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Abstract

We prove that a globally hyperbolic spacetime with its causality re-
lation is a bicontinuous poset whose interval topology is the manifold
topology. This implies that from only a countable dense set of events
and the causality relation, it is possible to reconstruct a globally hy-
perbolic spacetime in a purely order theoretic manner. The ultimate
reason for this is that globally hyperbolic spacetimes belong to a cate-
gory that is equivalent to a special category of domains called interval
domains. We obtain a mathematical setting in which one can study
causality independently of geometry and differentiable structure, and
which also suggests that spacetime emanates from something discrete.

1 Introduction

It has been known for some time that the topology of spacetime could be
characterized purely in terms of causality. But what is causality? To il-
lustrate what we are asking, the physical idea ‘rate of change’ is formalized
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mathematically by ‘derivative’, etc. What is the mathematical formalization
of ‘causality’ – assuming it has one at all?

In this paper, we prove that the causality relation is much more than a
relation – it turns a globally hyperbolic spacetime into what is known as a
bicontinuous poset. The order on a bicontinuous poset allows one to define
an intrinsic topology called the interval topology. On a globally hyperbolic
spacetime, the interval topology is the manifold topology.

This directly implies that a globally hyperbolic spacetime can be recon-
structed in a purely order theoretic manner, beginning from only a countable
dense set of events and the causality relation. The ultimately reason for this
is that the category of globally hyperbolic posets, which contains the globally
hyperbolic spacetimes, is equivalent to a very special category of domains
called interval domains.

Domains were discovered in computer science by Scott [8] for the pur-
pose of providing a semantics for the lambda calculus. They are partially
ordered sets which carry intrinsic (order theoretic) notions of completeness
and approximation. From a certain viewpoint, then, the fact that the cat-
egory of globally hyperbolic posets is equivalent to the category of interval
domains is surprising, since globally hyperbolic spacetimes are usually not
order theoretically complete. This equivalence also explains why spacetime
can be reconstructed order theoretically from a countable dense set: each ω-
continuous domain is the ideal completion of a countable abstract basis, i.e.,
the interval domains associated to globally hyperbolic spacetimes are the
systematic ‘limits’ of discrete sets. This may be relevant to the development
of a foundation for quantum gravity, an idea we discuss at the end.

But, with all speculation aside, the importance of these results and ideas
is that they suggest an abstract formulation of causality – a setting where one
can study causality independently of geometry and differentiable structure.

2 Domains, continuous posets and topology

A poset is a partially ordered set, i.e., a set together with a reflexive, anti-
symmetric and transitive relation.

Definition 2.1 Let (P,v) be a partially ordered set. A nonempty subset
S ⊆ P is directed if (∀x, y ∈ S)(∃z ∈ S) x, y v z. The supremum of S ⊆ P
is the least of all its upper bounds provided it exists. This is written

⊔
S.

These ideas have duals that will be important to us: A nonempty S ⊆ P is
filtered if (∀x, y ∈ S)(∃z ∈ S) z v x, y. The infimum

∧
S of S ⊆ P is the

greatest of all its lower bounds provided it exists.
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Definition 2.2 For a subset X of a poset P , set

↑X := {y ∈ P : (∃x ∈ X) x v y} & ↓X := {y ∈ P : (∃x ∈ X) y v x}.

We write ↑x = ↑{x} and ↓x = ↓{x} for elements x ∈ X.

A partial order allows for the derivation of several intrinsically defined
topologies. Here is our first example.

Definition 2.3 A subset U of a poset P is Scott open if

(i) U is an upper set: x ∈ U & x v y ⇒ y ∈ U , and

(ii) U is inaccessible by directed suprema: For every directed S ⊆ P with
a supremum, ⊔

S ∈ U ⇒ S ∩ U 6= ∅.

The collection of all Scott open sets on P is called the Scott topology.

Definition 2.4 A dcpo is a poset in which every directed subset has a
supremum. The least element in a poset, when it exists, is the unique
element ⊥ with ⊥ v x for all x.

The set of maximal elements in a dcpo D is

max(D) := {x ∈ D : ↑x = {x}}.

Each element in a dcpo has a maximal element above it.

Definition 2.5 For elements x, y of a poset, write x � y iff for all directed
sets S with a supremum,

y v
⊔

S ⇒ (∃s ∈ S) x v s.

We set ↓↓x = {a ∈ D : a � x} and ↑↑x = {a ∈ D : x � a}.

For the symbol “�,” read “approximates.”

Definition 2.6 A basis for a poset D is a subset B such that B∩↓↓x contains
a directed set with supremum x for all x ∈ D. A poset is continuous if it
has a basis. A poset is ω-continuous if it has a countable basis.

Continuous posets have an important property, they are interpolative.
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Proposition 2.7 If x � y in a continuous poset P , then there is z ∈ P
with x � z � y.

This enables a clear description of the Scott topology,

Theorem 2.8 The collection {↑↑x : x ∈ D} is a basis for the Scott topology
on a continuous poset.

And also helps us give a clear definition of the Lawson topology.

Definition 2.9 The Lawson topology on a continuous poset P has as a basis
all sets of the form ↑↑x\↑F , for F ⊆ P finite.

The next idea is fundamental to the present work:

Definition 2.10 A continuous poset P is bicontinuous if

• For all x, y ∈ P , x � y iff for all filtered S ⊆ P with an infimum,∧
S v x ⇒ (∃s ∈ S) s v y,

and

• For each x ∈ P , the set ↑↑x is filtered with infimum x.

Example 2.11 R, Q are bicontinuous.

Definition 2.12 On a bicontinuous poset P , sets of the form

(a, b) := {x ∈ P : a � x � b}

form a basis for a topology called the interval topology.

The proof uses interpolation and bicontinuity. A bicontinuous poset P has
↑↑x 6= ∅ for each x, so it is rarely a dcpo. Later we will see that on a bi-
continuous poset, the Lawson topology is contained in the interval topology
(causal simplicity), the interval topology is Hausdorff (strong causality), and
≤ is a closed subset of P 2.

Definition 2.13 A continuous dcpo is a continuous poset which is also a
dcpo. A domain is a continuous dcpo.
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Example 2.14 Let X be a locally compact Hausdorff space. Its upper space

UX = {∅ 6= K ⊆ X : K is compact}
ordered under reverse inclusion

A v B ⇔ B ⊆ A

is a continuous dcpo:

• For directed S ⊆ UX ,
⊔

S =
⋂

S.

• For all K, L ∈ UX , K � L ⇔ L ⊆ int(K).

• UX is ω-continuous iff X has a countable basis.

It is interesting here that the space X can be recovered from UX in a purely
order theoretic manner:

X ' max(UX ) = {{x} : x ∈ X}
where max(UX ) carries the relative Scott topology it inherits as a subset
of UX . Several constructions of this type are known.

The next example is due to Scott[8]; it will be good to keep in mind when
studying the analogous construction for globally hyperbolic spacetimes.

Example 2.15 The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}
ordered under reverse inclusion

[a, b] v [c, d] ⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo:

• For directed S ⊆ IR,
⊔

S =
⋂

S,

• I � J ⇔ J ⊆ int(I), and

• {[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.

The domain IR is called the interval domain.

We also have max(IR) ' R in the Scott topology. Approximation can help
explain why:

Example 2.16 A basic Scott open set in IR is

↑↑[a, b] = {x ∈ IR : x ⊆ (a, b)}.
We have not considered algebraic domains here, though should point out to
the reader that algebraic models of globally hyperbolic spacetime are easy
to construct.
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3 The causal structure of spacetime

A manifold M is a locally Euclidean Hausdorff space that is connected and
has a countable basis. A connected Hausdorff manifold is paracompact iff
it has a countable basis. A Lorentz metric on a manifold is a symmetric,
nondegenerate tensor field of type (0, 2) whose signature is (−+ ++).

Definition 3.1 A spacetime is a real four-dimensional smooth manifold M
with a Lorentz metric gab.

Let (M, gab) be a time orientable spacetime. Let Π+
≤ denote the future

directed causal curves, and Π+
< denote the future directed time-like curves.

Definition 3.2 For p ∈M,

I+(p) := {q ∈M : (∃π ∈ Π+
<) π(0) = p, π(1) = q}

and
J+(p) := {q ∈M : (∃π ∈ Π+

≤) π(0) = p, π(1) = q}

Similarly, we define I−(p) and J−(p).

We write the relation J+ as

p v q ≡ q ∈ J+(p).

The following properties from [4] are very useful:

Proposition 3.3 Let p, q, r ∈M. Then

(i) The sets I+(p) and I−(p) are open.

(ii) p v q and r ∈ I+(q) ⇒ r ∈ I+(p)

(iii) q ∈ I+(p) and q v r ⇒ r ∈ I+(p)

(iv) Cl(I+(p)) = Cl(J+(p)) and Cl(I−(p)) = Cl(J−(p)).

We always assume the chronology conditions that ensure (M,v) is a
partially ordered set. We also assume strong causality which can be charac-
terized as follows [7]:

Theorem 3.4 A spacetime M is strongly causal iff its Alexandroff topology
is Hausdorff iff its Alexandroff topology is the manifold topology.

The Alexandroff topology on a spacetime has {I+(p) ∩ I−(q) : p, q ∈M}
as a basis [7].
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4 Global hyperbolicity

Penrose has called globally hyperbolic spacetimes “the physically reasonable
spacetimes [9].” In this section, M denotes a globally hyperbolic spacetime,
and we prove that (M,v) is a bicontinuous poset.

Definition 4.1 A spacetime M is globally hyperbolic if it is strongly causal
and if ↑a ∩ ↓b is compact in the manifold topology, for all a, b ∈M.

Lemma 4.2 If (xn) is a sequence in M with xn v x for all n, then

lim
n→∞

xn = x ⇒
⊔
n≥1

xn = x.

Proof. Let xn v y. By global hyperbolicity, M is causally simple, so the
set J−(y) is closed. Since xn ∈ J−(y), x = lim xn ∈ J−(y), and thus x v y.
This proves x =

⊔
xn. 2

Lemma 4.3 For any x ∈ M, I−(x) contains an increasing sequence with
supremum x.

Proof. Because x ∈ Cl(I−(x)) = J−(x) but x 6∈ I−(x), x is an accumulation
point of I−(x), so for every open set V with x ∈ V , V ∩ I−(x) 6= ∅. Let
(Un) be a countable basis for x, which exists because M is locally Euclidean.
Define a sequence (xn) by first choosing

x1 ∈ U1 ∩ I−(x) 6= ∅

and then whenever
xn ∈ Un ∩ I−(x)

we choose
xn+1 ∈ (Un ∩ I+(xn)) ∩ I−(x) 6= ∅.

By definition, (xn) is increasing, and since (Un) is a basis for x, lim xn = x.
By Lemma 4.2,

⊔
xn = x. 2

Proposition 4.4 Let M be a globally hyperbolic spacetime. Then

x � y ⇔ y ∈ I+(x)

for all x, y ∈M.
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Proof. Let y ∈ I+(x). Let y v
⊔

S with S directed. By Prop. 3.3(iii),

y ∈ I+(x) & y v
⊔

S ⇒
⊔

S ∈ I+(x)

Since I+(x) is manifold open and M is locally compact, there is an open set
V ⊆ M whose closure Cl(V ) is compact with

⊔
S ∈ V ⊆ Cl(V ) ⊆ I+(x).

Then, using approximation on the upper space of M,

Cl(V ) �
{⊔

S
}

=
⋂
s∈S

[s,
⊔

S]

where the intersection on the right is a filtered collection of nonempty com-
pact sets by directedness of S and global hyperbolicity of M. Thus, for
some s ∈ S, [s,

⊔
S] ⊆ Cl(V ) ⊆ I+(x), and so s ∈ I+(x), which gives x v s.

This proves x � y.
Now let x � y. By Lemma 4.3, there is an increasing sequence (yn)

in I−(y) with y =
⊔

yn. Then since x � y, there is n with x v yn. By
Prop. 3.3(ii),

x v yn & yn ∈ I−(y) ⇒ x ∈ I−(y)

which is to say that y ∈ I+(x). 2

Theorem 4.5 If M is globally hyperbolic, then (M,v) is a bicontinuous
poset with � = I+ whose interval topology is the manifold topology.

Proof. By combining Lemma 4.3 with Prop. 4.4, ↓↓x contains an increasing
sequence with supremum x, for each x ∈M. Thus, M is a continuous poset.

For the bicontinuity, Lemmas 4.2, 4.3 and Prop. 4.4 have “duals” which
are obtained by replacing ‘increasing’ by ‘decreasing’, I+ by I−, J− by J+,
etc. For example, the dual of Lemma 4.3 is that I+ contains a decreasing
sequence with infimum x. Using the duals of these two lemmas, we then
give an alternate characterization of � in terms of infima:

x � y ≡ (∀S)
∧

S v x ⇒ (∃s ∈ S) s v y

where we quantify over filtered subsets S of M. These three facts then imply
that ↑↑x contains a decreasing sequence with inf x. But because � can be
phrased in terms of infima, ↑↑x itself must be filtered with inf x.

Finally, M is bicontinuous, so we know it has an interval topology. Be-
cause �= I+, the interval topology is the one generated by the timelike
causality relation, which by strong causality is the manifold topology. 2
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Bicontinuity, as we have defined it here, is really quite a special property,
and some of the nicest posets in the world are not bicontinuous. For example,
the powerset of the naturals Pω is not bicontinuous, because we can have
F � G for G finite, and F =

⋂
Vn where all the Vn are infinite.

5 Causal simplicity

It is also worth pointing out that causal simplicity has a characterization in
order theoretic terms.

Definition 5.1 A spacetime M is causally simple if J+(x) and J−(x) are
closed for all x ∈M.

Theorem 5.2 Let M be a spacetime and (M,v) a continuous poset with
�= I+. The following are equivalent:

(i) M is causally simple.

(ii) The Lawson topology on M is a subset of the interval topology on M.

Proof (i) ⇒ (ii): We want to prove that

{↑↑x ∩ ↑F : x ∈M & F ⊆M finite} ⊆ intM.

By strong causality of M and �= I+, intM is the manifold topology, and
this is the crucial fact we need as follows. First, ↑↑x = I+(x) is open in the
manifold topology and hence belongs to intM. Second, ↑x = J+(x) is closed
in the manifold topology by causal simplicity, so M\↑x belongs to intM.
Then intM contains the basis for the Lawson topology given above.

(ii) ⇒ (i): First, since (M,v) is continuous, its Lawson topology is
Hausdorff, so intM is Hausdorff since it contains the Lawson topology by
assumption. Since �= I+, intM is the Alexandroff topology, so Theo-
rem 3.4 implies M is strongly causal.

Now, Theorem 3.4 also tells us that intM is the manifold topology. Since
the manifold topology intM contains the Lawson by assumption, and since

J+(x) = ↑x and J−(x) = ↓x

are both Lawson closed (the second is Scott closed), each is also closed in
the manifold topology, which means M is causally simple. 2

Note in the above proof that we have assumed causally simplicity im-
plies strong causality. If we are wrong about this, then (i) above should be
replaced with ‘causal simplicity+strong causality’.
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6 Global hyperbolicity in the abstract

There are two elements which make the topology of a globally hyperbolic
spacetime tick. They are:

(i) A bicontinuous poset (X,≤).

(ii) The intervals [a, b] = {x : a ≤ x ≤ b} are compact in the interval
topology on X.

From these two we can deduce some aspects we already know as well as some
new ones. In particular, bicontinuity ensures that the topology of X, the
interval topology, is implicit in ≤. We call such posets globally hyperbolic.

Theorem 6.1 A globally hyperbolic poset is locally compact Hausdorff.

(i) The Lawson topology is contained in the interval topology.

(ii) Its partial order ≤ is a closed subset of X2.

(iii) Each directed set with an upper bound has a supremum.

(iv) Each filtered set with a lower bound has a infimum.

Proof. First we show that the Lawson topology is contained in the interval
topology. Sets of the form ↑↑x are open in the interval topology. To prove
X\↑x is open, let y ∈ X\↑x. Then x 6v y. By bicontinuity, there is b with
y � b such that x 6v b. For any a � y,

y ∈ (a, b) ⊆ X\↑x

which proves the Lawson topology is contained in the interval topology.
Because the Lawson topology is always Hausdorff on a continuous poset, X
is Hausdorff in its interval topology.

Let x ∈ U where U is open. Then there is an open interval x ∈ (a, b) ⊆ U .
By continuity of (X,≤), we can interpolate twice, obtaining a closed interval
[c, d] followed by another open interval we call V . We get

x ∈ V ⊆ [c, d] ⊆ (a, b) ⊆ U.

The closure of V is contained in [c, d]: X is Hausdorff so compact sets like
[c, d] are closed. Then Cl(V ) is a closed subset of a compact space [c, d], so
it must be compact. This proves X is locally compact.
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To prove ≤ is a closed subset of X2, let (a, b) ∈ X2\≤. Since a 6≤ b, there
is x � a with x 6≤ b by continuity. Since x 6≤ b, there is y with b � y and
x 6≤ y by bicontinuity. Now choose elements 1 and 2 such that x � a � 1
and 2 � b � y. Then

(a, b) ∈ (x, 1)× (2, y) ⊆ X2\≤ .

For if (c, d) ∈ (x, 1) × (2, y) and c ≤ d, then x ≤ c ≤ 1 and 2 ≤ d ≤ y, and
since c ≤ d, we get x ≤ y, a contradiction. This proves X2\≤ is open.

Given a directed set S ⊆ X with an upper bound x, if we fix any element
1 ∈ S, then the set ↑1 ∩ S is also directed and has a supremum iff S does.
Then we can assume that S has a least element named 1 ∈ S. The inclusion
f : S → X :: s 7→ s is a net and since S is contained in the compact set
[1, x], f has a convergent subnet g : I → S. Then T := g(I) ⊆ S is directed
and cofinal in S. We claim

⊔
T = lim T .

First, lim T is an upper bound for T . If there were t ∈ T with t 6v lim T ,
then lim T ∈ X\↑ t. Since X\↑ t is open, there is α ∈ I such that

(∀β ∈ I)α ≤ β ⇒ g(β) ∈ X\↑ t.

Let u = g(α) and t = g(γ). Since I is directed, there is β ∈ I with α, γ ≤ β.
Then

g(β) ∈ X\↑ t & t = g(γ) ≤ g(β)

where the second inequality follows from the fact that subnets are monotone
by definition. This is a contradiction, which proves t v lim T for all t.

To prove
⊔

T = lim T , let u be an upper bound for T . Then t v u for
all t. However, if lim T 6≤ u, then lim T ∈ X\↓u, and since X\↓u is open,
we get that T ∩ (X\ ↓ u) 6= ∅, which contradicts that u is an upper bound
for T . (Equivalently, we could have just used the fact that ≤ is closed.)

Now we prove
⊔

S = lim T . Let s ∈ S. Since T is cofinal in S, there is
t ∈ T with s ≤ t. Hence s ≤ t ≤ lim T , so lim T is an upper bound for S. To
finish, any upper bound for S is one for T so it must be above lim T . Then⊔

S = lim T .
Given a filtered set S with a lower bound x, we can assume it has a

greatest element 1. The map f : S∗ → S :: x 7→ x is a net where the poset
S∗ is obtained by reversing the order on S. Since S ⊆ [x, 1], f has a conver-
gent subnet g, and now the proof is simply the dual of the suprema case. 2

Globally hyperbolic posets share a remarkable property with metric
spaces, that separability and second countability are equivalent.
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Proposition 6.2 Let (X,≤) be a bicontinuous poset. If C ⊆ X is a count-
able dense subset in the interval topology, then

(i) The collection
{(ai, bi) : ai, bi ∈ C, ai � bi}

is a countable basis for the interval topology. Thus, separability implies
second countability, and even complete metrizability if X is globally
hyperbolic.

(ii) For all x ∈ X, ↓↓x ∩ C contains a directed set with supremum x, and
↑↑x ∩ C contains a filtered set with infimum x.

Proof. (i) Sets of the form (a, b) := {x ∈ X : a � x � b} form a basis
for the interval topology. If x ∈ (a, b), then since C is dense, there is
ai ∈ (a, x) ∩ C and bi ∈ (x, b) ∩ C and so x ∈ (ai, bi) ⊆ (a, b).

(ii) Fix x ∈ X. Given any a � x, the set (a, x) is open and C is dense,
so there is ca ∈ C with a � ca � x. The set S = {ca ∈ C : a � x} ⊆ ↓↓x∩C
is directed: If ca, cb ∈ S, then since ↓↓x is directed, there is d � x with
ca, cd v d � x and thus ca, cb v cd ∈ S. Finally,

⊔
S = x: Any upper

bound for S is also one for ↓↓x and so above x by continuity. The dual argu-
ment shows ↑↑x ∩ C contains a filtered set with inf x. 2

Globally hyperbolic posets are very much like the real line. In fact, a
well-known domain theoretic construction pertaining to the real line extends
in perfect form to the globally hyperbolic posets:

Theorem 6.3 The closed intervals of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}

ordered by reverse inclusion

[a, b] v [c, d] ≡ [c, d] ⊆ [a, b]

form a continuous domain with

[a, b] � [c, d] ≡ a � c & d � b.

The poset X has a countable basis iff IX is ω-continuous. Finally,

max(IX) ' X

where the set of maximal elements has the relative Scott topology from IX.
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Proof. If S ⊆ IX is a directed set, we can write it as

S = {[ai, bi] : i ∈ I}.

Without loss of generality, we can assume S has a least element 1 = [a, b].
Thus, for all i ∈ I, a ≤ ai ≤ bi ≤ b. Then {ai} is a directed subset of X
bounded above by b, {bi} is a filtered subset of X bounded below by a. We
know that

⊔
ai = lim ai,

∧
bi = lim bi and that ≤ is closed. It follows that⊔

S =
[⊔

ai,
∧

bi

]
.

For the continuity of IX, consider [a, b] ∈ IX. If c � a and b � d, then
[c, d] � [a, b] in IX. Then

[a, b] =
⊔
{[c, d] : c � a & b � d} (1)

a supremum that is directed since X is bicontinuous. Suppose now that
[x, y] � [a, b] in IX. Then using (1), there is [c, d] with [x, y] v [c, d] such
that c � a and b � d which means x v c � a and b � d v y and thus
x � a and b � y. This completely characterizes the � relation on IX,
which now enables us to prove max(IX) ' X, since we can write

↑↑[a, b] ∩max(IX) = {{x} : x ∈ X & a � x � b}

and ↑↑[a, b] is a basis for the Scott topology on IX.
Finally, if X has a countable basis, then it has a countable dense subset

C ⊆ X, which means {[an, bn] : an � bn, an, bn ∈ C} is a countable basis for
IX by Prop. 6.2(ii). 2

The endpoints of an interval [a, b] form a two element list x : {1, 2} → X
with a = x(1) ≤ x(2) = b. We call these formal intervals. They determine
the information in an interval as follows:

Corollary 6.4 The formal intervals ordered by

x v y ≡ x(1) ≤ y(1) & y(2) ≤ x(2)

form a domain isomorphic to IX.

This observation – that spacetime has a canonical domain theoretic
model – has at least two important applications, one of which we now con-
sider. We prove that from only a countable set of events and the causality
relation, one can reconstruct spacetime in a purely order theoretic manner.
Explaining this requires domain theory.
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7 Spacetime from discrete causality

Recall from the appendix on domain theory that an abstract basis is a set
(C,�) with a transitive relation that is interpolative from the − direction:

F � x ⇒ (∃y ∈ C) F � y � x,

for all finite subsets F ⊆ C and all x ∈ F . Suppose, though, that it is also
interpolative from the + direction:

x � F ⇒ (∃y ∈ C) x � y � F.

Then we can define a new abstract basis of intervals

int(C) = {(a, b) : a � b} =�⊆ C2

whose relation is
(a, b) � (c, d) ≡ a � c & d � b.

Lemma 7.1 If (C,�) is an abstract basis that is ± interpolative, then
(int(C),�) is an abstract basis.

Proof. Let F = {(ai, bi) : 1 ≤ i ≤ n} � (a, b). Let A = {ai} and B = {bi}.
Then A � a and b � B in C. Since C lets us interpolate in both directions,
we get (x, y) with F � (x, y) � (a, b). Transitivity is inherited from C. 2

Let IC denote the ideal completion of the abstract basis int(C).

Theorem 7.2 Let C be a countable dense subset of a globally hyperbolic
spacetime M and �= I+ be timelike causality. Then

max(IC) 'M

where the set of maximal elements have the Scott topology.

Proof. Because M is bicontinuous, the sets ↑↑x and ↓↓x are filtered and di-
rected respectively. Thus (C,�) is an abstract basis for which (int(C),�)
is also an abstract basis. Because C is dense, (int(C),�) is a basis for
the domain IM. But, the ideal completion of any basis for IM must be
isomorphic to IM. Thus, IC ' IM, and soM' max(IM) ' max(IC). 2

In “ordering the order” I+, taking its completion, and then the set of
maximal elements, we recover spacetime by reasoning only about the causal
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relationships between a countable dense set of events. We should say a bit
more too.

Theorem 7.2 is very different from results like “LetM be a certain space-
time with relation ≤. Then the interval topology is the manifold topology.”
Here we identify, in abstract terms, a beautiful process by which a countable
set with a causality relation determines a space. The process is entirely or-
der theoretic in nature, spacetime is not required to understand or execute it
(i.e., if we put C = Q and �=<, then max(IC) ' R). In this sense, our un-
derstanding of the relation between causality and the topology of spacetime
is now explainable independently of geometry.

Last, notice that if we naively try to obtain M by taking the ideal
completion of (S,v) or (S,�) that it will not work: M is not a dcpo. Some
other process is necessary, and the exact structure of globally hyperbolic
spacetime allows one to carry out this alternative process. Ideally, one would
now like to know what constraints on C in general imply that max(IC) is a
manifold.

8 Spacetime as a domain

The category of globally hyperbolic posets is naturally isomorphic to a spe-
cial category of domains called interval domains.

Definition 8.1 An interval poset is a poset D that has two functions left : D → max(D)
and right : D → max(D) such that

(i) Each x ∈ D is an “interval” with left(x) and right(x) as endpoints:

(∀x ∈ D) x = left(x) u right(x),

(ii) The union of two intervals with a common endpoint is another interval:
For all x, y ∈ D, if right(x) = left(y), then

left(x u y) = left(x) & right(x u y) = right(y),

(iii) Each point p ∈↑x ∩ max(D) of an interval x ∈ D determines two
subintervals, left(x) u p and p u right(x), with endpoints:

left(left(x) u p) = left(x) & right(left(x) u p) = p

left(p u right(x)) = p & right(p u right(x)) = right(x)
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Notice that a nonempty interval poset D has max(D) 6= ∅ by definition.
With interval posets, we only assume that infima indicated in the definition
exist; in particular, we do not assume the existence of all binary infima.

Definition 8.2 For an interval poset (D, left, right), the relation≤ on max(D)
is

a ≤ b ≡ (∃x ∈ D) a = left(x) & b = right(x)

for a, b ∈ max(D).

Lemma 8.3 (max(D),≤) is a poset.

Proof. Reflexivity: By property (i) of an interval poset, x v left(x), right(x),
so if a ∈ max(D), a = left(a) = right(a), which means a ≤ a. Antisymme-
try: If a ≤ b and b ≤ a, then there are x, y ∈ D with a = left(x) = right(y)
and b = right(x) = left(y), so this combined with property (i) gives

x = left(x) u right(x) = right(y) u left(y) = y

and thus a = b. Transitivity: If a ≤ b and b ≤ c, then there are x, y ∈ D
with a = left(x), b = right(x) = left(y) and c = right(y), so property (ii) of
interval posets says that for z = x u y we have

left(z) = left(x) = a & right(z) = right(y) = c

and thus a ≤ c. 2

An interval poset D is the set of intervals of (max(D),≤) ordered by
reverse inclusion:

Lemma 8.4 If D is an interval poset, then

x v y ≡ (left(x) ≤ left(y) ≤ right(y) ≤ right(x))

Proof (⇒) Since x v y v left(y), property (iii) of interval posets implies
z = left(x) u left(y) is an “interval” with

left(z) = left(x) & right(z) = left(y)

and thus left(x) ≤ left(y). The inequality right(y) ≤ right(x) follows simi-
larly. The inequality left(y) ≤ right(y) follows from the definition of ≤.

(⇐) Applying the definition of ≤ and properties (ii) and (i) of interval
posets to left(x) ≤ left(y) ≤ right(x), we get x v left(y). Similarly, x v
right(y). Then x v left(y) u right(y) = y. 2
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Corollary 8.5 If D is an interval poset,

φ : D → I(max(D),≤) :: x 7→ [left(x), right(x)]

is an order isomorphism.

In particular,

p ∈ ↑x ∩max(D) ≡ left(x) ≤ p ≤ right(x)

in any interval poset.

Definition 8.6 If (D, left, right) is an interval poset,

[p, ·] := left−1(p) and [·, q] := right−1(q)

for any p, q ∈ max(D).

Definition 8.7 An interval domain is an interval poset (D, left, right) where
D is a continuous dcpo such that

(i) If p ∈ ↑↑x ∩max(D), then

↑↑(left(x) u p) 6= ∅ & ↑↑(p u right(x)) 6= ∅.

(ii) For all x ∈ D, the following are equivalent:

(a) ↑↑x 6= ∅
(b) (∀y ∈ [ left(x), · ] )( y v x ⇒ y � right(y) in [ ·, right(y) ] )

(c) (∀y ∈ [·, right(x)])( y v x ⇒ y � left(y) in [ left(y), · ] )

(iii) Invariance of endpoints under suprema:

(a) For all directed S ⊆ [p, ·]

left(
⊔

S) = p & right(
⊔

S) = right(
⊔

T )

for any directed T ⊆ [q, ·] with right(T ) = right(S).

(b) For all directed S ⊆ [·, q]

left(
⊔

S) = left(
⊔

T ) & right(
⊔

S) = q

for any directed T ⊆ [·, p] with left(T ) = left(S).
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(iv) Intervals are compact: For all x ∈ D, ↑x ∩max(D) is Scott compact.

Interval domains are interval posets whose axioms also take into account
the completeness and approximation present in a domain: (i) says if a point
p belongs to the interior of an interval x ∈ D, the subintervals left(x)up and
pu right(x) both have nonempty interior; (ii) says an interval has nonempty
interior iff all intervals that contain it have nonempty interior locally; (iii)
explains the behavior of endpoints when taking suprema.

For a globally hyperbolic (X,≤), we define left : IX → IX :: [a, b] 7→ [a]
and right : IX → IX :: [a, b] 7→ [b].

Lemma 8.8 If (X,≤) is a globally hyperbolic poset, then (IX, left, right) is
an interval domain.

In essence, we now prove that this is the only example.

Definition 8.9 The category IN of interval domains and commutative maps
is given by

• objects Interval domains (D, left, right).

• arrows Scott continuous f : D → E that commute with left and right,
i.e., such that both

D
leftD - D

E

f

?

leftE

- E

f

?

and

D
rightD- D

E

f

?

rightE

- E

f

?

commute.
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• identity 1 : D → D.

• composition f ◦ g.

Definition 8.10 The category G is given by

• objects Globally hyperbolic posets (X,≤).

• arrows Continuous in the interval topology, monotone.

• identity 1 : X → X.

• composition f ◦ g.

It is routine to verify that IN and G are categories.

Proposition 8.11 The correspondence I : G → IN given by

(X,≤) 7→ (IX, left, right)

(f : X → Y ) 7→ (f̄ : IX → IY )

is a functor between categories.

Proof. The map f̄ : IX → IY defined by f̄ [a, b] = [f(a), f(b)] takes inter-
vals to intervals since f is monotone. It is Scott continuous because suprema
and infima in X and Y are limits in the respective interval topologies and
f is continuous with respect to the interval topology. 2

Now we prove there is also a functor going the other way. Throughout the
proof, we use

⊔
for suprema in (D,v) and

∨
for suprema in (max(D),≤).

Lemma 8.12 Let D be an interval domain with x ∈ D and p ∈ max(D).
If x � p in D, then left(x) � p � right(x) in (max(D),≤).

Proof. Since x � p in D, x v p, and so left(x) ≤ p ≤ right(x).
(⇒) First we prove left(x) � p. Let S ⊆ max(D) be a ≤-directed

set with p ≤
∨

S. For x̄ := φ−1([left(x), p]) and y := φ−1([left(x),
∨

S]),
we have y v x̄. By property (i) of interval domains, ↑↑x 6= ∅ implies that
↑↑x̄ = ↑↑(left(x)up) 6= ∅, so property (ii) of interval domains says y � right(y)
in the poset [·, right(y)]. Then

y � right(y) =
⊔
s∈S

φ−1[s,
∨

S]
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which means y v φ−1[s,
∨

S] for some s ∈ S. So by monotonicity of φ,
left(x) ≤ s. Thus, left(x) � p in (max(D),≤).

Now we prove p � right(x). Let S ⊆ max(D) be a ≤-directed set with
right(x) ≤

∨
S. For x̄ := φ−1([p, right(x)]) and y := φ−1([p,

∨
S]), y v x̄,

and since ↑↑x̄ 6= ∅ by property (i) of interval domains, property (ii) of interval
domains gives y � right(y) in [·, right(y)]. Then

y � right(y) =
⊔
s∈S

φ−1[s,
∨

S]

which means [s,
∨

S] ⊆ [p,
∨

S] and hence p ≤ s for some s ∈ S. 2

Now we begin the proof that (max(D),≤) is a globally hyperbolic poset
when D is an interval domain.

Lemma 8.13 Let p, q ∈ max(D).

(i) If S ⊆ [p, ·] is directed, then

right(
⊔

S) =
∧
s∈S

right(s).

(ii) If S ⊆ [·, q] is directed, then

left(
⊔

S) =
∨
s∈S

left(s).

Proof. (i) First, right(
⊔

S) is a ≤-lower bound for {right(s) : s ∈ S}
because

φ(
⊔

S) = [left(
⊔

S), right(
⊔

S)] =
⋂
s∈S

[p, right(s)].

Given any other lower bound q ≤ right(s) for all s ∈ S, the set

T := {φ−1([q, right(s)]) : s ∈ S} ⊆ [q, ·]

is directed with right(T ) = right(S), so

q = left(
⊔

T ) ≤ right(
⊔

T ) = right(
⊔

S)

where the two equalities follow from property (iii)(a) of interval domains,
and the inequality follows from the definition of ≤. This proves the claim.

(ii) This proof is simply the dual of (i), using property (iii)(b) of interval
domains. 2
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Lemma 8.14 Let D be an interval domain. If ↑↑x 6= ∅ in D, then∧
S ≤ left(x) ⇒ (∃s ∈ S) s ≤ right(x)

for any ≤-filtered S ⊆ max(D) with an infimum in (max(D),≤).

Proof. Let S ⊆ max(D) be a ≤-filtered set with
∧

S ≤ left(x). There is
some [a, b] with x = φ−1[a, b]. Setting y := φ−1[

∧
S, b], we have y v x and

↑↑x 6= ∅, so property (ii)(c) of interval domains says y � left(y) in [left(y), ·].
Then

y � left(y) =
⊔
s∈S

φ−1[
∧

S, s]

where this set is v-directed because S is ≤-filtered. Thus, y v φ−1[
∧

S, s]
for some s ∈ S, which gives s ≤ b. 2

Lemma 8.15 Let D be an interval domain. Then

(i) The set ↓↓x is ≤-directed with
∨
↓↓x = x.

(ii) For all a, b ∈ max(D), a � b in (max(D),≤) iff for all ≤-filtered
S ⊆ max(D) with an infimum,

∧
S ≤ a ⇒ (∃s ∈ S) s ≤ b.

(iii) The set ↑↑x is ≤-filtered with
∧ ↑↑x = x.

Thus, the poset (max(D),≤) is bicontinuous.

Proof. (i) By Lemma 8.12, if x � p in D, then left(x) � p in max(D).
Then the set

T = {left(x) : x � p in D} ⊆ ↓↓p

is ≤-directed. We will prove
∨

S = p. To see this,

S = {φ−1[left(x), p] : x � p in D}

is a directed subset of [·, p], so by Lemma 8.13(ii),

left(
⊔

S) =
∨

T.

Now we calculate
⊔

S. We know
⊔

S = φ−1[a, b], where [a, b] =
⋂

[left(x), p].
Assume

⊔
S 6= p. By maximality of p, p 6v

⊔
S, so there must be an x ∈ D

with x � p and x 6v
⊔

S. Then [a, b] 6⊆ [left(x), right(x)], so either

left(x) 6≤ a or b 6≤ right(x)

21



But, [a, b] ⊆ [left(x), p] for any x � p in D, so we have left(x) ≤ a and
b ≤ p ≤ right(x), which is a contradiction. Thus,

p =
⊔

S = left(
⊔

S) =
∨

T,

and since ↓↓p contains a ≤-directed set with sup p, ↓↓p itself is ≤-directed
with

∨
↓↓p = p. This proves (max(D),≤) is a continuous poset.

(ii) (⇒) Let a � b in max(D). Let x := φ−1[a, b]. We first prove ↑↑x 6= ∅
using property (ii)(b) of interval domains. Let y v x with y ∈ [a, ·]. We
need to show y � right(y) in the poset [·, right(y)]. Let S ⊆ [·, right(y)]
be directed with right(y) v

⊔
S and hence right(y) =

⊔
S by maximality.

Using Lemma 8.13(ii),

right(y) =
⊔

S = left(
⊔

S) =
∨
s∈S

left(s)

But y v x, so b ≤ right(y) =
∨

s∈S left(s), and since a � b, a ≤ left(s) for
some s ∈ S. Then since for this same s, we have

left(y) = a ≤ left(s) ≤ right(s) = right(y)

which means y v s. Then y � right(y) in the poset [·, right(y)]. By property
(ii)(b), we have ↑↑x 6= ∅, so Lemma 8.14 now gives the desired result.

(ii) (⇐) First, S = {a} is one such filtered set, so a ≤ b. Let x = φ−1[a, b].
We prove ↑↑x 6= ∅ using axiom (ii)(c) of interval domains. Let y v x with
y ∈ [·, b]. To prove y � left(y) in [left(y), ·], let S ⊆ [left(y), ·] be directed
with left(y) v

⊔
S. By maximality, left(y) =

⊔
S. By Lemma 8.13(i),

left(y) =
⊔

S = right(
⊔

S) =
∧
s∈S

right(s)

and {right(s) : s ∈ S} is ≤-filtered. Since y v x,∧
s∈S

right(s) = left(y) ≤ left(x) = a,

so by assumption, right(s) ≤ b, for some s ∈ S. Then for this same s,

left(y) = left(s) ≤ right(s) ≤ b = right(y)

which means y v s. Then y � left(y) in [left(y), ·]. By property (ii)(c)
of interval domains, ↑↑x 6= ∅. By Lemma 8.12, taking any p ∈ ↑↑x, we get
a = left(x) � p � right(x) = b.

(iii) Because of the characterization of � in (ii), this proof is simply the
dual of (i). 2
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Lemma 8.16 Let (D, left, right) be an interval domain. Then

(i) If a � p � b in (max(D),≤), then φ−1[a, b] � p in D.

(ii) The interval topology on (max(D),≤) is the relative Scott topology
max(D) inherits from D.

Thus, the poset (max(D),≤) is globally hyperbolic.

Proof. (i) Let S ⊆ D be directed with p v
⊔

S. Then p =
⊔

S by maximal-
ity. The sets L = {φ−1[left(s), p] : s ∈ S} and R = {φ−1[p, right(s)] : s ∈ S}
are both directed in D. For their suprema, Lemma 8.13 gives

left(
⊔

L) =
∨
s∈S

left(s) & right(
⊔

R) =
∧
s∈S

right(s)

Since s v φ−1[
∨

s∈S left(s),
∧

s∈S right(s)] for all s ∈ S,

p =
⊔

S v φ−1

[∨
s∈S

left(s),
∧
s∈S

right(s)

]
,

and so ∨
s∈S

left(s) = p =
∧
s∈S

right(s).

Since a � p, there is s1 ∈ S with a ≤ left(s1). Since p � b, there is s2 ∈ S
with right(s2) ≤ b, using bicontinuity of max(D). By the directedness of S,
there is s ∈ S with s1, s2 v s, which gives

a ≤ left(s1) ≤ left(s) ≤ right(s) ≤ right(s2) ≤ b

which proves φ−1[a, b] v s.
(ii) Combining (i) and Lemma 8.12,

a � p � b in (max(D),≤) ⇔ φ−1[a, b] � p in D.

Thus, the identity map 1 : (max(D),≤) → (max(D), σ) sends basic open
sets in the interval topology to basic open sets in the relative Scott topology,
and conversely, so the two spaces are homeomorphic.

Finally, since ↑x∩max(D) = {p ∈ max(D) : left(x) ≤ p ≤ right(x)}, and
this set is Scott compact, it must also be compact in the interval topology
on (max(D),≤), since they are homeomorphic. 2
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Proposition 8.17 The correspondence max : IN → G given by

(D, left, right) 7→ (max(D),≤)

(f : D → E) 7→ (f |max(D) : max(D) → max(E))

is a functor between categories.

Proof. First, commutative maps f : D → E preserve maximal elements:
If x ∈ max(D), then f(x) = f(leftD(x)) = leftE ◦ f(x) ∈ max(E). By
Lemma 8.16(ii), f |max(D) is continuous with respect to the interval topology.
For monotonicity, let a ≤ b in max(D) and x := φ−1[a, b] ∈ D. Then

leftE ◦ f(x) = f(leftD(x)) = f(a)

and
rightE ◦ f(x) = f(rightD(x)) = f(b)

which means f(a) ≤ f(b), by the definition of ≤ on max(E). 2

Before the statement of the main theorem in this section, we recall the
definition of a natural isomorphism.

Definition 8.18 A natural transformation η : F → G between functors
F : C → D and G : C → D is a collection of arrows (ηX : F (X) → G(X))X∈ C
such that for any arrow f : A → B in C,

F (A)
ηA- G(A)

F (B)

F (f)

?

ηB

- G(B)

G(f)

?

commutes. If each ηX is an isomorphism, η is a natural isomorphism.

Categories C and D are equivalent when there are functors F : C → D
and G : D → C and natural isomorphisms η : 1C → GF and µ : 1D → FG.

Theorem 8.19 The category of globally hyperbolic posets is equivalent to
the category of interval domains.
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Proof. We have natural isomorphisms

η : 1IN → I ◦max

and
µ : 1G → max ◦ I

2

This result suggests that questions about spacetime can be converted to
domain theoretic form, where we can use domain theory to answer them, and
then translate the answers back to the language of physics (and vice-versa).

It also shows that causality between events is equivalent to an order
on regions of spacetime. Most importanly, we have shown that globally
hyperbolic spacetime with causality is equivalent to a structure IX whose
origins are “discrete.” This is the formal explanation for why spacetime
can be reconstructed from a countable dense set of events in a purely order
theoretic manner.

9 Conclusion and future work

It seems that it might be possible to use order as the basis for new and
useful causality conditions which generalize globally hyperbolicity. Some
possible candidates are to require (M,v) a continuous (bicontinuous) poset.
Bicontinuity, in particular, has the nice consequence that one does not have
to explicitly assume strong causality as one does with global hyperbolicity.
Is M bicontinuous iff it is causally simple?

We have shown that globally hyperbolic spacetimes live in a category
that is equivalent to the category of interval domains. Because ω-continuous
domains are the ideal completions of countable abstract bases, spacetime can
be order theoretically reconstructed from a dense ‘discrete’ set. (Ideally we
would like to remove the requirement that the set be dense by assuming
some additional structure and using it to derive a dense set.) Thus, with
the benefit of the domain theoretic viewpoint, we are able to see that a
globally hyperbolic spacetime emanates from something discrete.

It is now natural to ask about the domain theoretic analogue of ‘Lorentz
metric’, and the authors suspect it is related to the study of measurement
([5][6]). After that, we should ask about the domain theoretic analogue
of Einstein’s equation, etc. Given a reformulation of general relativity in
domain theoretic terms, a first step toward a theory of quantum gravity
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would be to restrict to a countable abstract basis with a measurement. The
advantage though of the domain theoretic formulation is that we will know
up front how to reconstruct ‘classical’ general relativity as an order theoretic
‘limit’ – which is what one is not currently able to do with the standard
formulation of general relativity.
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Appendix: Domain theory

A useful technique for constructing domains is to take the ideal completion
of an abstract basis.

Definition 9.1 An abstract basis is given by a set B together with a tran-
sitive relation < on B which is interpolative, that is,

M < x ⇒ (∃ y ∈ B ) M < y < x

for all x ∈ B and all finite subsets M of B.

Notice the meaning of M < x: It means y < x for all y ∈ M . Abstract
bases are covered in [1], which is where one finds the following.

Definition 9.2 An ideal in (B,<) is a nonempty subset I of B such that

(i) I is a lower set: (∀x ∈ B )(∀ y ∈ I ) x < y ⇒ x ∈ I.

(ii) I is directed: (∀x, y ∈ I )(∃ z ∈ I ) x, y < z.

The collection of ideals of an abstract basis (B,<) ordered under inclusion
is a partially ordered set called the ideal completion of B. We denote this
poset by B̄.

The set {y ∈ B : y < x} for x ∈ B is an ideal which leads to a natural
mapping from B into B, given by i(x) = {y ∈ B : y < x}.

Proposition 9.3 If (B,<) is an abstract basis, then

(i) Its ideal completion B̄ is a dcpo.

(ii) For I, J ∈ B̄,

I � J ⇔ (∃x, y ∈ B ) x < y & I ⊆ i(x) ⊆ i(y) ⊆ J.

(iii) B̄ is a continuous dcpo with basis i(B).

If one takes any basis B of a domain D and restricts the approximation
relation � on D to B, they are left with an abstract basis (B,�) whose
ideal completion is D. Thus, all domains arise as the ideal completion of an
abstract basis.
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Appendix: Topology

Nets are a generalization of sequences. Let X be a space.

Definition 9.4 A net is a function f : I → X where I is a directed poset.

A subset J of I is cofinal if for all α ∈ I, there is β ∈ J with α ≤ β.

Definition 9.5 A subnet of a net f : I → X is a function g : J → I such
that J is directed and

• For all x, y ∈ J , x ≤ y ⇒ g(x) ≤ g(y)

• g(J) is cofinal in I.

Definition 9.6 A net f : I → X converges to x ∈ X if for all open U ⊆ X
with x ∈ U , there is α ∈ I such that

α ≤ β ⇒ f(β) ∈ U

for all β ∈ I.

A space X is compact if every open cover has a finite subcover.

Proposition 9.7 A space X is compact iff every net f : I → X has a
convergent subnet.
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