What do partial metrics represent?
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Abstract. Partial metrics were introduced in 1992[Ma94] as a metric
to allow the distance of a point from itself to be non zero. This notion
of self distance, designed to extend metrical concepts to Scott topologies
as used in computing, has little intuition for the mainstream Hausdorff
topologist. The talk will show that a partial metric over a set X can be
represented by a metric over X U{¢}, for a so-called base point ¢. Thus we
establish that a partial metric is essentially a structure combining both a
metric space and a skewed view of that space from the base point. From
this we can deduce what it is that partial metrics are really all about.

A partial metric is a function p: X x X — [0, 00) such that,

(1) p(z,z) < p(z,y)

(2) p(z,y) = p(y,z)

(3) p(z,2) + p(y,y) < p(z,y) + p(y, 2)

4 z=y & plz,2)=py) =p{y,y)

Partial metrics were introduced as a generalisation of the notion of metric to
allow non zero self distance for the purpose of modelling partial objects in rea-
soning about data flow networks. The self distance p(z, z) is to be understood
as a quantification of the extent to which z is unknown.

From a partial metric p : X x X — [0,00) we have each of the following
constructions. A partial ordering C, C X x X given by, 2 C, y < p(z,2) =
p(z,y). A quasi-metric ¢ : X x X — [0, 00) given by, ¢(z,y) = p(z,y) —p(z,x).
q yields the usual quasi-metric topology 7, C 2%. A metricd: X x X — [0, 00)
given by, d(z,y) = 2 x p(z,y) — p(z,z) — p(y,y). d yields the usual metric
topology 74 C 2%, being the join of 7, and 7,—1. Earlier work has established
a contraction mapping theorem for partial metrics[Ma95] Partial metrizability
into arbitrary value quantales has been defined[Kop04].

The starting point for our representation theorem is the observation that if
p:X xX — [0,00) has bottom L € X then z C, y if and only if d(L,y) =
d(L,z) 4+ d(z,y). Similarly, if p has top T € X then z C, y if and only if
d(x, T) = d(z,y) + d(y, T). Thus the order induced by a bottomed or topped
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partial metric is determined by the associated metric and a base point. This
raises the question, is each partial metric determined by a metric and a base
point? The answer is yes!

A based metric (or, metric with base point) is defined to be a pair
(d: XxX — [0,00),¢ € X) such that d is a metric. The base point is introduced
to facilitate asymmetric interpretation of metric spaces. For each based metric
M= (d,¢ € X), CyyC X x X is defined to be the relation such that, x Cas y
iff d(¢,x) + d(z,y) = d(¢,y). Then we can show that for each based metric
M = (d,¢), Cu is a partial ordering with bottomn ¢. We can show that for
each based metric M = (d,¢ € X), qu : X x X — [0,00) given by gum(z,y) =
d(¢’w)+d(z2’y)_d(¢’y) is a quasi-metric.

Now for three examples of based metrics. Let M = (d : [0,00)? — [0, <), 0)
be the non negative real numbers under the usual metric with base point 0,
then C,, is the usual <. For a second example, consider the usual metric over
all the reals with base point 0, then the ordering is, x Cpy vy iff y < 2z < 0 or
0 < z <y where < is the usual ordering on the reals. A third example, this time
motivated by computer science, is a flat domain. For any set X and ¢ € X, let
d: X xX — {0,1,2} be the unique metric such that, d(z,y) = 1if z = ¢ or
y = ¢, 2 otherwise. Let M = (d,¢), then z Cpry iff z = ¢ or z = y.

A subset A C X of a poset (X, C) is defined to be directed if it is non empty
and each pair of elements of A has an upper bound in A[AJ94]. A directed
metric is defined to be a based metric (d, ¢ € X) such that d is complete, and
for each directed set A C X there exists c4 < oo such that for each a € A,
d(¢,a) < ca. For each directed metric M = (d,¢ € X) we can then prove each
of the following. (1) (X,C ) is a dcpo, (2) For each directed set A, d(¢, |_]T A)
= sup{ d(¢,a) | a € A }, (3) Each member of 7,,, is Scott-open.

We now take the usual definitions for continuous domains. For each dcpo
(X,E), «C X x X is the way below relation such that, z < y iff for each
directed set A, if y C |_|TA then there exists a € A such that ¢ C a. A dcpo
(X, E) is defined to be continuous if, for each x € X there exists directed set
A C {z such that |_|T A = z. Then we can prove that for each directed metric
M=(d¢eX),()z<yiffy € Int;, (12),(2) z < z iff there exists € > 0
such that By (r) = 1z, (3) If (X,Cn) is a continuous dcpo then 7, is the
Scott topology.

Now we begin our representation of partial metrics. In general a partial metric
need have neither a bottom nor a top, but each can be added. First we consider
adding bottom. For each bounded partial metric p : X x X — [0,00), and for
some L & X,let X; = XU{L}. Let, p = sup{p(z,y)|lz,y € X} + 1. Let
p1L: X1 x X, —[0,00) be such that,

plz,y)ifre X andye X
P otherwise

pi(z,y) = {

Then p, is a partial metric, being p lifted to add L as bottom.
Now we construct an order preserving representation for bounded partial
metrics. Let d : X x X; — [0,00) be such that d(z,y) = 2 x pi(z,y) —



pi(z,z)—pi(y,y). Then M = (d, L,,) is a based metric such that Cpy = C,, .
Let S = (M ﬁ) Let ps : X1 x X1 — [0,00) be such that,

d(w: y) — d(LP_L > .’L‘) - d(J‘P_L s y)
2

ps(z,y) = p+

Then ps is a partial metric such that T, =C . Let p' : (X | —{L,s})? = [0, 00)
be such that p'(z,y) = ps(z,y). Then p' = p. Note that p(z,z) = p — d(L, z).
For a representation unique up to topological equivalence p can be replaced by
a universal constant.

Now we try representing a partial metric using top as the base point. For
each bounded partial metric p : X x X — [0,00), and for some T & X, let X T
= X U{T}. Let, p = sup{p(z,y)|z,y € X} +1. Let p" : XT x XT — [0,00) be
such that,
p+plz,y)ifreXandye X
p+pz,z)ifreXandy=T
p+ply,y)if r=Tandy € X
0 ifr=y=T

p'(z,y) =

Then p' is a partial metric with top T, and such that E, restricted to X x X
is Cp.

Now for an order reversing representation for bounded partial metrics Let
d: X" xXT —[0,00) be such that d(z,y) = 2xp"(z,y) —p ' (z,2) —p" (y,y).
Then M = (d, T,~ € XT) is a based metric such that Cpy = J,7v. Let pps :
XT x XT —[0,00) be such that,

d(z,y) +d(T,m,z) +d(T,T,y)
2

M(may) =

.
Then pyy is a partial metric such that C,,, = Ja. Let ¢p,, = sup{pm (z.y)|z.yE€X  }+1

Let p' : (X7 —{Tpn })? = [0,00) be such that, p'(z,y) = pum (@, y) — csz. Then
p' = p. Note that p(z,z) = d(T,z) — cp,,

Now for an order preserving representation for based metrics Let M =
(d,¢ € X) be a based metric. Let pasr : X x X — (—o00,00) be such that
pu(z,y) = d(w’y)_d(g’m)_d(d”y). Then pys is a partial metric (generalised to neg-
ative distances) such that Cp,,=Ca. Let d' : X x X — [0,00) be such that
d(z,y) =2 x pu(z,y) —pm(z,7) — pu(y,y) Then (d', L,,,) = M. Note that
d(¢,z) = — pu(z,z). We can generalise partial metrics to allow negative
distances as, for example, Simon O’Neil in his work on semi valuations.

Now for an order reversing representation for based metrics Let M = (d, ¢ €
X) be a based metric. Let ppr : X x X — [0,00) be such that py(z,y) =
d(””’de(‘g’szw’y) Then pys is a partial metric such that Cp,, = Jp. Let d' -
X x X — [0,00) be such that d'(z,y) = 2 x pm(z,y) —pm(z,z) —pum (y, y) Then
(d', Tpy) = M. Note that d(¢,z) = pm(z,z). Where our order preserving
constructions use a partial metric p the order reversing counterpart uses the
dual p*(z,y) = p(z,y) — p(z,z) — p(y,y). Note that p** = p.




Why use based metrics? From a computer science perspective it is natural to
ask, what is the partial metric distance between two order preserving functions?
Such a partial metric is possible, but is now seen to be unnecessary. We can
handle functions as follows using based metrics and a familiar metric construc-
tion. For based metrics (d,¢ € X) & (d',¢' € X') such that d’ is bounded, for
ag,ai,... € X, and for a set of functions X — X' such that f = g iff for all ¢,
f(a;) = g(a;) let (D: (X - X")?2 = [0,00), # € X — X') be the based metric

such that, '
D(f,9) = Yiso 27" x d'(f(ai),9(ai))
S=z— ¢

Then f C g iff for all z, f(z) C g(z).

So, what do partial metrics represent? Our representation theorem suggests
that the partial metric notion of self distance is more presentational than sub-
stantial as, (1) ¢ is neither necessarily L nor T, (2) self distance is reducible
to distance from base point, (3) a partial metric over order preserving functions
is reducible to a familiar metric construction. Now we can argue that a par-
tial metric represents a combined metric space with an asymmetric ’perspective’
determined by an explicit or implicit base point.

We conclude that based metrics embody notions of order and topology in the
spirit of domain theory. This raises a number of questions. Which metric spaces
become domains by identifying (or adding) a suitable base point? Based metrics
can produce asymmetry without being founded upon asymmetric generalisations
such as quasi-metrics? Which domains are base point metrizable? The proposal
of non zero self distance introduced by partial metrics in 1992 has now matured
into the conjecture that a metric space can be observed. What can be learnt from
notions of observation used in process calculus and space-time physics?
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