are ready to say more precisely what we mean by the analogy with
frames or sober topological spaces that we want to model for a certain class of
posets. The desired situation is described by the conditions (i) and (ii) of the
following proposition equivalently in terms of the SOB filters and SCB prime
sets.

Proposition 3.4. Let (X,≤) be a poset, ω the upper interval topology on X,
ωP the induced topology on P ⊆ X. The following conditions (i) and (ii) are
equivalent:

(i) There exists P ⊆ X such that:
(1) For every SOB filter F ⊆ X, if we denote ψ(x) = Pr ↑{x} and

L =
⋂

a∈F ψ(a), the set L is up-filtered compact, saturated in (P, ωP )
and F = {x|x ∈ X, L ⊆ ψ(x)}.

(2) For every up-filtered compact and saturated L ⊆ P in (P, ωP ), the
set F = {x|x ∈ X, L ⊆ ψ(x)} is a SOB filter.

(ii) There exists P ⊆ X such that:
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(1) For every SCB prime set K ⊆ X, the set L = P ∩K is up-filtered
compact, saturated in (P, ωP ) and K =↓L.

(2) For every up-filtered compact and saturated L ⊆ P in (P, ωP ), the
set ↓L is an SCB prime set.

Proof. It is obvious that F ⊆ X is an SOB filter if and only if K = X r F is
an SCB prime set. Further,

⋂
a∈F ψ(a) =

⋂
a∈F (Pr ↑{x}) = P r

⋃
a∈F ↑{a} =

P r F = P ∩K and Xr ↓L = {x|x ∈ X, x /∈↓L} = {x|x ∈ X,L∩ ↑{x} = ∅} =
{x|x ∈ X,L ⊆ ψ(x)}. Now it is clear that (ii) is only a reformulation of (i).

Definition 3.4. Let (X,≤) be a poset. We say that (X,≤) is Hofmann-Mislove,
if (X,≤) satisfies any of the conditions (i) or (ii) of Proposition 3.4. The set
P ⊆ X from (i) or (ii) we call a generalized spectrum of (X,≤); the topology ωP

we call the generalized hull-kernel topology on P .

The natural question that we immediately have to ask just after the defi-
nition is which posets are Hofmann-Mislove and how many generalized spectra
such a poset can have. The next proposition shows, as one can expect, that the
generalized spectrum is determined uniquely.

Proposition 3.5. Let (X,≤) be a Hofmann-Mislove poset, S ⊆ X its any gen-
eralized spectrum. Then S = {p| p ∈ X, p is prime} = {m|m is a maximal ele-
ment of an SCB prime subset of X}.

Proof. Let M = {m|m is a maximal element of an SCB prime set}, P =
{p| p ∈ X, p is prime}. Let p ∈ P be a prime element. Then ↓{p} is an SCB
prime set and p is its maximal element. Then P ⊆ M . Let m ∈ M and let
K ⊆ X be an SCB prime set such that m ∈ K is its maximal element. Then
K =↓(K ∩ S), so m ∈↓(K ∩ S). Then there exists t ∈ K ∩ S with m ≤ t. But m
is maximal in K, so m = t ∈ S. Hence, M ⊆ S. Let s ∈ S. Then {s} is clearly
up-filtered compact, as well as ↓{s}. The set L = S∩ ↓{s} is saturated in (S, ωS)
and ↓L =↓{s}. Hence, L is up-filtered compact. Then ↓L is an SCB prime set,
which means, in particular, that s is prime. Therefore, S ⊆ P . Now we have
P ⊆ M ⊆ S ⊆ P , which completes the proof.

The rest of the section will be devoted to simplifying the condition of being
Hofmann-Mislove.

Proposition 3.6. A poset (X,≤) is Hofmann-Mislove if and only if there exists
P ⊆ X such that the following statements are fulfilled:

(1) Every SCB prime set is narrow relative P .
(2) Every L ⊆ P such that ↓L is an SCB set is prime.

Proof. We will show that the conditions (1) and (2) are equivalent to the corre-
sponding conditions of Proposition 3.4. It is clear that the condition (1) of (ii) in
Proposition 3.4 implies (1). Conversely, suppose (1). Then, for every SCB prime
set K, it holds K ⊆↓(P ∩K). Since K =↓K, we have K =↓L, where L = P ∩K.
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It follows from Proposition 2.2 that L is up-filtered compact and, clearly, L is
saturated in (P, ωP ). Hence, (1) and the condition (1) of (ii) in Proposition 3.4
are equivalent.

Now, suppose (2) of (ii) in Proposition 3.4. Let L ⊆ P such that ↓L is an SCB
set. Then, by Proposition 2.3, ↓L is up-filtered compact and, of course, saturated
in the upper-interval topology. We put M = P∩ ↓L. Then L ⊆ M ⊆↓L, so
↓M =↓L. Then, by Proposition 2.2, M is up-filtered compact. Since ↓L is
saturated in (X, ω), M is saturated in (P, ωP ). By (2) of (ii) in Proposition 3.4,
↓M =↓L is prime. By Definition 3.1, L is prime. Hence, (2) is fulfilled. Conversely,
suppose (2). Let L ⊆ P be up-filtered compact and saturated in (P, ωP ). Then
↓L is also up-filtered compact by Proposition 2.2 and saturated in (X, ω) as a
lower set. By Proposition 2.3, ↓L is an SCB set. It follows from (2) that ↓L is
prime, so the condition (2) of (ii) in Proposition 3.4 is fulfilled. This completes
the proof.

Theorem 3.1. A poset (X,≤) is Hofmann-Mislove if and only if there exists
P ⊆ X such that for every SCB set K ⊆ X, the following statements are equiv-
alent:

(i) K is prime.
(ii) K is narrow relative P .

Proof. Suppose that (X,≤) is Hofmann-Mislove and let P be its generalized
spectrum. Let K ⊆ X be an SCB set. If K is prime, then by Proposition 3.6 K
is narrow relative P . Conversely, if K is narrow relative P , by Proposition 3.3
K =↓L for some L ⊆ P . By Proposition 3.6, K is prime. Now we can see that
conditions (i) and (ii) are equivalent.

Conversely, suppose that there exists P ⊆ X such that for every SCB set
the conditions (i) and (ii) are equivalent. Let K ⊆ X be an SCB prime set.
By the implication (i) → (ii), K is narrow relative P , so the condition (1) of
Proposition 3.6 is fulfilled. Now, let L ⊆ P be such that K =↓L is an SCB
set. Then K is narrow relative P by Proposition 3.3. Therefore, K is prime by
the implication (ii) → (i). It follows just from Definition 3.1 that L is prime.
Hence, the condition (2) of Proposition 3.6 holds. By Proposition 3.6, (X,≤) is
Hofmann-Mislove.

Combining the previous theorem with Proposition 3.5, we have the following
corollary.

Corollary 3.1. Let (X,≤) be a poset, P ⊆ X the set of prime elements. Then
(X,≤) is Hofmann-Mislove if and only if for every SCB set K ⊆ X, the following
statements are equivalent:

(i) K is prime.
(ii) K is narrow relative P (i.e., K =↓L for some L ⊆ P ).

The previous result can also be reformulated without the explicit use of the
generalized spectrum, as we can see from the following theorem.
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Theorem 3.2. A poset (X,≤) is Hofmann-Mislove if and only if for every SCB
set K ⊆ X the following statements are equivalent:

(i) K is prime.
(ii) Every maximal element of K is prime.

Proof. Let P be the set of prime elements of (X,≤). Suppose that (X,≤) is
Hofmann-Mislove. Let K be an SCB set. If K is prime, by Corollary 3.1 K =↓L,
where L ⊆ P . Let m ∈ K be a maximal element of K. Then there exists
some p ∈ L such that m ≤ p and from maximality we have p = m. Hence,
every maximal element of K is prime. Conversely, suppose that every maximal
element of K is prime. Let M ⊆ K be the set of maximal elements of K. Then
M ⊆ P . Since K is an SCB set, it follows from Zorn’s Lemma that every element
x ∈ K is comparable with some maximal element m ∈ M – we have x ≤ m.
Then K =↓M , so by Proposition 3.3 K is narrow relative P . It follows from
Corollary 3.1 that K is prime. Hence, the conditions (i) and (ii) are equivalent.

On the other hand, suppose that the conditions (i) and (ii) are equivalent
for every SCB set K ⊆ X. Let K be prime. Then, by the implication (i) →
(ii) it follows that every maximal element of K is prime. If M ⊆ K is the set
of maximal elements of K, then K =↓M and M ⊆ P . By Proposition 3.3, K
is narrow relative P . Conversely, let K be narrow relative P and let m ∈ K
be a maximal element. We have K =↓L for some L ⊆ P , which yields m ∈ L
because of maximality of m. Then every maximal element of K is prime. It
follows from the implication (ii) → (i) that K is prime. By Corollary 3.1, (X,≤)
is Hofmann-Mislove.

Corollary 3.2. Let (X,≤) be a poset with binary meets. Then (X,≤) is Hofmann-
Mislove if and only if every maximal element of an SCB prime set is prime.

Proof. By Theorem 3.2, it is sufficient to show that if (X,≤) has finite meets,
then an SCB set, whose maximal elements are prime, is prime. Let K ⊆ X
be an SCB set and suppose that every maximal element of K is prime. Let
↓{a}∩ ↓{b} ⊆↓K = K for some a, b ∈ X. Then a∧ b ∈ K, so there is a maximal
element m ∈ K such that a ∧ b ≤ m. By the assumption, m is prime, so a ≤ m
or b ≤ m. Then a ∈ K or b ∈ K, which means that K is prime.

The following corollary is the reformulated Hofmann-Mislove Theorem.

Corollary 3.3. Let (X,≤) be a distributive lattice. Then (X,≤) is Hofmann-
Mislove.

Proof. Let K ⊆ X be an SCB prime set, m ∈ K its maximal element. Suppose
that a ∧ b ≤ m for some a, b ∈ X. Then (a ∨m) ∧ (b ∨m) = (a ∧ b) ∨ (a ∧m) ∨
(m ∧ b) ∨ (m ∧m) = m. Then ↓{a ∨m}∩ ↓{b ∨m} ⊆ K, but K is lower and
prime, so a∨m ∈ K or b∨m ∈ K. But then a∨m = m or b∨m = m, i.e. a ≤ m
or b ≤ m, since m is maximal. Hence, m is a prime element.
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As we can expect, a modular lattice need not be Hofmann-Mislove, which
can be easily seen from the following example.

Figure 1.

Example 3.1. In the diamond lattice M5 on Figure 1, the set {1, 2, 3} is prime
and SCB. However, its maximal elements 2 and 3 are not prime. Hence, the
diamond lattice is not Hofmann-Mislove. ut

On the other hand, there are Hofmann-Mislove lattices which are not modular
(and, of course, not distributive).

Example 3.2. The lattice (X,≤) on Figure 2 is not modular because it has a
pentagonal sublatice isomorphic to N5 with the underlying set {−2, 0, 1, 2, 3}.

Figure 2.

It will be more illustrative if we show that (X,≤) is a Hofmann-Mislove lattice
directly from the definition. The generalized spectrum of this lattice is P =
{0, 3, 6, 9, 12, . . . }, which is topologized by the generalized hull-kernel topology

ωP = {∅, {0}, {0, 3}, {0, 3, 6}, {0, 3, 6, 9}, {0, 3, 6, 9, 12}, . . . }.
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Then the up-filtered compact sets, which coincide with the compact sets since
(X,≤) is a lattice, are precisely the finite sets. Hence, the compact saturated
sets are exactly the elements of ωP . The lattice (X,≤) is ∧-complete, so the
filters in (X,≤) have the form F =↑{f}, where f ∈ X. But not all the filters are
SOB sets. The filters of the form ↑{3k} or ↑{3k + 2} where k = 0, 1, 2, . . . are
not SOB sets, since the linearly ordered chain {1, 4, 7, . . . } has no upper bound
in (X,≤), but it does not meets these filters (cf. Definition 2.2). Therefore,
the SOB filters are precisely the sets ↑{3k + 1}, where k ∈ {−1, 0, 1, . . . }. Let
F =↑{3k + 1} be an SOB filter. Then L(F ) =

⋂
a∈F ψ(a) =

⋂
a≥3k+1(Pr ↑

{a}) = P r
⋃

a≥3k+1 ↑{a} = Pr ↑{3k + 1} = P r F = {0, 3, 6, . . . , 3k} if
k ∈ {0, 1, 2, . . . }, or L(F ) = ∅ if k = −2 (cf. denotation in Proposition 3.4). In
any case, L(F ) is compact saturated and {x|x ∈ X, L(F ) ⊆ ψ(x)} = {x|x ∈
X, ↑{x} ∩ P ⊆↑{3k + 1}} =↑{3k + 1} = F . Conversely, if L = {0, 3, 6, . . . , 3k}
is a compact saturated set, the set F (L) = {x|x ∈ X, L ⊆ ψ(x)} = {x|x ∈
X, ↑{x} ∩ P ⊆ P r L} = {x|x ∈ X, ↑{x} ∩ P ⊆↑{3k + 1}} =↑{3k + 1} is an
SOB filter. Hence, by Definition 3.4, the lattice (X,≤) is Hofmann-Mislove. Of
course, alternatively one can prove that (X,≤) is Hofmann-Mislove by checking
that the SCB prime sets are just the sets ↓{p}, where p ∈ P , and then applying
Corollary 3.2. ut

It is well-known that the spectrum of a frame equipped with the hull-kernel
topology is a sober topological space. One may ask what happens with the
sobriety of the generalized spectrum of a general poset. But it is easy to find
a proper counterexample. It shows that even slightly more general Hofmann-
Mislove posets than frames may very naturally lead to non-sober topologies on
their generalized spectra.

Example 3.3. Let Y be an infinite set, X = {K|K ⊆ Y is finite}. For every
a, b ∈ X we put a ≤ b if and only if a ⊇ b. Then (X,≤) has all finite meets
including

∧
∅ =

⋃
∅ = ∅ ∈ X, which is the top element of (X,≤). On the

other hand,
∨
∅ =

⋂
∅ = Y is not a finite set, so (X,≤) has not the empty

join. In particular, (X,≤) is a distributive lattice with all non-empty joins, it is
a DCPO since directed sets are non-empty, but it is not a frame.

Let p = {y}, where y ∈ Y and suppose that a ∧ b ≤ p for some a, b ∈ X.
Then a ∪ b ⊇ p, which means that y ∈ a or y ∈ b. Hence, a ⊇ p or b ⊇ p, which
gives a ≤ p or b ≤ p. Then p is a prime element of X. Conversely, let p ∈ X
be an element with |p| ≥ 2. Then there exist x, y ∈ p such that x 6= y. We put
a = pr{x}, b = pr{y}. We have a∪b = p, which implies a∧b ≤ p, but also a � p
and b � p. It means that p is not prime. Since ∅ is not prime by the definition
as the top element, the prime elements of (X,≤) are precisely the singletons. By
Corollary 3.3, (X,≤) is a Hofmann-Mislove poset and its generalized spectrum is
P = {{y}| y ∈ Y }. For every a ∈ X, P∩ ↑{a} = {f | f ⊆ a, |f | = 1} = {{y}| y ∈
a}. Now we can see that the generalized hull-kernel topology on P is the cofinite
topology, which obviously is not sober. ut



The Hofmann-Mislove Theorem for general posets 15

4 Some closing remarks

Let (X, τ) be a topological space, T ⊆ τ its open base which is a lattice. Then,
by Corollary 3.3, (T ,⊆) is a Hofmann-Mislove poset. Let P ⊆ T be its spectrum
and let ω be the upper interval topology on the poset (T ,⊆). There is a canonical
mapping from (T ,⊆) to (ωP ,⊆) given by the correspondence

T 3 U −→ Pr ↑{U} ∈ ωP .

We leave to the reader to check that this correspondence always preserves unions
and intersections, which is an easy consequence of the fact that P consists of the
prime elements of T . However, the points of the corresponding sets are different
in general and it is a natural question when they have the same meaning – this
will happen exactly if there is a bijection π : P → X which matches the canonical
mapping from (T ,⊆) to (ωP ,⊆). That is, for every P ∈ P and U ∈ T ,

π(P ) ∈ U ⇔ P ∈ Pr ↑{U} ⇔ U * P.

Since P ⊆ P , then we have π(P ) ∈ X r P and so cl{π(P )} ⊆ X r P . Then
P ⊆ Xrcl{π(P )}. On the other hand, let t ∈ Xrcl{π(P )}. There exists U ∈ T
such that t ∈ U and π(P ) /∈ U , which means that U ⊆ P . Hence, t ∈ P . So,
we can conclude that P = X r cl{π(P )}. In particular, if T = τ , π : P → X is
a homeomorphism of the topological spaces (X, τ), (P, ωP) and we obtain the
well-known fact that (X, τ) is sober.

Let F ⊆ T be a Scott open filter and suppose that for some U ∈ T we have⋂F ⊆ U . We want to show that then U ∈ F . Note that if this works for each
U ∈ T , we will say that F is wide with respect to T . Suppose conversely, that
U /∈ F . We put

M = {V |V ∈ T , U ⊆ V /∈ F}.
Using Zorn’s Lemma we want to show that M has a maximal element. Let
L ⊆M be a chain, linearly ordered by the set inclusion. Suppose that

⋃L ∈ F .
Then, since F is Scott open, there exists V ∈ L such that V ∈ F . But also we
have V ∈ M, which is a contradiction. Hence, U ⊆ ⋃L /∈ F . We would like
to conclude that

⋃L is an upper bound of L in M, but for that conclusion we
need

⋃L ∈ T . Under the additional assumption that T is closed under linear
unions, by Zorn’s Lemma there exists a maximal element, say W ∈M. Suppose
that Q,S ∈ T such that W = Q ∩ S. Since F is a filter which does not contain
W , it is not possible that Q ∈ F and S ∈ F . So, suppose that some of the sets
Q,S, say Q, is not an element of F . Then U ⊆ Q /∈ F , so Q ∈ M and by the
maximality of W , we have Q = W . Hence, W is a prime element of T . By our
previous assumption, W = X r cl{π(W )}. Let V ∈ F . Then V * W , which
means that V ∩ cl{π(W )} 6= ∅. Then π(W ) ∈ V and so π(W ) ∈ ⋂F ⊆ U ⊆ W ,
which is a contradiction. Therefore, U ∈ F , which means that F is wide with
respect to T .

From the wideness of the filter F now we want to conclude that
⋂F is

compact. Let O ⊆ T be an open cover of
⋂F 6= ∅. For the next step we
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need to strengthen our assumptions regarding T . Now we need T to be closed
under non-empty unions if we want to keep the original and usual meaning of
compactness. Accepting this additional condition, we can continue. Then

⋂F ⊆⋃O implies
⋃O ∈ F , and since F is Scott open, there exist U1, U2, . . . Uk

such that
⋃k

i=1 Ui ∈ F . But then,
⋂F ⊆ ⋃k

i=1 Ui, which implies that
⋂F is

compact. Now we can see that a slightly more general analogue of the classic
topological version of the Hofmann-Mislove theorem holds, we have one-to-one,
order preserving correspondence between Scott open filters in T and the compact
saturated sets. The point in which our construction is more general and in which
T differs from τ is exactly that we admit ∅ /∈ T .

At first glance, it seems to be not a great difference if ∅ belongs to T or
not, but this is exactly the reason why the poset in Example 3.3 is Hofmann-
Mislove while the underlying topology is not sober. Hence, there is a possibility
to extend the classical topological version of the Hofmann-Mislove theorem to
the structure slightly more general than the topological spaces and, at the same
time, we can see its limitation if we want to keep the traditional meaning of such
topological notions, as, for example, compactness. But in these considerations
we will continue in the next, forthcoming paper.
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