04371 Abstracts Collection
Perspectives of Model-Based Testing

— Dagstuhl Seminar —

Ed Brinksma!, Wolfgang Grieskamp? and Jan Tretmans3

L Univ. of Twente, NL
brinksma@cs.utwente.nl
2 Microsoft Research, Redmond, US
wrwg@microsoft.com
3 Univ. of Nijmwegen, NL
tretmans@Qcs.kun.nl

Abstract. From 05.09.04 to 10.09.04, the Dagstuhl Seminar 04371 “Per-
spectives of Model-Based Testing” was held in the International Confer-
ence and Research Center (IBFI), Schloss Dagstuhl. During the seminar,
several participants presented their current research, and ongoing work
and open problems were discussed. Abstracts of the presentations given
during the seminar as well as abstracts of seminar results and ideas are
put together in this paper. The first section describes the seminar top-
ics and goals in general. Links to extended abstracts or full papers are
provided, if available.

Keywords. Model-based testing, software testing, formal methods, au-
tomatic test generation

04371 Summary — Perspectives of Model-Based Testing

Jan Tretmans (Univ. of Nijmwegen, NL)

The aim of the seminar Perspectives of Model-Based Testing was to bring to-
gether researchers and practitioners from industry and academia to discuss the
state of the art in theory, methods, tools, applications, and industrialization of
model-based testing, and to identify the important open issues and challenges.

Keywords: Model-based testing, software testing, formal methods, automatic
test generation

Joint work of: Brinksma, Ed; Grieskamp, Wolfgang; Tretmans, Jan
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/364

Dagstuhl Seminar Proceedings 04371
Perspectives of Model-Based Testing
http://drops.dagstuhl.de/opus/volltexte/2005/365

http://drops.dagstuhl.de/opus/volltexte/2005/364

2 E. Brinksma, W. Grieskamp and J. Tretmans

Symbolic Testing in TorX, with an Applicaton in Timed
Testing

Azel Belinfante (University of Twente, NL)

We present TorX, which is both a flexible, open architecture for conformance
testing, and an on-the-fly testing tool implementation of that architecture, which
has been used successfuly for testing of software components in an industrial
setting.

With on-the-fly we refer to the integration of test generation and test exe-
cution, such that the test-generation is done in a demand-driven way, driven by
the test execution.

We describe the mechanisms which have been introduced into TorX to facil-
itate Symbolic Testing, such that we can have (typed) variables and constraints
over these in the generated test steps (possible stimuli and expected observa-
tions).

We show how we choose data values for the free variables in the stimuli,and
how we update (the free variables in) the model from the parameters in the actual
interactions (stimuli applied, observations received) with the System Under Test.

As an application of the symbolic testing capabilities of TorX we describe a
symbolic “explorer” component which takes a Timed Automaton as input and
provides access to a labelled transition system, enhanced with constraints on the
absolute time that an action of the respective transition can happen.

We show that the mechanisms in TorX for symbolic testing are powerful
enough to allow Timed Testing in a similar way as proposed by Brandan Briones
and Brinksma.

Joint work of: Belinfante, Axel; Bohnenkamp, Henrik

Timed Testing in TorX

Henrik C. Bohnenkamp (University of Twente, NL)

We present TorX, which is both a flexible, open architecture for conformance
testing, and an on-the-fly testing tool implementation of that architecture, which
has been used successfuly for testing of software components in an industrial
setting.

With on-the-fly we refer to the integration of test generation and test exe-
cution, such that the test-generation is done in a demand-driven way, driven by
the test execution.

We describe the mechanisms which have been introduced into TorX to facil-
itate Symbolic Testing, such that we can have (typed) variables and constraints
over these in the generated test steps (possible stimuli and expected observa-
tions).

Perspectives of Model-Based Testing 3

We show how we choose data values for the free variables in the stimuli,and
how we update (the free variables in) the model from the parameters in the actual
interactions (stimuli applied, observations received) with the System Under Test.

As an application of the symbolic testing capabilities of TorX we describe a
symbolic “explorer” component which takes a Timed Automaton as input and
provides access to a labelled transition system, enhanced with constraints on the
absolute time that an action of the respective transition can happen.

We show that the mechanisms in TorX for symbolic testing are powerful
enough to allow Timed Testing in a similar way as proposed by Brandan Briones
and Brinksma.

Joint work of: Bohnenkamp, Henrik C.; Belinfante, Axel

Test for quiescent real-time systems

Laura Branddn Briones (University of Twente, NL)

We present an extension of Tretmans’ theory and algorithm for test generation
for input-output transition systems to real-time systems.

Our treatment is based on an operational interpretation of the notion of
quiescence in the context of real-time behaviour. This gives rise to a family of
implementation relations parameterized by observation durations for quiescence.

We define a nondeterministic (parameterized) test generation algorithm that
generates test cases that are sound with respect to the corresponding implemen-
tation relation. The test generation is also exhaustive in the sense that for each
non-conforming implementation a test case can be generated that detects the
non-conformance.

Automatic Generation of Tests from MSC Specifications
with Data

Simon Burton (DaimlerChrysler AG, D)

Automotive telematics features are becoming increasingly more complex and
can only be realised by the correct interaction between a number of devices.
As a result, the task of testing these features is becoming increasingly more
important as well as more difficult and time consuming. The interaction between
devices in a telematics system is specified using Message Sequence Charts. Due
to the complexity of the systems involved and the size of the specifications,
automation is essential to ensure consistency of the test cases and to allow for
sufficient coverage of the specifications during test. This presentation describes
the problems involved in automatically generating executable test cases from
abstract MSC specifications and amongst other relevant topics, discusses how
the classification tree method (a systematic method of test design based on the
idea of equivalence classes) can be used to select appropriate data points to be
used within the tests.

Keywords: Message Sequence Charts, test generation, classification tree method

4 E. Brinksma, W. Grieskamp and J. Tretmans

Can Model-based Testing Scale to Large Systems?

Colin Campbell (Microsoft Research - Seattle, USA)

Can model-based testing be used for industrial-scale systems? This talk discusses
some of the challenges and then shows some techniques developed at Micrsoft
Research to deal with this kind of complexity.

Keywords: Model-based testing, software engineering, software contracts

Systematic Testing of Embedded Automotive Software -
The Classification-Tree Method for Embedded Systems
(CTM/ES)

Mirko Conrad (DaimlerChrysler Research - Berlin, D)

The software embedded in automotive control systems increasingly determines
the functionality and properties of present-day motor vehicles. The development
and test process of the systems and the software embedded becomes the limiting
factor. While these challenges, on the development side, are met by employing
model-based specification, design, and im-plementation techniques [KCF+04],
satisfactory solutions on the testing side are slow in arriving. With regard to
the sys-tematic selection (test design) and the description of test scenarios espe-
cially, there is a lot of room for improvement. Thus, a main goal is to effectively
minimize these deficits by creating an efficient procedure for the selection and de-
scription of test scenarios for embedded automotive software and its integration
in the model-based development process.

The realization of this idea involves the combination of a classical software
testing procedure with a technology, prevalent in the automotive industry, which
is used for the description of time-dependent stimuli signals. The result of this
combination is the classification-tree method for embedded systems, CTM/ES.

The classification-tree method for embedded systems complements model-
based development by employing a novel ap-proach to the systematic selection
and description of the test scenarios for the software embedded in the control
systems. CTM/ES allows for the graphic representation of time-variable test sce-
narios on different levels of abstraction: A problem-oriented, compact representa-
tion, adequate for a human tester and containing a high potential for reusability,
is gradually being transformed into a solution-oriented technical representation
which is suited for the test objects’ stimulation. The CTM/ES notation facili-
tates a consistent representation of test scenarios which may result from different
test design tech-niques. The test design technique which this method is primar-
ily based on, is a data-oriented partitioning of the input do-main in equivalence
classes. Secondary test design techniques are, for instance, the testing of specific
values (or value courses) or requirement-based testing.

Perspectives of Model-Based Testing 5

A domain-specific application pragmatics in the form of agendas supports
the methodical execution of individual test activi-ties and the interaction of
different test design techniques. The methodology description leads up to an
effective test strat-egy for model-based testing, combining the classification-tree
method for embedded systems with structural testing on the model level, and
accommodating the different forms of representation of the test object during
model-based development.

Systems which have been developed in a model-based way can be tested
systematically and efficiently by means of the CTM/ES and the tools based
thereon, such as the classification-tree editor for embedded systems CTE/ES, as
well as the model-based test environment MTest.

Keywords: Model-based Testing, Classification-tree Method for Embedded Sys-
tems (CTM/ES), test design technique, test notation

Eztended Abstract: http://drops.dagstuhl.de/opus/volltexte/2005/325
Full Paper: http://drops.dagstuhl.de/opus/volltexte /2005 /325

Another Approach to Symbolic Test Generation

Lars Frantzen (Radboud University of Nijmegen, NL)

Classical state-oriented testing approaches are based on simple machine mod-
els such as Labelled Transition Systems (LTSs), in which data is represented by
concrete values. To implement these theories, data types which have infinite uni-
verses have to be cut down to finite variants, which are subsequently enumerated
to fit in the model. This leads to an explosion of the state space.

Moreover, exploiting the syntactical and/orsemantical information of the in-
volved data types is non-trivial after enumeration.

To overcome these problems, we lift the family of testing relations iocop to
the level of Symbolic Transition Systems (STSs).

We present an algorithm based on STSs, which generates and executes tests
on-the-fly on a given system. It is sound and complete for the ‘ocop testing
relations.

Joint work of: Frantzen, Lars; Tretmans, Jan; Willemse, Tim

http://drops.dagstuhl.de/opus/volltexte/2005/325
http://drops.dagstuhl.de/opus/volltexte/2005/325

6 E. Brinksma, W. Grieskamp and J. Tretmans

Unfolding Symbolic Transition Systems

Marie Claude Gaudel (Université Paris Sud, F)

Testing based on symbolic transition systems raises several problems due to
infiniteness of the underlying model and the possible unfeasibility of some traces.
This talk focuses on selection strategies of finite test sets based both on the
topology of the symbolic system and the properties of the data types used in
guards and actions.
It revisits the notion of transition coverage, introducing:

— Weak symbolic transition coverage, where the transition is covered once only;

— Stronger symbolic transition coverage, where the hidden sub-cases coming
from guards and actions are unfolded on the basis of the data types descrip-
tion, and covered.

Some implementation is under development, based on randomised constraint
solving, narrowing (the LOFT system), and various unfolding strategies.

Joint work of: Gaudel, Marie Claude; Lestiennes, Grégory

The AGEDIS Model Based Testing Tools

Alan Hartman (IBM - Haifa, IL)

We describe the tools and interfaces created by the AGEDIS project, a European
Commission sponsored project for the creation of a methodology and tools for
automated model driven test generation and execution for distributed systems.
The project includes an integrated environment for modeling, test generation,
test execution, and other test related activities. The tools support a model based
testing methodology that features a large degree of automation and also includes
a feedback loop integrating coverage and defect analysis tools with the test
generator and execution framework. Prototypes of the tools have been tried in
industrial settings providing important feedback for the creation of the next
generation of tools in this area.

Keywords: Automated test generation, UML modeling, test execution frame-
work, coverage analysis, defect analysis

Joint work of: Hartman, Alan; Nagin, Kenneth

Perspectives of Model-Based Testing 7

Testing with Functions as Specifications

Pieter Koopman (Radboud University of Nijmegen, NL)

In this paper we show that mathematical functions and logical expressions can
very well be used as, partial, specifications. Reactive systems can be modelled by
powerful extended state transition systems, that can be nondeterministic and can
handle parameterized and infinite types for the inputs, outputs and states. These
specifications can very concisely and directly be stated in a modern functional
programming language. The test tool GAST is able to generate test data based
on these specifications, execute the associated tests, and make a verdict fully
automatically. Test data can be generated fully automatically, but can also be
tailored in various high level ways, if that is desired. Advantages of this approach
are that one specifies properties instead of instances of these properties, test data
are automatically derived instead of manually, the tests performed are always
up to date with the current specification, and testing is automatic (and hence
fast and accurate).

Keywords: Automatic testing, model based testing, specification based testing,
functions

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/324

Applying Model Based Testing in Different Contexts

Victor Kuliamin (Academy of Sciences - Moscow, RUS)

We describe ISP RAS experience in applications of model based testing in various
areas. The two different examples are considered - UniTesK test development
tools aimed at software component testing and OTK tool intended to be used
in test development for complex structured text processors, the main example
of which is compilers. The suprising fact is that the two methods used in the
tools have different prerequisites for successful applications in industrial software
development.

Keywords: Software component testing, compiler testing, testing based on
software contracts, testing based on finite automata, test data generation

Joint work of: Kuliamin, Victor; Petrenko, Alexander

http://drops.dagstuhl.de/opus/volltexte/2005/324

8 E. Brinksma, W. Grieskamp and J. Tretmans

Testing Applied to Analysis of Model Relations

Mass Soldal Lund (University of Oslo, N)

The vision of model driven development demands sound methods for handling
and analyzing models. We propose the use of testing techniques in combination
with a formalization of UML models within an MDA framework as a way of
supporting and strengthening the vision.

Online Testing of Real-Time Systems using UPPAAL:
Status and Future Work

Brian Nielsen (Aalborg University, DK)

We present TUPPAAL — a new tool for online black-box testing of real-time
embedded systems from non-deterministic timed automata specifications. We de-
scribe a sound and complete randomized online testing algorithm, and describe
how to implement it using symbolic state representation and manipulation tech-
niques. We propose the notion of relativized timed input/output conformance
as the formal implementation relation. A novelty of this relation and our testing
algorithm is that they explicitly take environment assumptions into account,
generate, execute and verify the result online using the UPPAAL on-the-fly
model-checking tool engine. A medium size case study shows promising results
in terms of error detection capability and computation performance.

Keywords: Online testing,black-box testing, real-time systems, embedded sys-
tems, symbolic state representation, relativized timed input/output conformance,
model-checking,

Joint work of: Larsen, Kim G.; Mikucionis, Marius; Nielsen, Brian

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/326

The State of the Art of Model-Based Testing with Markov
Chain Usage Models

Stacy Prowell (University of Tennessee, USA)

Statistical testing of software is an approach which treats software testing as a
statistical experiment, in which a sample (test cases) is drawn, and performance
on the sample (success or failure in operation) is used to make inferences about
important quantities, such as reliability, time to failure, and the like. In order to
apply these techniques, a model of the population (all test cases of interest) is
needed. Markov chains provide such a model.

http://drops.dagstuhl.de/opus/volltexte/2005/326

Perspectives of Model-Based Testing 9

Markov chain usage models have been used in industry for over a decade,
and have been used to test a variety of different kinds of systems, including
embedded and distributed systems, medical device software, scientific computing
codes, GUI applications, networking applications, and combined hardware and
software systems.

In the last few years, there have been many advances in the use of Markov
chain usage models.

These have included the introduction of standard notations and modeling
languages specifically suited to describing Markov chain usage models, the use
of mathematical programming techniques to determine transition probabilities,
more powerful test case generation through the use of concurrency operators,
stopping criteria based on cost-benefit analysis, and improved reliability models.
Three generations of tools to support the use and analysis of Markov chain usage
models have been developed, with the latest generation (the JUMBL toolkit)
providing support for a variety of notations and test case execution methods.

This talk gives a quick overview of statistical testing using Markov chain
usage models, presents some of the more recent developments listed above, and
concludes with a look at future tools and research topics.

Keywords: Statistical testing, usage-based testing, model-based testing, auto-
mated testing

Testing practices inside France Telecom’s R&D labs - An
example of automatic test generation

Yves-Marie Quemener (France Télécom, F)

In my talk, I treat two somewhat disjoint subjects.

First, I give the results of a survey done inside the R&D division of France
Telecom at the end of 2003, about the testing practices in this entity. The results
of the survey show the need for automating test processes, and the importance
of automating test execution.

Second, I give an example of use of automatic test generation for validating
a messaging platform.

Keywords: Test, test processes, industrial practices, telecommunications, au-
tomatic test execution, automatic test generation

10 E. Brinksma, W. Grieskamp and J. Tretmans

Generating Efficient Test Sets with a Model Checker

John Rushby (SRI - Menlo Park, USA)

It is well-known that counterexamples produced by model checkers can provide a
basis for automated generation of test cases. However, when this approach is used
to meet a coverage criterion, it generally results in very inefficient test sets having
many tests and much redundancy. We describe an improved approach that uses
model checkers to generate efficient test sets. Furthermore, the generation is itself
efficient, and is able to reach deep regions of the statespace. We have prototyped
the approach using the model checkers of our SAL system and have applied
it to model-based designs developed in Stateflow. In one example, our method
achieves complete state and transition coverage in a Stateflow model for the shift
scheduler of a 4-speed automatic transmission with a single test case.
Papaer, SAL scripts, and examples at
http://www.csl.sri.com/users/rushby /abstracts/sefm04

Joint work of: Hamon, Gregoire; de Moura, Leonardo; Rushby, John

Keywords: Model checking, test generation, Stateflow, SAL

Verification and symbolic test generation for safety
properties

Vlad Rusu (INRIA Rennes, F)

We present a combination of verification and conformance testing techniques for
the formal validation of reactive systems. A formal specification of a system -
an input-output automaton with variables that may range over infinite domains
- is assumed. Additionally, a set of safety properties are given under the form
of observers described in the same formalism. Then, each property is verified on
the specification using automatic techniques (e.g., abstract interpretation) that
are sound but not complete for the class of sytems/properties considered here.

Next, for each property, a test case is generated from the specification and
the property and is executed on a black-box implementation of the system. If
the verification step was successful, that is, it has established that the specifi-
cation satisfies the property, then the test execution may detect the violation
of the property by the implementation and the violation of the standard IOCO
conformance relation [Tretmans| between implementation and specification. On
the other hand, if the verification step did not conclude (i.e., it did not allow to
prove or to disprove the property), the test execution may detect violations of
the property by the specification.

The informations about the relative inconsistencies between specification,
implementation, and properties are reported to the user under the form of test
verdicts. The approach is illustrated on the BRP protocol.

Perspectives of Model-Based Testing 11

Test Case Generation for an Electronic Payment System
with CSP-CASL

Holger Schlingloff (Fraunhofer Institut - Berlin, D)

In this talk, we report about an on-going project on the formalization and test
case generation for the ep2 (electronic funds transfer / point of service) banking
system.

As modelling language, we use the new formalism CSP-CASL, which com-
bines the process algebra CSP (for the reactive part) and the common algebraic
specification language CASL (for the data part).

In this project we plan to investigate how test cases for ep2-terminals can be
automatically derived from our formal model.

Keywords: Test case generation, CSP-CASL, algebraic specification, process
algebras, EMV, EP2, EFT/P0S2000

Joint work of: Schlingloff, Holger; Roggenbach, Markus

Model-based Test Data Generation for Testing Integrated
Modular Avionics

Aliki Tsiolakis (Universitdt Bremen, D)

Next generation aircrafts use generic computing resources based on the concept
of Integrated Modular Avionics (IMA). These so-called IMA Modules provide
standardised hardware and interfaces as well as a common standardised operat-
ing system. IMA can achieve a high degree of functional and physical integration
by ensuring spatial and temporal partitioning and deterministic scheduling of
avionics applications which run concurrently but without disturbing each other
on one IMA module. Consequently, using IMA technology has an important im-
pact on verification, validation and testing activities. The presentation outlines a
strategy for testing IMA starting with single IMA modules and continuing with
networks of IMA modules. In particular, it has to be verified that inter-module
and intra-module communication flow complies with the application specific con-
figuration and the defined module performance. For testing all possible commu-
nication flows, a test data generation algorithm is suggested which considers the
I/O and scheduling configuration of the IMA modules and the performance in-
formation about the IMA modules and the network. To reduce the number of
resulting test cases or to sort them according to their importance for testing, the
algorithm can take restriction functions or heuristic functions into consideration
which help to focus on a specific test aim. For test execution, a test setting is
suggested where test control specifications load the test cases into the test appli-
cations using specific communication links. Similarly, the test execution logs are
transmitted to test checker specifications for evaluation of the overall test result.

12 E. Brinksma, W. Grieskamp and J. Tretmans

First evaluations have shown promising results that suggest future investigations
particularly in the area of restriction and heuristic functions and considerations
of additional parameters.

Testing Software with Spec# and SpecExplorer

Margus Veanes (Microsoft Research - Seattle, USA)

We give an overview of the model-based testing tool SpecExplorer and the mod-
eling language Spec# used by SpecExplorer.

Spec# is an extension of C# with contracts and high-level data structures
like sets, maps and sequences.

SpecExplorer allows the user to explore the state space of the model, to
generate a finite state machine from the, typically infinite state, model, and to
generate and run tests against an implementation under test. The tool supports
nondeterminism and provides the view of testing a nondeterministic system as
a game between two players. Generated tests are considered as game strategies.

Keywords: Model-based testing, games

Symbolic Test Case Generation for Primitive Recursive
Functions

Burkhart Wolff (ETH Ziirich, CH)

We present a method for the automatic generation of test cases for HOL formulae
containing primitive recursive predicates. These test cases can be used for the
animation of specifications as well as for black-box testing of external programs.

Our method is two-staged: first, the original formula is partitioned into test
cases by transformation into a Horn-clause normal form (HCNF). Second, the
test cases are analyzed for ground instances satisfying the premises of the clauses.
Particular emphasis is put on the control of test hypotheses and test hierarchies
to avoid intractability.

We applied our method to several examples, including AVL-trees and the
red-black tree implementation in the standard library from SML/NJ.

Keywords: Symbolic test case generations, black box testing, theorem proving,
Isabelle/HOL

Joint work of: Wolff, Burkhart; Brucker, Achim

	04371 Abstracts Collection Perspectives of Model-Based Testing --- Dagstuhl Seminar ---
	 Ed Brinksma, Wolfgang Grieskamp and Jan Tretmans

