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Abstract. In this second part of our contribution to the workshop, we
look in more detail at the Sorkin model, its relationship to constructions
in Chu space theory, and then compare it with the Nerve constructions
given in the first part. *

1 Introduction to part II

In the first part of this article, we saw how the nerve construction from algebraic
topology could be applied to ‘observational’ situations. We also noted how, in
theoretical physics, Sorkin had proposed a poset or Ty-space model for an ob-
servational context in which a space or spacetime, X, was observed by means of
an open cover F. This Sorkin model is thus a second means of encoding obser-
vational data on X. In fact there is no real need for F to be a cover of X. Those
parts of X which are not covered are just not observed! Therefore we will use
the more general term of a finite family of open sets, abbreviated to FFOS? to
describe F.

One of the most intuitive ways of picturing a FFOS is not from physics but
from geography, or more exactly geographical information systems (GIS). The
surface of the UK theoretically contains an infinite number of positions. These
points may be ‘observed’ in various ways, as belonging to countries, counties,
constituencies, postcodes, wards, etc., and this naturally gives something like
a FFOS, i.e., by means of the ‘attributes’ of the points. On the other hand,
one may start with the entire UK and base an analysis of some of its ‘informa-
tional’ structure by asking some relevant questions. For example: “which points
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lie within walking distance of a primary school?” or “what are the evacuation
zones of the various nuclear power stations?” Again the corresponding predicates
correspond to some ‘attributes’. The resulting FFOS will then partition the UK
into zones depending on these questions. For example the above two open sets
(predicates) will partition the UK into between one and four zones: one zone, in
the case that the entire UK is within walking distance of some primary school
and also within the evacuation zone of some nuclear power station, four zones if
there exists different points in Britain at which all the four possibilities occur.
The Sorkin model reduces this to a set with from 1 to 4 elements together with a
partial order which encodes information such as if “all the points within walking
distance of a primary school are also within an evacuation zone” is true.

It is often the case that the information we are encoding or recording is not
continuously valued, but is itself a finite set of data. For example, the case when
the data for each postcode is considered, or when a medical scanner collects data.
However in some of these cases, the quantity of data is too large for an effective
or quick analysis, and may also contain noise, so we have to approximate, or
sample, the data to have any chance of obtaining useful information.

Observing attributes of points or objects is one of the intuitions behind both
formal context analysis, [1], and Chu spaces, [2]. In particular for dyadic Chu
spaces, which are the only type considered in this article, an object or element
either satisfies or does not satisfy an attribute. Our situation thus leads naturally
to a view of the space, X, as a union of these zones in which two points are in
the same zone if they share exactly the same attributes, i.e., are in exactly the
same open sets of the FFOS.

This set of zones seems to be quite a subtle invariant of the pair (X, F) and
we have included a brief discussion of some of its less immediate structure, for
instance, in the resulting partition of X into zones, there is an intuitive idea
of two zones being next to each other. One can easily imagine uses for such
information in GIS, for example, where we would like to know whether or not
an x is ‘next to’ a y even if they have been placed in different zones. We would
like to encode this sort of information and for it to be preserved in the Sorkin
Model. In section 4, we define the concept of two zones being ‘next to’ or ‘close
to’ each other. This is simply that there is a point in one of the zones which lies
in the closure of the other. (It is important to realise that the closure in this
case is with respect the underlying topology 7(X), and not 7(F), the topology
generated from F, since all related zones have this property if the closure is with
respect to 7(F).) This closeness, which we write 2 - 3, may also be considered
‘nearness’ or ‘connectedness’ between zones. It has the useful property that it is
preserved to some extent under refinement and coarsening, that is, if two zones
are near to each other, then under refinement, there will be a pair of subzones,
one in each, which are near to each other. Whilst under coarsening the two zones
will either be coarsened into a single zone or will remain near to each other.

We observe that this is additional information that is placed on the poset.
It is not possible, simply given the poset information, to recover the data about
which zones are close. A seemingly similar concept, which one can easily calculate



for the Sorkin poset, is that of ‘oneness’. Two zones are one related if there does
not exist an intermediate zone. We give examples to show that in general there is
no relationship between which zones are one related and which are close. We also
give examples which show that the nice features of closeness under refinement
and coarsening are not mirrored for one-related zones.

In the physics, one of the reasons for replacing the continuum of spacetime
with a finite spacetime is to handle the problems of infinities that arise because
of the point-like nature of particles. However for this finite or discrete model of
spacetime to be useful, one requires that we can set up a differential structure on
it which has similar properties to the differential geometry of continuous models
of spacetimes. We believe that a similar viewpoint will be useful in Computer
Science, and so Part III, we look at some ‘differential structures’ which may be
placed on posets.

We are bridging between concepts from mathematical physics, topology and
theoretical computer science. and would hope that this “bridging” operation
will result in sharing of “technology”. By necessity we have to use notation and
terminology which combines features of each of the origins. This should ensure
easy passage out from this paper to the adjacent regions of theory, but should
also lead to maximal notational confusion within the paper!

2 Sorkin models

We will start with the topological situation, but will later generalise to enable
more general situations to be handled.

Let X be a topological space and let F be a finite family of open sets (FFOS)
of X. We can define the set Pr as the quotient

Pr=X/~, where xr;yifer@yeUforallUG}' (1)

together with the quotient map
mr: X — Pr. (2)

We will drop the subscript F on both the poset/space Pz and the equivalence
relation - when the FFOS F is obvious. The FFOS F gives X a second topology,

written 7(F), which is the topology generated by F. To distinguish between the
various topologies on X, we shall write 7(X) for the original topology on X.
Since all the sets U € F are assumed open in 7(X) we have 7(F) C 7(X).

We give P the quotient topology, written 7(P), making mr : (X, 7(X)) —
(P,7(P)) continuous. As a consequence of the definition of P, it is easy to see
that 7(P) is a Ty topology.

Remark

Here we will use P# or P as a notation for this quotient, rather than Xz as
in part 1 of this paper, since we are primarily interested in it as a poset, not as
a space. Its ‘dual personality’ makes a definitive choice of notation problematic!



We observe that given U € 7(F), then mz(U) is open in 7(P), i.e., the map
(sometimes called the ‘Kolmogorov quotient’) mrx : (X, 7(F)) — (P,7(P)) is
continuous and an open mapping.

Definition 1. Given X and a FFOS F, we say the pair (Pr,mx) is a Sorkin
model of X relative to F, and call Px the Sorkin poset for (X,F). For an
element © € P, we will call the corresponding subset 77'(z) C X the zone

determined by x. In general the zones will neither be open nor closed subsets of
X.

As stated in part I, there is a one to one correspondence between finite T, spaces
and finite posets. The poset structure on P is given by

r<xyeP ifandonlyif (VWer(P), thenyeV = zeV). (3)
Given x € P, the downset of z
k={zePlzga}=|{Ver(P)|zecV} (4)

is open. In fact, given a finite poset, P, we can use the downsets to generate the
corresponding Ty topology, 7(P).

Since posets are also small categories, we will also use the notation x — y for
x. The direction of the arrow makes it consistent with the fact that the sequence
x,T,x,...converges to the point y in the Ty topology on P, since every open set
containing y also contains x and this is one reason why we chose the ordering
given in (3) and not its dual.

We did not require that F covers X. If F does not cover X, then there exists
a top element T € P, x < T for all x € P. In fact, if points a,b of X are in no
set of the FFOS, F, then by default, a ~ b, so the elements outside | J F form a
single zone, which is this top element of P.

Example

To illustrate the construction, consider a simple example. Let X C R2,
as shown below, and which is covered by three intersecting open sets F =
{Uo, Uy, Us}.

Xo1 = (Uo NU1)\U2

A
|

Xo12 =UgNU; NU2

Xo = Uo\(Ur U U2) X1 = Ui\(Uo U U2)

Xoz2 = (Uo NU2)\U1

X120 = (Ul n U2)\U0




Thus X is partitioned into seven zones: X = X()UX1 UXQUXOl UX12 UXOQUX012.
Let 71(X4) = zq, then P = {xzg, z1, 2, 01, T12, To2, To12}, and the downset basis
for the Ty topology of P is

{3?012},
{zo1,zo12}, {Zo1, 012}, {®o2, 012},

{550»550175502,15012}7 {361,3001,%127%012}, {€U27~T027$12,$012}~

Here {x01,x012} =] xo1, for instance. For each arc of a boundary of an open set
in F in the above diagram, the arrow points from the interior of the open set
to the exterior, in other words, from the open side to the closed side. Thus the
direction of the arrows is consistent with the arrows in P, so that, for instance,
the arrow Xgo — X in the diagram implies xgs — x¢9 € P. We see that the
zone Xg12 C X is an open subset and that the zones Xy, X1, Xo C X are closed,
whereas the zones X1, Xgo2, X152 C X are neither open nor closed. The poset P
in this case is the subdivided 2-simplex and so is the face poset of the nerve of
JF. This will not always be the case.

3 Sorkin Refinements

The intuition behind the Sorkin model is that observations, corresponding to
the open sets of the FFOS F, allow one to distinguish certain points. The zones
in the diagram correspond to clusters of points that cannot be distinguished by
that set of observations. In analysing this sort of situation in the first part of
this article, we used nerves and hence Cech refinements were the natural way to
consider refining the observations. In the context of the Sorkin model, a different
notion of refinement is more natural. We have called it a Sorkin refinement.

Definition 2. Given two FFOSs F and G of a topological space X. We say that
F is a Sorkin refinement of G if G C 7(F).

This means each open set U € G is also open in the topology generated by F.
The effect of a refinement is that we further partition the zones as shown by
the following:

Lemma 1. F is a refinement of G if and only if there is a continuous surjective

map
TFg

Pr — Pg
such that
/(X ,T(X))\ (6)
(Pr,7(PF)) (Pg,7(Pg))

commutes.



Note that since mgr is continuous, it is also order preserving.

Proof. It G C 7(F) and = > x’, then for U € F,

x € U if and only if 2’ € U,

so x and 2’ are in exactly the same open sets of F, but then they are in exactly
the same sets of 7(F) and thus, by restriction, of G, but then z 3 o I z)F =

7wr(x) € Pr is the equivalence class containing x, then we define ngr[z] 7 = [z]g.
We have that this is (i) well defined and (ii) satisfies g omxr = 7g, as required.
It is clearly a continuous surjective map. The converse is now easy.

If G C 7(F), then we will call the unique natural map mgr a coarsening map
and will write it as F — G.

Note that, in general, Sorkin refinement is a distinct concept from Cech
refinement. The easiest method of satistying G C 7(F) is simply to have G C F.
This has a very natural interpretation, namely that we increase the number of
observations in going from G to F. The informational content of the notion of a
Sorkin refinement is thus quite intuitive. From the observational viewpoint, the
results from analysis of a FFOS F can be processed, by the allowed operations of
geometric logic, to get the topology 7(F). The condition that 7(G) C 7(F) then
says that observations in F distinguish at least as many points as those in G.
The operations of geometric logic are finite meets / intersections / conjunctions
and arbitrary joins / unions / disjunctions, so here we are allowing ourselves to
do more logical preprocessing before comparing the distinguishing power of the
FFOSs, than in the Cech refinement.

In section 8, we will look at what happens when we have an infinite set of
attributes which thus potentially may enable us to distinguish all points, but by
increasing the fineness of the FFOS ad infinitum, try to interpret the resulting
limiting poset.

4 Closeness and Oneness

As mentioned in the introduction, there seem to be additional relations that one
can place on the Sorkin model. As we will see, they are not all intrinsic to the
poset P itself, but to it together with the quotient map mz.

Definition 3. Given © # y € P then we will say that x is one related to y,
1. , .
x —y if t — y and given z such that x — z — y then either z =x or z = y.

Note that for any finite poset we can establish which pairs of elements are one
related. Therefore ‘oneness’ does not require P is a poset derived as some Px
for some FFOS, F. Oneness, which is well known in poset theory under vari-
ous names 3, is not transitive and the one related pairs form a directed graph,

essentially the Hasse diagram, which generates the poset P.

3 These includes ‘covering’, which is fairly standard, but would be very confusing in
this context!



By looking at the nature of the zones in the underlying topology, 7(X), we
can deduce certain information about the poset Px. In some circumstances, we
can gain extra information about the overall model, (Pr,7x : X — Pgr).

Lemma 2. If = Y(z) N7~ 1(y) # 0, where closure is with respect to 7(X), then
T —y.

However the converse of this statement is not true as the following examples
show:

r |y |z (a), r |y /) z (0) (7)

In both (7a) and (7b) we have the Sorkin poset is : © — y — 2, so z — z, but in
(7a), 7= 1(z) N7~ 1(2) = 0, whilst in (7b), 7=1(x) N7~ 1(z) # 0. To distinguish
these types of situation we define the concept of closeness or nearness:

Definition 4. Given x # y € P then we say x is close to y, and write x = y if
() N7 (y) £ 0 . (8)

Thus for (7a) 2 4 2, whilst for (7b) z % z. Thus closeness is a property in
addition to x — z.

Note that closure here must be with respect to 7(X), since if x — y then y
is in the closure of = with respect to 7(F).

Remark

There is some intuitive link here between ‘closeness’ and the notion of ‘con-
nected to’ in certain treatments of the Region Connection Calculus (RCC). In-
tuitively, both correspond to ‘nearness’ of the regions or zones. We have not yet
had time to investigate this in more detail, but would ask if the other opera-
tors of RCC can be appropriately interpreted in the context of a general Sorkin
model. We may sometimes use ‘near to’ or ‘connected to’ as a synonym for ‘close
to’.

In general the concepts of oneness and closeness are unrelated. For example

in (7b), x = z but x 7£> y. For an opposite counter example, consider

Fo————,  F={{z}{z. 2} {ay 2}, (9)

11
soxr —z—vy, but x5z

We observe that closeness is preserved under refinement and coarsening, more
exactly:

Lemma 3. If f : F — G is a coarsening map and © ~ y € Pr, then either
f(@) = f(y) or f(z) = f(y) € Pr. ,

If f + F — G is a coarsening map and © — y € Pg, then there exists
'€ f~Nx) andy' € f~'(y) such that ' 5 3.



We would like to say the same thing about oneness, but unfortunately we
cannot due to the following counter examples:

SEORENCE

L e
(10)

Here = = y, but f(z) # f(y) and f(z) 7 f(y), since f(x) — z — f(y). The
other possibility is countered by simple examples such as:

3y L PP (11)
Towards “nice” or “stable” FFOS
We observe that, to some extent, many of the examples given above, i.e (7b),
(9) and (10), are exceptional, that is, they would not arise from a “random”
or “generic” FFOS whatever those terms might mean. For example, in (9) we
required that the boundary of {x, z} coincides with the boundary of {«}, which
“almost never” happens in as much as a small “perturbation” would destroy that
property. Many of the other examples are also not stable under “perturbation”,
as one can see that by slightly altering the FFOS, sometimes will change the
Sorkin poset. For example, perturbing (7b) can give

y
X Z (a), X

oreven |* Z (c) (12)
—
Y

In (12a) the Sorkin poset remains the same but z /£ 2. In (12b) and (12c) the
Sorkin poset becomes = S Z -

For some contexts, it would be convenient, if not important, to have precise
definitions of ‘perturbation’, ‘generic’, ‘stable’, and so on. Equally it is the case
that the ‘exceptional’, ‘non-generic’ cases are likely to be significant as being
the examples of more singular behaviour, where the geometry of the information
changes. In any case it is likely that we will eventually need some idea of ‘niceness’
in this context. and we offer the following as a provisional list of some possible
sufficient requirements for “niceness”.



— X is an n dimensional manifold.

— Each U € F is a finite union of pathwise connected components.

— It Uy,...,U, € F with N[_,U; # 0, then N7_;dU; is a finite union of con-
nected submanifolds of dimension n — r — 1. This includes the case when
r=1.

— If two boundaries intersect then they cross, i.e., they are in general position.

Remarks

(i) Note that a stable FFOS F could not, in general, be a topologically closed
FFOSs, i.e., we must have F # 7(F), since if U,V € F then UNV and UUV
will share boundaries with U and V', which do not intersect.

(ii) The requirements do raise questions such as “how might they be ob-
served?” We have already noted, in part 1 of this paper, that ‘manifoldness’ is
problematic from an observational viewpoint, but the others are of similar na-
ture, so we are far from having a complete understanding of this. However this
does relate to the geometry of the information rather than just its topology and
so we have felt the questions should be raised.

The following would be a possible list of ‘nice’ properties for ‘nice’ FFOSs,
and would look to be feasible given assumptions similar to those listed above.

—Ifxiy,thenxiy.

—If z % y then 7—1(z) N 7~ '(y) is a submanifold of dimension r, where

. 1 1 1
1 < r < n and there is a set z1,...,2,_1 € P such that x — 2z — --- —

Zr—1 41) Y.

— If F; is a one parameter family of stable FFOSs, which depend continuously

on t € R, then the Sorkin poset is independent of t.

— Let f: Pr — Pg be the corresponding coarsening map, then, if x 4 y e F,
we should have f(x) R f(y) € G and then

—ifr 5 y € G then there exists £ € f~!(z) and § € f~!(y) such that
iSger.

These ideas are still very speculative and we have left some terms deliberately
undefined. Clearly we might think of stable FFOS in a similar way to stable
dynamical systems. If a one parameter set of FFOSs F; is unstable, say at ¢t = tg
then there may be a change in the topology of Pz, as ¢ goes from t < tg to
t > to. This is analogous to a bifurcation in the theory of dynamical systems. At
such a ‘bifurcation’ the geometry of the information would change. (This idea
has been explored in the Physical context.

There are many possible areas of research here. One is to make precise the
specification for a stable FFOS of a manifold and then to look at the cases where
a FFOS changes topology, but in a “nice” predictable way. Clearly this should
be easiest when dim(X) = 1 and the ‘space’ of FFOSs with a fixed number of
open sets is finite dimensional. The second area of research would be to attempt
to define a stable FFOS in a more constructive way. Finally we should also look
at the connection between dynamical FFOSs and the differential structures on
P considered in the later sections.



5 Chu Spaces revisited

Recall from part I, [3], that a Chu space, C, is given as C = (C,, E¢, C,,), where
C, and C, are sets, respectively, here called the sets of objects and of attributes
and =¢C C, x Cy is a relation. We write z =¢ a iff (z,a) €=¢.

Given two Chu spaces, C = (Cy, ¢, Cy) and D = (D,, Ep, D,), then a
Chu morphism or Chu transform, f : C — D, is given by a pair of maps, f, or
fs:Co — D, and f, or f*: D, — C, which satisfy

fi@)Epa <= xlc f(a) (13)

Our basic reference for the theory of Chu spaces is, as before, Pratt’s notes, [2].

Example

We can view a space, X, together with a FFOS F as a Chu space (X, €, F),
with the set of objects being X and F, the set of attributes. An object z € X
has an attribute U € F if x € U. This is an example of a special kind of Chu
space, called by Pratt a normal Chu space, in which the (distinct) attributes
are (distinct) subsets of the set of objects and |= is €. Normal Chu spaces are
examples of extensional Chu spaces.

Definition 5. Given a Chu space, C = (Cy, Ec, C,), we define two mappings:

dc i Cp — 2%, dco(z) ={a € Cyl|z =c a}
@ : Cy — 2%, wela)={z e C,|z =c a}.

The Chu space C is said to be extensional if we : C, — 2% is injective.
The Chu space C is said to be separable if ¢ : Cy — 2% is injective.
A Chu space that is both extensional and separable is called biextensional.

Remarks

(i) In an extensional Chu space, because no two attributes correspond to
exactly the same set of objects, (¢ : Cy — 2% is injective), we can replace, Cy
by we(Cy) to get a normal Chu space, (Cy, €, wc(Cy)), which will be isomorphic
to the original one. In a separable Chu space, no two objects have ezxactly the
same sets of attributes, so, in general, a Chu space of the form, (X, €,F), will
not be separable.

(ii) The two mappings ¢ and we extend to give mappings ac : 260 — 2C%
and we : 26 — 2% defined by

ac(X)={a|Vzr e X,z =c a} (14)
and
we(A) ={z|Va € A,z =¢ a}. (15)

These two mappings are used in Formal Concept Analysis to obtain closure
operators on the two powersets, see, for instance, [4].



Representing Chu spaces

It will often be useful to consider a Chu space as an array or matrix with
0-1 entries. (This viewpoint is explored and well exploited in Pratt’s notes al-
ready mentioned.) The rows are labelled by the ‘objects’, the columns by the
‘attributes’, so if x |= a, then in the z*" row and @' column one finds a 1, and
if x [~ a then there is a 0.

In this representation, C is extensional if no two columns are the same and
separable if no two rows are the same. As we saw, any extensional Chu space
can be replaced with no loss of information by a normal one, and this, simply, by
omitting the column labels, i.e., by using the columns as labels for themselves.

A related representation of C can given by the characteristic function of the
relation =¢ (as a subset of C, x C,). This gives a function

re=r:C,xC, —2={0,1},
1 ifz Ecoa
r(z,a) = {O otherwise.

The two alternative ‘Curried’ forms of this give the & and @ maps, defined
earlier,
ac : Cy — 2%, e Cy — 2¢°.

Identifying a subset with its characteristic function, we have

ac(z) =ro(z,—): Cy — 2, wela) =re(—,a): C, — 2.

There is an obvious way to change any Chu space, C, into a biextensional
one, namely by ‘killing off’) or quotienting out, any lack of injectivity of the two
maps a¢c and we. More formally:

Definition 6. The biextensional collapse of a Chu space C = (Co, =0, Cy) is
the Chu space

é\: (607 ):6'7 aa)

I
=
Q
S
B
(})

&«
Q
e

(16)
where
aco(z) Fa wela) if and only if xEca (17)

In the topological context, the Kolmogorov quotient 7 : (X, 7(F)) — (P, 7(P))
is simply the universal map to the biextensional collapse of (X, €,F). The Chu
space (P, €,7(P)) is, of course, biextensional, i.e., extensional and separable.
The poset structure on P is given by

alz) g aly) <= VaelC,then (yEca=axkEca) < dalx)2Da(y).

For a general Chu space, C, there are some problems about this quotienting
operation since, although d¢ : C, — 2% gives an object map in the right



direction for a Chu transform from C to CA, the corresponding we : C, — 2%
goes in the wrong direction to be its ‘adjoint’. If C is extensional, as was the case
in the topological case above, then w¢ : Cf — 2% is a bijection onto its image,
C,, and its inverse has the right properties to be the adjoint of ¢. Luckily in our
context, although we may have a non-extensional C, it is reasonable to suppose
that the ‘sample’ F ‘is extensional’, since if two columns in C are the same we
can include one and not the other in such a sample ... in a sense, there would be
no point in keeping repeat columns in F! We will therefore often assume that F
has no repeat columns.

The poset structure on this biextensional collapse shows an example of a
general phenomenon discussed by Pratt in his notes, [2]. He considers a general
‘alphabet’, X' as the codomain of the characteristic function r : C, x C, — X
For us, at present, X’ = 2 = {0,1}. The point Pratt makes is that structure on
this alphabet induces properties / structure on the X-Chu spaces. In the dyadic
Chu spaces that we are using, the available structures on 2 include those of a
Boolean algebra or of a poset / lattice, and thus the basic logical structures of
propositional calculus.

For example, the poset structure on 2 gives the poset structure on the pow-
erset 2%, so we can set

x <y in C,, (19)
to mean
ac(x) 2 do(y) in 2%, (20)

i.e., the value in row x column « is always greater than that in row y column
a, whatever attribute a is considered and we get back exactly the formula (18)
that we had earlier on.

Here various important points need some comment. Firstly the reversal of
order, we are considering attributes as open sets so ‘x < y’ corresponds to ‘x is in
more open sets of F than is y’, (cf., equation (3) above, ‘x < y in P’ corresponds
to ‘if y € V € F, then x € V also’). The convention with the reversal order can
also be use and is, of course, completely equivalent.

Example: the trident

Consider the following Chu space, which we will refer to as the ‘trident’,

T T2 €3
C ay az as
z] 1.0 0 (21)
zo| 0 1 0 T4
T3 001
zq| 1 1 1

It is biextensional, so is its own biextensional collapse. All the first three rows
are less than the fourth one. In fact, this example was constructed from the



poset having {x1,x9, 23,24} as its underlying set with z; > x4 for i = 1,2, 3,
and with set of attributes corresponding to the downsets of the first three el-
ements. (Alternatively we can think of this as a ‘Chu FFOS’ with underlying
Chu space constructed as below from this poset (cf. (23), and with F being the
first three non-zero columns / attributes.) Note, once again, that because of our
interpretation in terms of FFOSs, the order apparent in the table is the opposite
of that in the usual relational representation of the poset. (This reversal of the
order is sometimes an annoyance, but, as was said above, is natural in our main
examples.)

This relation on C, will not be a partial order unless a¢ is injective, that is,
unless C is separable (rows are distinct), but this is independent of extensionality.

The objects we are studying here have already been met in the first part of
this work. They consist of a Chu space and the analogue of a FFOS in this more
general setting. More formally, we have a Chu space C = (C,, =¢,C,) giving
us a certain model for our ‘global information’ and then a finite sample of the
attributes F, giving the pair (C,F), which is the desired ‘Chu FFOS’, although
here the ‘O’ for ‘open’ is not really an appropriate letter to use *. Any Chu
FFOS (C, F) yields a Chu space, C|#, by ‘corestricting’ the attributes:

Definition 7. Given a Chu space C, and a finite sample of its attributes, F,
making up a Chu FFOS, we call the Chu space,

C|.7: = (007 ):Ca]:)y
the corestriction of (C,F).

The biextensional collapse of C|r is analogous to the Sorkin model and so we
would expect it to ‘be a poset’. The structures arising here need clarification, so
we indulge in a short detour to look at the relationship between posets and Chu
spaces in more detail.

Posets as Chu spaces

Any poset P = (P, <) gives rise to a Chu space in several equivalent ways.
For instance we can take C, = C, = P with = |=¢ y taken to mean z < y, or
we can take C, = P, C, C 27 given by the upsets

w={z|z>xa}
and
z ¢ y if and only if T D Ty if and only if z > y. (22)

The upset v = we(x) for C, the Chu space given by the first construction. Of
course, we can also take C, = P, C, = the set of downsets of P (cf. (4) and

4 FSA = ‘finite sample of attributes’ would seem a good acronym, but with ‘FCA’
standing for ‘Formal Concept Analysis’, the two acronyms might be too close to-
gether and confusion would almost certainly result! We have therefore avoided them
in this paper.



page 4) and [= to be ‘€’, but note that in this dual construction z |= |y implies
that = € Jy, so z < y, as one would expect in a dual.

In these constructions, the set of objects of the resulting Chu space is the
set of elements of the poset, whilst the set of attributes is derived from it and is
the same size, so the matrix is square. We will loosely call these ‘square’ matrix
representations, the standard Chu representations of the poset, sometimes adding
‘square’ for emphasis. Clearly if we start with a pair (X, F) and form its Sorkin
model, or more generally with a biextensional Chu space C with, for simplicity,
finitely many objects, then we need not have that the Chu space is square, so
it may not be clear what poset it represents. In the example, ((21) above), if
we took the ‘meet’ of the columns, then we get a new column, a; A as A ag,
which corresponds to the downset of the fourth object. If we add it in to C
as a new column, we get a Chu space that is a standard representation of the
trident poset, but this is too ad hoc for extensive use. To solve this problem and
to develop the idea of representing posets by Chu spaces further we need the
following ideas adapted from Pratt’s notes.

We first make the assumption that C is a normal Chu space, so C, C 2% is
exactly a set of distinct columns (which thus can be used to label themselves).

Definition 8. A property of C is any subset Y C 2¢° containing C,, so C, C
Yy C 26,

Example : the trident, continued

For instance, in the ‘trident’ poset, above, we have a property ‘z; > x4’ in
the commonsense meaning of the word. This corresponds to the subset of 2% in
which in each a'® column we have 7(x1,a) < r(x4,a), i.e., a property in Pratt’s
sense. (The reversal of order is, once again, a quirk coming from our earlier
conventions.)

Pratt’s normal realisation of a poset is given by taking a set of defining
‘atomic’ properties in the poset and carving out from 2% the property that is
the intersection of all these properties considered as subsets of 2¢°. The result for
our trident example is easy to construct. The obvious atomic defining properties
are x; > 4, for i = 1,2, 3, so we have the normal realisation

C
21001001101
22[000101011 (23)
23[000010111
zq[011111111

In general, given a poset (P, <), which we will assume finite, fix a set I’
of atomic implications x — y or properties defining the given poset (e.g., by
drawing the Hasse diagram of (P, <)). For each v = (z — y) in I, interpreted
here as, and encoding, x > y, let X, be the set of columns a € 2% such that

r(z,a) < r(y,a).

Then we have:



Definition 9. The normal realisation of (P,<) is (P,€,Xr), where Xp =
Nnx,.

This normal realisation is maximal as far as the poset structure is concerned. We
will write N R(P, <) for the normal realisation of a poset (P, <). Different choices
of I' yield the same Xp, essentially because of the corollary to the following
result:

Proposition 1 (Pratt, [2], Proposition 2.1). A normal Chu space realises
a preorder if and only if the set of its columns is closed under arbitrary joins
and meets.

Corollary 1. A separable normal Chu space realises a poset if and only if the
set of its columns is closed under arbitrary joins and meets.

Here the point is that separability means that different objects satisfy differ-
ent sets of attributes, so one never has x < y and y < = unless x = y.

The determination of a suitable I" corresponds in a general sense to specifying
a set of generating relations = > y. It therefore relates to problems of presentation
of the poset as an ‘algebraic’ object.

The importance of this for us is that to form the normal realisation of a
given biextensional Chu space, we need only close up the set of its columns
under arbitrary meets and joins within 2%°. This will never destroy separability
and as everything is done within 2¢°, the result is still extensional. It also avoids
a choice of I'.

To illustrate the usefulness of this further, consider the following variant of
the trident example:

Example: trident variant.

Let C be the Chu space

C | a12 a13 a3
T 1 1 0
w1 0 1 (24)
25| 0 1 1
Ty 1 1 1

This was obtained from the standard trident example (see (21) and (23)) by
taking a different sample of observations, namely a12 = a1 Vas, etc. Of course, the
attributes are ‘compound’, not being given by the ‘atomic’ downsets. The poset
being represented is the same one, as both (21) and this (24) are biextensional,
and that poset is the Sorkin model of both, but in two different forms.

As we said earlier, if we are handed a general Chu space together with a finite
sample of its attributes, (C, F), there is, thus, no reason to suppose that its biex-
tensional collapse will be in standard form. One can, if the size is small, easily
check the atomic implications and, for instance, draw its Hasse diagram, but if
there are many objects, pairwise checking will be tedious and time consuming
at best. Two algorithms suggest themselves for taking such a non-standard Chu



poset and returning either its normal realisation or its square standard repre-
sentation. For the former, we take the Chu space and close up its columns under
arbitrary meets and joins, then we can compare any two such Chu spaces on
the same set of objects by matching columns. (If the object sets are of equal
size, but not ‘the same’ then, of course, one can extend the pattern matching
over permutations of the rows as well, but beware of the automorphism group
of the poset. If this group is small but the set of objects is large, searching over
permutations needs doing carefully. The worst case may be very bad here.)

The second algorithm extracts the standard representation by constructing
the down set of each object and expressing it in terms of the already existing
columns. (This can be thought of as extracting the downsets from the normal
realisation, but there is no need to build that larger model explicitly.) The ex-
plicit algorithm is to order the object set; for each object, =, in turn, check if
there is a column representing the downset of that object; if the downset is not
there already, create a new column labelled |z, and put a 1 in row y of that new
column if all elements in row y are greater than the corresponding entry in row
x (remember our reversal of order convention); repeat until there are no more
rows to process, and finally delete any original columns that were not identified
as downsets and reorder the remaining ones in the same order of the objects.
The maximal ‘flow formula’ for each row (see below, page 19) can be used to
express the ‘new’ column as a meet of the original ones.

Remarks

(i) These two algorithms are not optimised, and we have not attempted to
make them efficient in any way. There are clearly many well known ways of doing
essentially these processes.

(ii) The normal realisation is better at the theoretical level, as this construc-
tion is functorial. Any map of posets f : (P, <) — (@, <) will induce a reverse
map f~!: 2¢ — 2P by inverse image, and any property of NR(Q, <) is mapped
by this to a property of NR(P,<) in Pratt’s sense. It is easy to check that it
thus restricts to a Chu transform on the normal realisations. On the other hand,
the standard representation is not functorial if we use Chu transforms as the
morphisms. For example, consider the folding map from the poset, {z1, z2, 23}
(with x; > x5 for all i), to {y1,y2} (with y1 > y2), that maps z; and z2 to y;
and the bottom elements to each other. It is easy to write down the correspond-
ing map in the normal realisations, but the reverse map sends the downset of
y1 to | 21V | x2 and so does not restrict to a Chu transform on the standard
representations.

The biextensional collapse and the Sorkin model

From all this it is clear that the Sorkin model construction and the biexten-
sional collapse are really the same when one considers a FFOS, (X, F), as a Chu
space and that for the more general situation of a Chu space together with a
finite sample of attributes, similar structures are present. It is worth noting that
this gives the Sorkin model construction a universal property that was not that
in evidence to start with. The proper setting for this universal property would



seem to be these latter objects that we have called ‘Chu FFOSs’ for want of a
better term. We have loosely referred, earlier, to the biextensional collapse of
C|7 as being the biextensional collapse of the Chu FFOS. We can now put this
on a firm basis.

This really works best if 7 has ‘no repeats’ so that C# is extensional. From
this perspective, the Kolmogorov quotient

TFE X — X]:
is a universal Chu map, so in more generality, we might attempt to construct
TF : C‘].‘ — C}'

defined, perhaps, by
(77,7-')* =dc : C'o - OVéC(C’O)’

and if C| is extensional, wc : F — @ (F) is a bijection and we can use (Ijal as

the reverse map (mx)* to get a Chu transform.

If we allow repeats in F, then 0o : F — we(F) will be a surjection and
one might try to use some generalised weaker form of Chu transform (with the
reverse map some form of relation, for instance), however for the context of F
being a sample from C,, the assumption that it is repeat-free seems anodyne
enough, so we have not looked at the more general case in any detail.

Remarks

(i) It is worth recalling that, in the topological setting, if F does not cover
X, then Px has a maximal or top element, namely the equivalence class of any
element that is not in the union of the sets in F, likewise if a Chu space C has
an object x with & (x) the empty set, then again in the biextensional collapse
the class of this object gives a least element in the poset.

(ii) We further observe that several FFOS on a particular space, X, can give
rise to the same Sorkin poset. We already have our trident examples, but here
is another in which we can be more exhaustive in listing the possibilities. There
are 12 FFOSs on the three point set which all give the Sorkin poset

x Yy — z. (25)

These are

©
@__> -
(a) (b)

plus those given by (26) including the empty set or the total set, {z,y, 2}, or
both. In other words there are 12 biextensional Chu spaces which have the



poset (25). These do not give equivalent Chu spaces, although, of course, some
will generate others via the Boolean algebra operations or, more exactly, via
‘topological closure’, see below.

The essential difference between the Chu space approach and that of the
Sorkin Model is that, with the Chu spaces, we are also concerned with exactly
which sets are in the FFOS and not just how they separate points. This means
that we can easily discuss the nerve of Chu space, as in the first part of this
article, see also below, but we have more of a problem defining the Sorkin re-
finement.

We shall call the Chu space C, topologically closed if C, is a topology on
C,, i.e., C' is normal and C, includes all unions and finite intersections. These
are also known as localic topological systems, (cf. [5] and p.26 below). We will
usually restrict to the case in which C is also biextensional, but other cases may
be useful.

Given a normal Chu space C, there is a topologically closed Chu space denoted
7(C) = (C,, €,7(C,)), which is a topological closure of C in an obvious sense.
There is a universal Chu morphism 7 : 7(C) — C with 7, : C, — C, as the
identity, and 7* : C, — 7(C,) as the inclusion. For example all the Chu spaces
in (26) have the same topological closure, which is given by (26¢) plus the empty
set and total set.

Remark

From the ‘informational / observational’ point of view, 7(C) contains essen-
tially the same information as the original C. In 7(C), that information has been
preprocessed via the propositional operations of geometric logic. Of course, if all
the Chu spaces being studied are finite ones, and represent posets, there is no
difference between the topological closure and the ‘normal realisation’ of that
poset, however the difference between arbitrary meets, required for the normal
realisation, and the finite meets, allowed here, could be important in situations
where comparison of arbitrary Chu spaces and their finitary approximations is
involved.

Given a finite poset P then the Chu space, (P, €,7(P)), is a topological
closed Chu space isomorphic to N R(P)and we have the following evident lemma
which relates the three different concepts: finite posets, finite Ty-spaces and a
corresponding class of Chu spaces, and which slightly extends the well known
classical result.

Lemma 4. There is a natural equivalence between the category of finite Ty
spaces (morphisms given by continuous maps), the category of finite posets (mor-
phisms being order preserving maps) and the category of finite biextensional topo-
logically closed Chu spaces (morphisms being Chu transforms).

Logical interpretations of the Sorkin model
A general Chu space, C, is being thought of, here, as a model for ‘informa-
tional structure’. In a Chu FFOS, the information is sampled via F C C,, usually



finitely. From this viewpoint, there is a good ‘logical’ interpretation of the biex-
tensional collapse / Sorkin model of Cjx = (C,, =¢, F), the corresponding Chu
space.

We will assume F is chosen so that C)# is extensional. (Any two ‘observations’
in F give different results on at least one object; the columns of F are distinct;
F is considered as a subset of 2¢°.)

In [6], van Benthem defines a flow formula as being any first order formula
produced by the schema

vlEa|l-(zEa)|A]|V]|3z]|Va.

(In [6], the Chu space notation is (4, €, X), so our attributes are the elements
of his X, not of A, and | is €. The & in his notation is written A here.)

Given any row x in the biextensional collapse / Sorkin poset, C, it consists
of n-entries 0 or 1, and hence to a flow formula

(zEa)AN.. A@Ea)A(@EwG )N A-(zEa,), (27)

where, of course, the first k a;s are the attributes with r(x, a;) = 1 and the others
are those giving 0. This statement, (27), is true as well in C|# itself, but now in
Cr, the formula uniquely determines the row and wice versa, this corresponding
to the separability of C£. In other words the rows of the biextensional collapse,
Cr are the elementary flow formulae

(N @ a)n N\ - a)

1€EF1 1€EF2

for some partition (F1, F2) of F. The question of refinement is then to modify the
attribute sample F, redefining some of the ‘atomic’ statements x |= a, replacing
them with other flow formulae of this same form. (It may be useful to compare the
above, in detail, with parts of Situation Theory, especially ideas on information
flow found, for instance, in [7]. Other useful references are [8-10])

6 Sorkin refinement in the language of Chu spaces

Given Chu spaces C and D, corresponding to FFOSs, (X, F) and (X, G), respec-
tively and where F is a Sorkin refinement of G, then, in general, there will be no
Chu morphism between C and D. For example, consider (26a) and (26b). Since
these represent the same Sorkin poset, each can be considered a refinement of
the other, yet there is no Chu morphism between them such that the carrier
function is the identity on the three objects.

The problem is that Sorkin refinement uses the topology generated by a
FFOS, so we have to mimic that in general for Chu spaces. Of course, that is ex-
actly what is given by the topological closure operation we have just introduced.

Definition 10. Given Chu spaces C = (C,,=c,Cy), D = (Co, Ep, Ds) with
the same set of objects. We say that C is a Sorkin refinement of D if there is a
Chu transform

¢:7(C) =D,



which is the identity on objects, i.e., ¢.(x) = x.

If both C and D are normal Chu spaces, then ¢* will be an inclusion, D, C
7(C), but, in general, ¢* need not be an inclusion, nor even an injection.

Lemma 5. (i) Any Chu space is a Sorkin refinement of itself.

(i) Sorkin refinement is transitive.

(iti) If C is extensional and C is a Sorkin refinement of D, then the map ¢* is
uniquely determined.

Each of these is easy consequence of the definitions.
The first part of this lemma suggests that a Sorkin refinement may best be
viewed as a pair of morphisms

cere) Lo

with their object parts the identity on C,, and where can is the canonical Sorkin
refinement given by (i) of the above lemma.

7 Nerve of a cover and Sorkin models

As mentioned in the first part of this article, we can associate two simplicial
complexes with every (dyadic) Chu space, C, one being its Cech nerve, N(C),
and the other its Vietoris nerve, V(C). Any simplicial complex, K, gives rise to
a poset, namely the poset of its faces having the simplices, o, 7, etc., of K as
elements with ¢ < 7 if ¢ is a face of 7, i.e., 0 C 7 as subsets of the set, K, of
vertices of K.

For a Chu space C = (C,, =, C,) and a subset F C C,, i.e., a Chu FFOS
(C,F), we have the ‘corestricted’ Chu space, Cjx = (Co, |=, F) and thus several
‘objects’ that encode some of the geometric relationships in C that can be ob-
served using . There are the two simplicial complexes N (Cjx) and V(C|x), and
thus the associated partially ordered sets of their faces, and there is also the
biextensional collapse / Sorkin poset of C|z, that will be denoted, as before, by
Crx. It would be good to be able to compare these, since they encode ‘geometric’
information in slightly different ways. The purpose of this section is to reveal
some of the relationships between these methods of analysing Chu FFOSs.

Remark

The context for this comparison is already partially in the literature. Given a
Chu space C, considered as a Formal Context within FCA theory, see [1, 4, 11], the
informational content and structure, (formal concepts, for example), is extracted
via the o and w mappings mentioned earlier, so as to give a closure operation
on P(C,) and thence a ‘concept lattice’. The exact relationship between this
and the Sorkin model construction is not yet clear, but we note that if (D, <) is
any complete lattice, then the corresponding Chu space, D = (D, <°, D), has
a concept lattice that is order isomorphic to (D, <) itself by the Representation
Theorem of Zhang and Shen (see Theorem 4.1. of [4]), but D is biextensional
and so corresponds to its own Sorkin model.



Another mode of analysis of a Chu space, C is via the nerve constructions.
Here there is a variant in which simplices are labelled with subsets of objects
that ‘witness’ to the non-emptiness of the corresponding intersection. This is
one of the basic operations of the so-called ‘Q-analysis’ used within AI and
some of the Social Sciences to display or visualise relationships between entities.
Thus our initial steps here may lead, to some extent, to a clarification of the
gap between these two models for extraction of informational structure from a
relational source.

7.1 Comparison Results.

In order to compare nerves with Sorkin models, we clearly need to have a com-
mon setting. The above suggested that posets were such a setting, but we must
formalise some of the links slightly more. Simplicial complexes are also clearly
related to Chu spaces in the manner of their definition. In fact any simplicial
complex is naturally a normal Chu space.

Recall if K is a simplicial complex, then we have a set Ky of vertices and a
set Sg C 250 of ‘simplices’. The distinctive properties of Sx are: ) ¢ Sx and,
ifr#0,7 Coando € Sk, then 7 € Sk, i.e. Sk is closed under ‘non-empty
inclusion’. Of course, from a Chu perspective, we can take Sk = (Ko, €, Sk) to
get a normal Chu space.

Remark

There are some natural questions within this context for which replies would
be useful. For example, is it possible to perform the various nerve constructions
completely within the Chu context? The fact that these constructions are not
quite functorial (see the discussion in the first part of this paper, [3]), suggests
that the answer is probably negative perhaps for a relatively trivial reason, but
that slightly amending the contexts involved may say more about the extent to
which the constructions are ‘internal’. If they can be performed internally then
there would be some interest in seeing what was the exact structure on 2 that
they used so that variants of the nerve constructions might be performed in a
similar way for other ‘alphabets’ X', and hence, for other ‘lavours’ of Chu space.

The simplices of a simplicial complex form a poset (Sk, C) with C inherited
from the power set 250, so we have a second Chu space associated with K,
namely NR(Sk, C), the normal realisation of this face poset. We will formally
define this Chu space by

face(K) := NR(Sk, C).

We can now turn to analysing the relationship between the Sorkin model and
the nerves. We will work in the setting of normal Chu spaces and in particular,
within that of ‘posets as Chu spaces’. We will first reduce the problem to one
purely in that ‘poset’ setting:

Lemma 6. Let (C,F) be a Chu FFOS, and N(C,F) its Cech nerve. Further
let Cx be its biextensional collapse and denote by F the corresponding family of



attributes. Assume that there are no repeated columns in F, so C|x is extensional,
then the quotient map
TF C‘]: — C}'

exists and induces an isomorphism

~

N(C,F) = N(Cr,7)
of simplicial complexes.

Proof. The assumption of extensionality for C|#, as we saw earlier, implies that
7% is a bijection, so, by results in part 1, we have an induced map. That map is
a bijection on vertices, so we only need to check what it does to simplices. As,
in a nerve N(C,F), a n-simplex o = (ag,...,a,) is a set {ag, ..., a,} such that

Jr ((x Eap) A... A (= an)) (28)
holds and

(x = ap) if and only if dc(z) E we(a) (29)

(cf. (17) ), we have that (ao,...,a,) € N(C,F) if and only if

(@clap), .. Gc(an)) € N(Cr, F),
which completes the proof.

We can thus assume that C|z is itself biextensional and thus essentially is a
poset. One has, however, to remember that we have a sample of the columns of
the corresponding normal realisation. Of course, the original sample J may not
‘cover’ the original C. If that is the case C'r has a top element, but F misses it
out so the lemma still holds. We will shortly produce a comparison map from Cr
to its nerve, but if there is a top element in Cx , there will be no corresponding
simplex in the nerve as the families which are simplices in N (Cx, F) are assumed
‘non-empty’. We will therefore assume that F does ‘cover’ C, so there is no zero
row in C|z. The more general case is left to the reader!

There are various properties that a Chu FFOS may have that are clearly
relevant to our comparison and which also correspond, intuitively, to good ‘in-
formational’ properties. Our discusssion will continue to assume F covers C.
First a useful technical definition.

Definition 11. Let (C,F) be a Chu FFOS with Cr extensional. The free A-

attribute completion of C is the Chu space, denoted \C, obtained by freely adding
fin

new attributes corresponding to all finite conjunctions of columns of C:

For each non-singleton finite subset, A C C,, we form a new column, labelled

NAorai, A...Na;, if A={as,...,a;,}, with

r(x, /\A) =1if and only if r(z,a) =1 Va € A. (30)



Example

If C is the standard trident, (21), then we have new columns a; A ag, a; A as,

as A az and ay A ag A ag in AC. Each new column is 000 1.
fin
Definition 12. Let (C,F) be a Chu FFOS with C\z extensional.

(i) We say F is minimal if, for any a € F, there is an object x such that
r(xz,b) =0 for allb € F with b # a, (i.e., you cannot omit any attributes from
the ‘sample’ without destroying the ‘covering’ property).

(ii)) We say (C,F) is generic if \C|x is extensional, in other words, if A =

fin

{ag,...,am} and B = {bg,...,b,} are finite subsets of F such that wc(A) =
we(B), then A = B.

Remarks
(i) We note that ‘generic’ clearly implies ‘extensional’; since the columns of

AC 7 include those of Cjz. The converse is not true however, as the standard
fin
trident example shows. Using the notation already introduced for that example,

we have a1 A as and a1 A ag in /\C‘}- are identical columns. In other words we
fin
have a relation:

a1/\a2=a1/\a3.

Of course, there is a maximal representation for this column of values, namely
ay N\ az A\ as.

(ii) The condition of ‘genericity’ compares the free wedge completion with
its biextensional collapse and thus with that part of 2¢° generated from the
given Chu space by intersection. (If C is separable, then this will form part of
the normal realisation.) It thus compares the values of ‘formal conjunctions’ of
attributes with the actual values. The ‘formal’ aspect is captured by the nerve,
the ‘actual’ one by the Sorkin poset.

(iil) We suggest that ‘generic’ is another aspect of ‘stability’, as small ‘per-
turbations’ of the structure of a non-generic cover often seem to return to ‘gener-
icity’, but, as we have said, we cannot as yet define these other terms precisely!

We can now examine an ‘obvious’ map from a (C,F) to the corresponding
N(C,F). We can use lemma 6 to reduce to the case where C|r is biextensional
and our discussion to impose the condition that F covers C. We can think of C
as being a normal Chu space in its normal realisation and F as a finite sample
of the columns, so that €| has no zero rows and no repeat rows.

Suppose = € C, is an object of C. As C|r is extensional, x corresponds to a

flow formula,
((zFai) Ao A (= ai,)),

where {a;,,...,a;,} € F is the set of columns, a of |z for which r(z,a) = 1.
We clearly have that

(x) = (aiy, -, ai,) € N(C,F)n,

since z satisfies them all. Note that ¢ (z) = (ax(x)), where ax is the ‘a-map’
for C . We will think of this as being an object of the face poset, face(N(C, F))



of the nerve of (C, F). We thus have a map between the elements of two posets.
Is that map order preserving?
Suppose that z <y in C, this means that, for all a € Cy,

r(z,a) > r(y,a),

so ¥ (y) is a subset of ¥ (x), i.e., it is an (iterated) face of it. (Note that we need
that Cjz has no zero rows, otherwise r(y, a) might be a zero row and 1 (y) the
empty set, which is not a simplex.) As the order in the face poset of N(C,F) is
inclusion, % gives us an order preserving map / Chu transform:

Y NR(Cr) — face(N(C,F)).

It is useful to note that if z € C,, so ¥(z) = (ax(z)), then [xr = A ax(z) within
NR(C F).

For particularly nicely behaved ‘covers’ F, this order preserving map will be
an isomorphism of posets. If this is the case we will say that F is simplicial. The
properties identified above go some way to analysing this notion, for instance, if
F is minimal, then for any a € F, there is an x such that

{beFla b} = {a},

so ¥ (z) = (a), and conversely if all of the original vertices are to be in the image
of v, then F must be minimal.

Example

The trident variant example, (24), is not minimal, since F' = {aj2,a13} is
also a cover: there are no zero rows in C|#, which is also no longer separable as
21 and z4 now have the same row. The map 1 sends the trident to the nerve as
in the following pictures, showing face(IN(C,F)) on the left,

(a13)

(ai2,a13) (ais,azs) (1) (w3)

(ai2) (a12, azs3) (az3) Y(z2)

with the image of ¢ shown by thicker lines in the righthand one.
By contrast, the original trident, (21), which is minimal but not generic,
gives

Y(x2) = (az)

(a1, as) (az,as)

Y(r1) = (a1) (ar,a3)  Y(x3) = (a3)



Here the images of the z; are the corresponding downsets.

Neither of these covers is ‘simplicial’. It is clear what prevents it in each case,
and shows the close link between ‘minimality’ and ‘genericity’.

If F is not minimal, we noted that some of the original vertices may be missed
out. Intuitively, if F is not generic, then the ‘poset’ does not see the difference
between two ‘simplices’, whilst the nerve records their labels as corresponding
to distinct simplices.

Proposition 2. If F is a simplicial cover, then it is minimal and generic.

Proof. ‘Minimality’ has been proved above, but we give a more detailed analysis
of ‘genericity’.
Suppose A, B C F are subsets of attributes for which

wo(A) = we(B), (31)

so the set of objects satisfying the attributes in A, and in B are the same. We
can thus assume A C B without loss of generality, so

B:{ao,...,an,bg,...,bm}

with A = {ag,...,a,} and we write B’ = B\ A = {bo,...,bn}. We want to
show that B’ is empty. We have

we(A) = we(B) Cwe(B'),

as B’ C B.

If wc(A) = 0, then A does not form a simplex, but on the other hand, there
is no object that satisfies all of A, so this does not cause a problem and we can
assume we(A) # 0, and as a consequence, (A4) is a simplex of N(C,F) with
x € wya being proof of that fact. Also (B) and (B’) are simplices, so, as F is
simplicial, there are objects z,y, z € C, with

ac(z) = A,ac(y) = B,ac(z) = B'.
In the partially ordered set face(N(C,F)) ,
(4) v (B') = (B).

(The poset face(N(C, F)) need not have all joins, but does have these.) As 1) is
assumed to be an isomorphism,

rVz=uy,

but then, as B’ N A is empty, z and z agree on no attribute:

C A B’
z[{1...10...00...
z

Y

0...01...10... (32)

1...11...10...

so y € we(B), but is not in we(A), contradicting (31).



7.2 Sorkin Models in the Language of Frames

Recall ® that a poset A is a frame if, every subset has a join (\/) and every finite
subset has a meet (/) and binary meets distribute over joins. In our language
we may consider frames as topologies but without having the underlying set of
points. The poset structure mirrors subset inclusion, meets and joins intersec-
tions and unions and the bottom | and top T thus represent the empty set and
the entire set.

If A and B are frames, a function from A to B is a frame homomorphism if
and only if it preserves all joins and finite meets. It is important to remember
the typical example of A = 7(Y) and B = 7(X), being topologies on spaces
Y and X, and f : X — Y being a continuous map from X to Y. The frame
homomorphism f~1: 7(Y) — 7(X) goes in the reverse direction.

Throughout the discussion, above, of Chu spaces, we have assumed that there
are some ‘objects’ that are ‘observed’ via their attributes. This does seem a bit
strange if we merely have the observations and have no way of grabbing hold of
some ‘points’ or ‘objects’, i.e., if we just have a frame. There is, however, a way
to extract a Chu space (or more exactly a ‘topological system’ in the terminology
of Vickers [5] p.52) from a given frame. We will briefly recall this to see how it
fits with our overall ‘philosophy’ (cf, [5], p.60-61). We first give a more detailed
formal definition of a topological system.

Definition 13. Let A be a frame, X a set and EC X X A, written, as usual,
as x = a, then (X, A, =) is a topological system if and only if

— if S is a finite subset of A, then
zE /\S if and only if Va € S(z |= a);
— if S is any subset of A,

x = \/S if and only if Ja € S(z = a).

Given a frame A, we can construct a topological system by taking X to be the
set of frame homomorphisms
x: A—2

with z = a if and only if x(a) = 1. This, of course, just identifies a point
as a row in a possible Chu space matrix. The requirement that x is a frame
homomorphism imposes conditions on the row x, relative to the meets and joins
in A. We will sometimes refer to the frame A as a localic Chu space and this
will mean that we are using this associated topological system.

We shall use 7 for a“large” frame that we wish to model or sample. It may
be infinite, e.g., if it comes from some topological space such as a manifold, or it
may be finite, but just very large! We shall used A, B, etc., for the small finite
frames, which may be considered as samples of 7.

® For example from [5]



Suppose A is a finite family of elements of 7, then we can form 7(A), its
topological closure (within 7°) as being the subframe of 7" generated by A. As
a point of 7 is a  : 7 — 2, by restriction, we get x|;(4) : 7(A) — 2, but
different 7-points can restrict to the same 7(A)-point. In fact, as z|,(4) is a
frame homomorphism, it is completely determined by its values on the elements
of A and we can put an equivalence relation on the points of 7" by

x ~4 yif and only if 2|4 = y|a.

Of course, this is exactly the analogue of Sorkin’s original construction in this
context. This is constructed solely from the pair (7, A). As 7(A) is closed under
meets and joins, this Chu space is the normal realisation of a poset. Thus a sam-
ple or FFOS corresponds to a finite subframe 7(A) and here the corresponding
locale is the Sorkin poset of that FFOS. (Note that there is no reason to expect
a point of 7(A) to extend to one of 7 in general.)

In this context, given finite subframes, A and B of 7, A will be a Sorkin
refinement of B if and only if B C A.

We next turn to the study of zones here. Since we do not directly have the
set X, we cannot construct the quotient map 7 : X — P, nor can we consider
the zones 7~ !(z) for x € P, since, in general, these are not elements of 7(X). In
other words, when dealing with frames, we must express all our statements in
terms of the ‘open sets’, i.e., elements of A or 7. We cannot so easily talk about
general subsets of X.

Closeness.

Can we establish if two zones z,y are next to each other, i.e., z — y, solely
in the language of frames? The answer is yes. Clearly the formula (8) cannot be
used, since we cannot define 7~1(x) or talk about its closure in 7(X).

First note that in a frame there is the concept of the complement given by

T T m—>xc:\/{y€T|yAx7éJ_} (33)

If 7 is the topology 7(X), then X¢ is the interior of the compliment of X, i.e.
X = X\X. We can define the map

intc: P — X ; intc(x) =1a(lz)°V (\/ {ta(lz)]z < x})c (34)

Again if 7 is the topology 7(X) then intc(x) is the interior of the compliment
of the zone 7~ !(x), i.e. intc(z) = X\n~1(z). We say = > y if

intc(x) Vinte(y) # T and  inte(x) Vintce(y) V ea(ly) # inte(z) V intc(yz |
35

To see this we observe that if 7 = 7(X), then intc(z) Vintc(y) # T implies that
7=1(x) N7=1(y) # 0. This is not equivalent to 2 = y since it does not guarantee
that there exists z € 7~1(x)N7m~1(y) such that z € 7—*(y). Cosider, for example,
the case when 7~ !(z) and 7~ !(y) correspond to two open sets whose boundaries
intersect. Thus the statement intc(x) Vinte(y) Vea(ly) # inte(z) Vinte(y) implies
there exists z € m=1(x) N 7w—1(y) such that z € 7~*(|y). From this we can prove
that 7(z) = y.




8 Limits of Sorkin models.

The informational content of a large set of data, such as that given by numerical
simulations of a physical process or by medical scans, can only be analysed by
sampling and that usually means finite sampling. Increasing the density of the
sampling corresponds to increasing the refinement of the observations in the
sense we have been using that term. It is thus useful to model the extent to
which increasing the level of observational refinement ‘ad infinitum’ can retrieve
the (abstract) object being observed. To do this we wish to take the limit of the
Sorkin models of a space X with respect to increasing refinements in the FFOSs
F and will generally limit ourselves to this spatial case, as this is the case that
we understand best.

Each FFOS will generate a poset and the sequence of posets has a limit which
is also a poset. We wish to interpret this limit.

Let {F;}, i € N be a sequence of FFOS with each F;1; being a Sorkin
refinement of the previous one, F;. Since the posets depend only on the topology
T(F;), we shall assume that each F; is topologically closed, i.e. F; = 7(F;). Thus

= Fipp 2 Fipp = Fp e e (36)

Ti+4+1,1

For each F; 1 — F;, there is a corresponding order preserving surjection P;11 —
P;, thus (36) gives an inverse sequence of posets:

TR Pita2 e i+1 e (37)
The nature of the limit of these sequences depends not only on the structure to
X and the choice of FFOSs {;} but may also depend on the category in which
one chooses to take the limit.
We shall first look at the limit of (37) in the category of posets / Ty-spaces.
The limit is given by the poset P, which as a set is given by
Poo ={z = (x0,21,22,...) | s € Pi, @i = mig1,i(@it1)}
and
Tioo : Poo — Pi; Tioco (X0, X1, T2y ...)) = X4 (38)
the order on P, is given by
($0a$17x2a~-~) < (y05y17y27"') — Ty '\<y2 VZENv (39)

There is the natural map

Too : X — Poo ; Too() = (mo(x), 1 (), m2(2), .. .), (40)



so that the following commutes

(41)

Let us assume, for simplicity, that we wish to approximate a manifold or
similar, so we will assume X is a complete metric space. We also assume that
{F;} separates X, that is, for any two points z,y € X, there exist F; € {F;}
and U € F; such that U distinguishes = from y. Given these two assumptions
we can define the map

0:Po — X ; ﬂﬂ'{l(xi):{a(mo,ml,xg,...)} (42)
i=0

which is a left inverse of 7o
o(re(z)) =2 (43)
and

Y = Too(0(y)) (44)

What is the nature of Py, ? In fact, P, does not seem to be very interesting! All
the activity happens on the subset 0F, € X given by

OFs = G U ou (45)

i=0UEF;
This set is dense in X.
Lemma 7.

o Given z,y € P such that x <y and z # y, then o(z) = o(y) € OF .

o Given z € X\0F,, then 0=1(X) is a singleton.

e Given x € OF, then there exists z,y € Poo such that x S y, z #* y and
o(z) =0o(y) ==

We can also look at the sequence (37) in the category of topological spaces,
where each m; ;41 is a continuous map. The limit in this category is given by
the topological space (Pso, Foo) Where the points are given by P., and a basis
for the topology is given by U,O; Fi. (The exact nature of this topological space
needs investigating further, see Kopperman, [12,13]).



We could get other limits by working, say, in the category of Chu spaces and
the category of frames, but have not studied their interrelations as yet.

Examples of Sorkin refinements: The Cantor set

We will look at two Sorkin refinement sequences for the Cantor set, which
we construct in the standard way by successively removing the middle third of
each interval, i.e., by polyhedral approximations.

Level 0
[0,1]

Level 1
[0, 31U (3. 1]

Level 2 —— S —
[0,51U(3,31UI3,51UI5,1]

Level 3 = = = = - = _

0. 31U E AU B FIUIE UGBV ER U BIUE

First, consider the simplest case where at each level, we give the open set to
be the entire interval of the polyhedral approximation, i.e.,

Fo = {[O’ 1]}7
fl = {[07%]7 [%71]}a
Fo = {[07%]7 [%a%]v [%a%L [%71]}7"'
This gives rise to the following sequence of discrete posets. (All points are un-

related, the dotted lines represent the mappings coming from the refinement
process.)

Po 7~
P1 -
7% 7%
Pa 00 o1 10 11
Y R 4% RN
Ps 000 001 010 011 100 101 110 111

I O I O S
P4 00000001 0010001101000101 0110011110001001 1010101111001101 11101111

The corresponding limit P, is the Cantor set with 9F, = (), i.e., no structure
remains. This can be considered in terms of information arriving from a bit
stream. However at level n we simply have n disconnected points so it is not



very interesting topologically. We can, however, choose a different sequence of
covers and refinements. For this second case, at each level we consider the star
open cover.

Fi1= {[07%)7 (07% ’ [%71)7 (%71}}
Fa = {[O»%)v (07% ) [%,%)7 (%’%]7 [%»g)v (%v%L [%71)7 (%71]}
This gives rise to the corresponding sequence of posets and the limit P, is the
Cantor set with 0F, being the countable subset of all edges. If we write the
elements of the Cantor set as binary expansions, then these are the points whose
binary expansions terminate in all Os or all 1s. Again this can be considered in
terms of information arriving from a bit stream. In this case however at each
level we are given one of the three following possible pieces of information.
All the remaining digits are 0’s Represented above by a 0 in the last digit
All the remaining digits are 1’s Represented above by a 1 in the last digit
There are 1’s and 0’s Represented above by a % in the last digit
in the remaining digits
In this case there is a non trivial poset at each level and there is a corre-
sponding non trivial differential calculus, for which see part III.
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