Testing with Functions as Specifications

Pieter Koopman

Institute for Computer and Information Sciences,
Radboud University NIjmegen, The Netherlands
pieter@cs.ru.nl

Abstract. In this paper we show that mathematical functions and logi-
cal expressions can very well be used as, partial, specifications. Reactive
systems can be modelled by powerful extended state transition systems,
that can be nondeterministic and can handle parameterized and infi-
nite types for the inputs, outputs and states. These specifications can
very concisely and directly be stated in a modern functional program-
ming language. The test tool GAST is able to generate test data based
on these specifications, execute the associated tests, and make a verdict
fully automatically. Test data can be generated fully automatically, but
can also be tailored in various high level ways, if that is desired.
Advantages of this approach are that one specifies properties instead of
instances of these properties, test data are automatically derived instead
of manually, the tests performed are always up to date with the current
specification, and testing is automatic (and hence fast and accurate).

1 Introduction

Testing is still the most used method to judge the quality of software. Human
testing of software is error-prone, dull, and expensive. Hence, many approaches
to automatic software testing are proposed and used. In most approaches a set of
tests is specified by a test engineer. This set of tests can be executed to determine
the current quality of the software. The test execution is preferably automatic,
in order to make it accurate and easy to repeat.

A limited number of automatic test tools use a specification of the systems
as a basis for testing instead of a set of tests that are supposed to verify whether
the implementation is conform to the specification [2—4, 7, 9]. The big advantage
of this approach is that there is no test engineer needed to design tests for the
current specification. Moreover, after a change in the specification there is no
review and update of the specified tests needed.

A number of tailor made languages are used for the system specification by
these automatic test systems. We show that a modern functional programming
language, CLEAN [8], is very well suited as specification language. Advantages
of using an existing high level language are that it is very close to the usual
mathematical specifications, no new language has to be constructed and learned,
all quality checks (like static type checking) are obtained for free, and a rich
collection of libraries is available.

Dagstuhl Seminar Proceedings 04371
Perspectives of Model-Based Testing
http://drops.dagstuhl.de/opus/volltexte/2005/324

In this paper we show how properties of single functions and abstract data
types can be expressed in predicate logic and how they can be expressed in test
systems. The specification of reactive systems by extended state machines is
treated as a second example of this approach.

2 Testing Functions and Abstract Data Types

The relation between input and output of a single function can be conveniently
specified in predicate logic. As a very simple example we will consider the square
root function. This function has a rational number as argument and produces
a rational number. It is tempting to write Vr € IR. \/7_“2 = r as a general spec-
ification of the square root function, but this is incorrect since the square root
is a partial function. It is only defined for non-negative arguments. A correct
specification for the square root function on rational numbers is:

VTGIR.TZO:>\/?2:T

For an actual implementation of the square root function in a programming
language we should also have to cope with rounding errors. In the programming
language one works with a type Real which is a finite approximation of the
rational numbers. Using a finite approximation implies that there can be a some
rounding error in each computation. That is the square of the square root of r
and r should differ at most some small constant §.

VreR.r>0= |\ —r[<6

This property can be used to test the implementation of the square root function
in a programming language by evaluating r > 0 = |\/?2 —r| < ¢ for a finite
number of values: the test data. In a script based test system, like [1], the test
engineer specifies the values that should be used in the test, e.g. 0.0, 1.0, 4.0 and
1,000, 000. In the model based test system GAST, the property is stated directly,
and the generation of test values is done by the test system.

The property for the suare root function can be expressed directly by a func-
tion in CLEAN. The arguments of the function are treated as universally quanti-
fied variables by the test system GAST[3]. The test system provides an operator
— that mimics the implication = from logic. The specification becomes!:

propSqrt :: Real — Property
propSart r = > 0.0 = abs (s*s -r) < delta
where s =sqrt r

delta = 10E-11

This property can be tested by executing the CLEAN program:

! propSqrt is the name of this function. The first line of the function specifies its type:
the function propSqrt as a real as argument and yields an element of the abstract
type Property. As usual in modern functional programming languages, we do not
write parenthesis around function arguments.

Start = test 1000 propSqrt

The function Start in CLEAN is the equivalent of the function main in a C-
program: execution starts here. This invokes 1000 tests of the property propSqrt.
The type of the test data is determined automatically by the arguments of the
tested property, here propSqrt. Hence the test data are reals. Generation of test
data of type real is predefined in GAST: first the predefined border values (0.0,
1.0, and —1.0) are generated followed by a sequence of pseudo random real
values. In this paper we will use the terms sequence and list as synonyms. In
this way r>0 = abs(s*s-r)<delta where s = sqrt r; delta = 10E-11 is tested
for 1000 test values of type real for r. The implementation of sqrt from the
library happens to pass this test. Testing with GAST is quick. On a rather old
windows machine GAST executes about 30, 000 tests of the square root function
each second.

This approach works also for properties with multiple universal quantifiers
of arbitrary (user-defined and/or recursive) data types.

This model based testing approach has two main advantages above script
based testing. The advantage is that the property tested is reflected here much
clearer in the function propSqrt, than in instances of this property for spe-
cific values, e.g. for CLEANTr=1.0 and 4.0 one can state in a script based test
abs(s*s-1.0)<10E-11 && abs(t*t-4.0)<I0E-11 where s = sqrt 1.0; t = sqrt 4.0.
This makes changes of the required property, for instance by an other round-
ing error, easier if that would be required. If the maximum rounding error is
decreased to 10716 by delta = 10E-16, GAST comes promptly with the coun-
terexample 561.628992123927 for the 6" test case. The second advantage of the
model based approach to testing is that it is much easier to adjust the number
of test cases. In a script based approach one has to state each test that has to be
done manually. In the model based approach used in GAST, only the parameter
1000 in the function Start has to be changed. If we are satisfied with 10 test
values we simply specify Start = test 10 propSqrt.

2.1 Testing Abstract Data Types

For properties of functions manipulating abstract data types, ADTs, (like queues,
stacks, search trees etc.), the approach introduced above cannot be used directly.
The result of the manipulating functions is usually an instance of the ADT, and
hence we do not have access to its internal structure. An unattractive way-out
is to state properties and test them inside a particular implementation of the
ADT. An implementation independent, and hence more appealing, solution is to
use the algebraic laws for the ADT as properties to be tested. These algebraic
laws are exactly the kind of general properties needed by a model based test
system.

As an example we consider an abstract data type for sets of characters?. We
assume the following manipulation functions for the ADT Set.

empty : Set
add : Char x Set — Set
remove : Char X Set — Set
contains : Char x Set — Bool

is_empty : Set — Bool

The function empty creates a new set that does not contain any character.
The function add makes sure that the given characters occurs in the set. After
applying the function remove, the given character will not be part of the set.
The predicates contains and is_empty verify whether the given character is part
of the given set, and whether the given set is empty respectively.

Some desirable properties of this type are:

— The empty set is empty: is_empty(empty).

— After adding a character to an empty set, the new set should contain this
character: Ve : Char . contains(c, add(c, empty)).

— In fact the previous property holds for any set, after adding a character to
a set, the set should contain that character:

Ve : Char . Vs : Set . contains(c, add(c, s)).

— After adding and removing a character from an empty set, the obtained set
should be empty: Ve : Char .is_empty(remove(c, (add(c, empty)))).

— Inserting a character ¢ in a set should not change the previous contents of
the set. If a character d was in the set it should remain in the set. That is,
if a character was not in the set, it should only be part of the new set if it
is the inserted character:

Ve : Char.Vs: Set.¥d: Char.
(contains(d, s) V ¢ = d = contains(d, add(c, s))) A
(= (contains(d, s) A c # d) = —contains(d, add(c, s)))

Using a conditional expression we can clarify this example by factoring out
the left-hand-sides of the implications:

Ve : Char .Vs: Set . Vd : Char.

2 Readers familiar with polymorphic types, or (functional) programming might wonder
why we use a set of characters instead of a polymorphic type for sets, a set that
can hold instances of any type. There are two reasons for not using a polymorphic
type. First, the version for a set of characters does not require knowledge about
polymorphic types and hence will be understandable for a broader public. Second,
the version for a specific type is slightly shorter than the polymorphic version. Our
approach works flawless for polymorphic types. Testing should always be done for
a particular instance of the polymorphic type. Usually Booleans or characters are a
good choice.

if contains(d,s) Ve=d
then contains(d, add(c, s)))

else —contains(d, add(c, s)))

These properties can be stated directly in CLEAN:

propSet0 :: Bool
propSet0 ¢ = is_empty empty

propSetl :: Char — Bool
propSetl c = contains ¢ (add c empty)

propSet2 :: Char Set — Bool
propSet2 c s = contains ¢ (add c s)

propSet3 :: Char — Bool
propSet3 ¢ = is_empty (remove c (add c empty))

propSet4 :: Char Set Char — Property
propSet4 c s d
= (contains d s || ¢ = d = contains d (add ¢ s)) A
(~ (contains d s) & c # d = not (contains d (add c s)))

propSet4a :: Char Set Char — Bool
propSet4a ¢ s d
| contains d s || c=4d
= contains d (add c¢ s)
= not (contains d (add c s))

Given an implementation of the ADT Set, GAST is able to test each of these
properties, e.g. by executing Start = test 100 propSet4. Since property 2 and 3
only depend on the finite type of characters, GAST is able to prove or falsify
these properties by systematically trying all possible characters. A property can
be proven by a test system by exhaustive testing of the property. GAST uses a
systematic enumeration of the values of a type to achieve a proof whenever it is
possible.

2.2 Test Data Generation

For basic types like character, the generation of test data is defined in GAST
[5]. Since GAST is a library for CLEAN, it is easy for the test engineer to change
those definitions, if that would be necessary for some particular test purpose.
For user defined data types one should indicate how test data should be
generated. There are three possibilities to determine the test data used by GAST.

— GAST contains a generic [11] algorithm for test data generation[5]. For finite
types this algorithm yields all instances of the type in pseudo random order.
For infinite types, it yields also the instances of the type in a pseudo random

order, but with a very strong small to large bias. The size of a value is de-
termined by the number of constructors it contains. For recursive types, the
generated list of test data will be infinitely long. Due to the lazy evaluation
in the hosting language, only the test data actually used during testing will
be generated. The data generation algorithm prevents duplicates. In order to
use this algorithm for user defined type T, one has only to state derive ggen T
once in the program.

In order ensure termination GAST will execute at most a given number, N,
of tests. If a counterexample is found testing stops immediately. When the
number of different test values is less than IV, the number of executed test
is also smaller than N.

— If for one reason or another, one is not satisfied with the default generic
algorithm, or it cannot be applied, one can always define his own test data
generation. An example where the default algorithm cannot be used is the
generation of binary search trees. Ordinary binary trees causes no troubles
at all, but the ordering required for search trees cannot be handled by the
default algorithm. An other situation where the default algorithm is not
always applicable, is for testing ADTs. The test data generation algorithm
needs information of the type in order to do its job. This implies that the
generation of instances either has to be part of the interface of the ADT,
or one has to generate instances using the functions in the interface. For
the example of the type Set from the previous sections, one can generate
instances by inserting all characters form a list of characters in an empty
set. With some knowledge of functional programming this is expressed as:
ggen {{Set|} x y = map (foldr add empty) (ggen{x[} x y).

Instead of this infinite list of Sets, we can also specify a finite number of sets
that has to be used as test data.

— The two possibilities listed above will create an instance of the generic test
data generation for the indicated type. Whenever GAST needs test data of
that type, this instance will be used to generate the test data.

Using the For-operator, one can specify a list of test data that will be used
in a specific test instead of the test data generated by the generic algorithm.
Suppose that we want to test the first property of sets stated above only for
all lower case characters. This can be done by executing:

Start = test (propSetl For [’a’..’z’]). For a correct implementation the
test result will be proof, the test will succeed for all listed values.

Together these possibilities yield powerful and flexible generation of test data.
For unconstrained data types the instance generated by the generic algorithm is
usually appropriate. See for details.

3 Testing Reactive Systems

For testing reactive systems we assume that the system is an extended state ma-
chine. From Finite State Machines, FSMs, we inherit the synchronous behaviour
of systems [10]. One of our basic assumptions is that the output of the system

is always a sequence of values. Each input yields a, possible empty, sequence of
outputs. After producing this sequence of outputs the system becomes quies-
cent; it waits for a new input. Among other advantages this yields a convenient
notion of no output: the empty sequence. We extend the FSM model in several
directions:

— The state, input and output can be of any (recursive) data type. Obviously,
this does include infinite data types. This does include parameterized data
types for input and output. Hence, we have an extended state machine rather
than a finite state machine.

— It is not required that the specification or implementation of the state ma-
chine is deterministic.

Since we are aiming at black box testing, stating logical properties about the
source state, the input, the target state, and the sequence of responses is no
option: the source and target state of the system are unknown.

To circumvent this problem we specify an extended state machine that will
be used as specification. We require that the observed behaviour of the IUT, Im-
plementation Under Test, is conform to the specified behaviour. The specifying
extended state machine is represented by a function, d¢, that takes the current
state and input as arguments and produces a set of tuples containing the new
state and associated output sequence: State x Input — IP(State x [Output]). This
holds for all types State, Input, and Output. Here we used [X] as notation for a
sequence of elements of type X, and IP(X) as notation for a set of elements of
type X.

The specification function is treated as a partial specification: if for some
s € State and i € Input the set of specified targets state and output is empty,
d7(s,4) = 0, the transition is unspecified. The specification function itself should
be total, i.e. dom(dy) = State x Input.

As an alternative one can specify the state machine by a relation: §, C
State x Input x State x [Output]. Again this holds for all types State, Input,
and Output. Here it is obvious that the transition relation can be partial and
nondetermistic. The transition function can be derived from this relation by
0r(s,i) = {(t,0)|(s,i,t,0) € &, }. The transition relation §, can be derived
straight forwardly from the transition function d¢. Although 5 and d, are equiva-
lent, we usually prefer to work with the transition function ¢ since it can usually
be stated much more compactly than §, in GAST.

We will often identify a machine with its transition function. Actually this
is not quite correct since a complete specification of a machine consists of the
transfer function and the initial state.

In the usual descriptions of (finite) state machines found in the literature, the
state machine is described by an n-tuple. This tuple contains: the set of states,
the set of inputs, the set of outputs, the state transition function and the output
function. The role of the sets of possible states, inputs and outputs, is performed
here by the types in the transition function. Here we use a single transition
function, 6 ¢, specifying the output and the new state, rather than separate state

Nickell[]

it State x 10 — P (State, [I0])

ml(So,Nzckel) {(Ss, [}
mi(So, Dime) = {(S,[])}
ma(Ss, Nickel) = {(S1o,[])}
m1 (S0, Coffee) = {(So, [Coffee])}
my mi(s,i) = 0
i State x 10 — TP(State, [10])
mg(So,Nzckel) {(Ss, [}
m2(So, Dime) = {(S10,[])}
ma(Ss, Nickel) = {(S1o,[])}
m2(Sho, Coffee) = {(So, [Coffee]), (S10,[])}
me ma(s,i) = 0
it State x 10 — IP(State, [I0])
mB(SoaNleel) {(Ss, [}
m3(So, Dime) = {(S10,[])}
ms(Ss, Nickel) = {(S10,[])}
ms(S1o, Coffee) = {(So,[Coffee])}
ms ma(s,i) = {(s, (1)}
ma :: State X 10 — IP(State, [10])
ma(So, Nickel) = {(Ss,[])}
ma(So, Dime) = {(S10,[])}
m4(Ss, Nickel) = {(S1o,[])}
m4(Ss, Dime) = {(S1o, [Nickel])}
m4(Sho, Coffee) = {(So, [Coffee])}
ma(S1o, Nickel) = {(So, [Nickel])}
ma4 (S0, Dime) = {(So, [Dime])}
ma ma(s, i) = {(s, [}
ms 2 Z x 10 — IP(Z,[I0])
ms(n, Nickel) = {(n+5,[])}
o ms(n, Dime) = {(n+ 10,[])}
Button | n>= 10/ l _ ms(n, Coffee) = if n > 10
n-=10; [Coffee] Nickel / n+=5; []
%} . then {(n — 10, [Coffee])}
ms Button | n<10/[] Dime /n+=10; [] else {(n,[])}

Fig. 1. Some coffee vending machines.

transition function and output functions, to link the state transition and the
associated output for nondeterministic state machines.

As illustration we show some state machines modelling coffee vending ma-
chines in figure 1. The global specification of these machines is that it can deliver
coffee after insertion of coins with a value of 10 cent, and pressing the coffee but-
ton. An input is either a nickel, a 5-cent coin, a dime, a 10-cent coin, or pressing
the coffee button. The output is either the return of a coin, or coffee. For sim-
plicity we will use the same type IO for input and output. The state of the first
four machines is the algebraic data type State, it just records the amount of
money inserted. The last machine uses a number as state. The types State and
10 are enumeration types that can be defined as:

State = S() | S5 | SIO
IO = Nickel | Dime | Coffee

In the definition of the transition function m; of these machines we will
follow usual rules of functional programming. Names of specific values, called
constructors, always start with an uppercase character. Names starting with a
lowercase character are variables that match any value. The textual order of
function alternatives indicates their priority, the first alternative that matches
the actual arguments should be applied.

Note the difference between the last alternatives of the transition function.
The alternative m(s,7) = () indicates that noting is defined for all states, s, and
inputs, 7, that are not covered by the alternatives above this alternative. The
alternative m(s,i) = {(s,[])} indicates that for any state, s, and input, 7, not
covered by the preceding alternatives the state, s, should not change and the
output is the the empty list, [], i.e. there is no output at all.

We will discus each of the machines briefly:

my This is the simplest partial specification meeting the informal requirements.
After inserting two nickels, or one dime, and pressing the coffee button, the
machine produces coffee. Note that this is a partial specification, for instance
the effect of the input Coffee in state Sy is undefined.

mo This machine is very similar to m1, but on input Coffee in state Syg, it can
either produce coffee and go to state Sy, or produce nothing and stay in
state S1g9. Hence, this machine is nondeterministic.

m3 The unlabelled transitions mean: on any other input, stay in this state and
produce the empty output ([]). This is a total specification, since a transition
is defined for all possible states and inputs: Vs € State . Vi€ 10 . mg3(s,4) # 0.

my This is also a total specification. It states that coins should be returned if
the value of the inserted money becomes higher than 10 cents.

ms This machine uses a single integer as state to record the amount of money
inserted. It does not return money if the amount of money exceeds 10, but
remembers the total amount of money. For example: after inserting two
dimes, it will be able to produce two coffee. Note that this machine has
infinitely many states. Only states where n is a non-negative multiple of 5
can be reached.

Note that the last machine in figure 1 is a state machine rather than a finite state
machine. The state is an integer and hence there are infinitely many possible
values for the state. In a straightforward implementation of this machine in
GAST one will use the type Int to represent the state. This implies that there
are only 232 possible values for the state. If this number of states is considered
as to small, one should use the type Bigum to represent the state, this type has
not an upperbound on the size of the numbers.

3.1 Implementations under test

As stated above, the assumption is that also the implementation under test is an
extended state machine. Since the IUT is a black box, its state is invisible. We
assume that the IUT is an object with a method apply. This method takes an
input as argument and produces a sequence of outputs. The type of this method
is: apply : Input — [Output].

In contrast to the specification, the implementation should be input enabled:
the result of any input in any reachable state should be specified. In terms of the
transition function this is Vs € State . Vi € Input.ds(s,i) # (). The motivation for
this requirement is that an IUT usually cannot prevent that inputs are applied. It
is perfectly acceptable if some inputs in specific states bring the implementation
in an error state.

In the examples above, a coffee vending machine cannot prevent that a user
presses a button or inserts a coin in any state. This implies that m; and mo
cannot be a correct implementation. In these machines, for instance the effect of
applying the input Coffee, pressing the coffee button, in state Sy is undefined.
The machines mgs, m4 and ms are input enabled, and hence can be used as IUT.

The implementation can be in any programming language, it is only required
that Gast can provide an input to the IUT and observe the associated output.

3.2 Conformance

The conformance between an implementation and a specification is very similar
to the ioco relation [9] for labelled transition systems, LTSs.

Informally conformance between a specification spec and an implementation
imp is defined as:

An output of the IUT to some input ¢ is said to be conform to the
specification in state s, if the specification defines something for this
state and input, d¢(s,?) # 0, and the observed output is allowed by the
specification: imp.apply(i) € {o € [Output] | 3t € State . (t,0) € §;(s,1)}.

For situations where the specification does not specify anything, spec(s,i) = 0,
any behaviour of the IUT is allowed. These transitions are excluded from the tests
by GAST, since the specification cannot be used to determine the conformance
after such a transition.

Since we do not know the state of the IUT (the assumption is that it is a black
box), we can only use the notion of conformance introduced above in the start

10

state. Only for the first transition the source state of the IUT is known: the IUT is
in its initial state. To extend the notion of conformance to other states we intro-
duce the notion of trace. A trace is a sequence of input output pairs, where there
is a single state that connects the input output pairs. Some traces for m; above
are: [, ((Nickel,[])], [(Nickel, 1), (Nickel, [])], [(Nickel, []), (Nickel, []), (Coffee,
[Coffee])], [(Nickel,[]), (Nickel,[]), (Coffee, [Coffee]), (Nickel,[])], [(Dime,][])],
and [(Dime,[]), (Coffee, [Coffee])]. Some sequences of input-output pairs that
are not traces of my are: [(Nickel,[]), (Dime,[])], and [(Dime, [Coffee])].

The notion of conformance introduced above is extended to any state reach-
able by a trace of the specification.

In the examples in figure 1 one can always determine the target state of
the specification if the source state and the input/output pair is known. In
general this is not necessary: nondeterminism is not restricted to observable
nondeterminism. If for some source state s and input ¢ in a transition function
0y we have (t1,01) € 05(s,1) and (t2,02) € 6¢(s,4) and 01 = 09, it is not required
that t; = t9. In terms of the State-chart: there can exist several transitions
from a given state that have identical input/output labels but a different target
state. Machine mo has observable nondeterminism: in state Sig there are two
transitions possible for the input Coffee. When the observed output is empty
the machine stays in state S1g, with the output [Coffee] the target state is Sp.

A famous example of a real nondeterministic machine is a vending machine
that can change its state after a Bang. The usual behaviour is that the user
select the wanted product and then inserts a Coin. If there is a Bang between
those inputs, the vending machine is allowed to give any desired product when
a Coin is inserted. Since the output for all transitions with a Bang as input is
identical, the empty output, it is impossible to determine the current state after
a transition labelled Bang/[] form state Scofee Or S7eq-

The types used in the specification of this machine are:

VendingState = Idle | Scofee | Stea
Input = CoffeeButton | TeaButton | Coin | Bang
Output = Coffee | Tea

In figure 2 the specification of this nondeterministic machine is given in the same
format as figure 1.

Testing for Conformance The testing algorithm takes a sequence of inputs
as argument. The specification and implementation start in their initial state.
As long as the specification specifies transitions for the current state and input,
spec(s, i) # (), the next input is applied to the IUT. If the response is conform to
the specified behaviour, testing continues with the next input element and the
new state of the specification, otherwise an error is found. If nothing is specified
for the current state and input, testing of this input sequence is terminated. The
associated test result is pass. If the end of the input sequence is reached the
implementation has been successfully tested with this input sequence.

11

Bang/[]
[1/6ueg

spec :: VendingState x Input — TP (State, [Output])
spec(Idle, CoffeeButton) = {(Scogee, [])}

spec(Idle, TeaButton) = {(Stea,[])}
spec(Stea; Bang) = {(Stea; [1), (Scogee; [1)}
spec(Scofec, Bang) = {(Stea; [1); (Scogee, [1)}
spec(Stea, Coin) = {(Idle,[Tea])}
spec(Scopee, Bang) = {(Idle, [Coffee])}
spec(s,i) = 0

Fig. 2. A nondeterministic vending machine.

We have seen that m; and ms in figure 1 cannot be implementations since
they are not input enabled. The machines mg, m4 and ms are correct implemen-
tations of mi. Any trace produced by m; is also a trace of the other machines.
Note that the implementations do have behaviour that is not covered by the
specification.

The machines mgs, m4 and ms are also correct implementations of mo, al-
though the response [] to the input Coffee in S1p will never occur. According to
the conformance relation this is not necessary. It is sufficient that the behaviour
for some specified input after a trace is allowed by the specification.

Machine my is not a correct implementation of ms. After the inputs [Dime,
Dime] the machine mg only allows the output [], while m4 produces [Dime].
The same input sequence shows that mg is not a correct implementation of my.

Although ms5 behaves correct to mg as specification for the input sequence
[Dime, Dime], it is not a correct implementation. This is shown for instance by
the input sequence [Dime, Dime, Coffee, Coffee]. For this input ms produces a
second cup of coffee, while m3 only allows an empty output.

Finally, ms is not a correct implementation of my, nor is m4 an implemen-
tation of my. This is shown for instance by the input sequence [Dime, Dime].

For the vending machine of figure 2 the implementation that always change
state on a Bang as well as the implementation that never change state on a Bang
are correct implementations. Since this is a partial specification also a machine
that produces Coffee on a Bang in the Idle state can be a correct implementation.

12

For the states Scogee and Ste, however, the response on the input Bang is
defined. This implies that any implementation that produces Coffee on a Bang
in one of these states is not conform the specification.

Representation of specification functions in Gast In order to test ma-
chines in GAST, the specifying function is expressed in the functional program-
ming language CLEAN. The resulting set of pairs is represented by a list of pairs
[4]. The CLEAN compiler will check the specification on matters like type cor-
rectness and proper use of identifiers.

As example we show the representation of mo in CLEAN. First we define the
enumeration types State and I0. The function m2 is the representation of the
machine mo from figure 1.

:: State = S0 | S5 | S10
:: I0 = Nickel | Dime | Coffee

m2 :: State I0 — [(State,[IO0])]

m2 SO Nickel = [(S5 ,[])]

m2 SO Dime = [(810,[])]

m2 S5 Nickel = [(S10,[])]

m2 S10 Coffee = [(SO ,[Coffee |), (S10,[])]
(]

m2 s i =

Using higher order functions, specifications can be manipulated. As a very
simple example we list the function enableInput, that enables input in any state.
This function takes a machine m as argument, and yields an input enabled version
of m. If no transition is specified for some state and input, it adds the transition
to the same state with an empty output sequence. Since this is a polymorphic
function, it will work for any specification using arbitrary types for state, input
and output.
enableInput :: (s i— [(s,[0])]) = (s i—[(s,[0])])
enableInput m

=)Asi=casems i of

[} =1[(s,[D]

1 =1

Applying this function to m2 yields a specification that is equivalent to ms.

3.3 Test Data Generation

The conformance checking algorithm discussed above works fine, but requires
that a list of inputs is given as argument®. This leaves us with the problem
of generating proper input sequences. There are several algorithms predefined
in GAST. Since GAST is an open library, it easy to add user defined input se-
quence generation, if that would be desired. We discuss some implemented input
generation algorithms briefly.

3 Due to the lazy evaluation, only the inputs actually needed by the test algorithm
are generated. This allows us to work with potentially infinite lists of inputs.

13

— The simplest way to generate input sequences is by using the generic gen-
eration of data of type [Input], as discussed in section 2.2. There are two
drawbacks for this simple approach. First, the algorithm does not look at
the specification, it might generate many sequences that are truncated pretty
soon for a partial specification. Second, the strong bias to short sequences
in the beginning of the input generation causes that it takes a while before
testing reaches states that require many steps from the initial state.

— A more sophisticated algorithm looks at the inputs allowed in the current
state of the specification and chooses one of them in a pseudo random order.
This avoids inputs that are undefined by the specification and makes long
input sequences that penetrates far in the state space from the beginning.
Instead of the whole specification, on can also use a partial specification as
a model of special behaviour to be tested.

— The previous algorithm can be improved for nondeterministic machines by
looking at the response of the IUT. Instead of generating a sequence of inputs
that can be accepted by the TUT, this algorithm looks at the response of the
IUT in order to determine the transition chosen, and hence the current state.
For deterministic systems this is not necessary, but for nondeterministic
systems this really helps to keep the state of the specification, and hence the
input generation, and the state of the IUT synchronized. This is known as
on the fly testing in the literature [9].

— For finite state machines one can do still better. From FSM testing literature
it is known that: if we assume that the implementation has no more states
than the implementation and we test each transition in the specification
(on output and target state), we prove the correctness of the implementa-
tion. GAST is able to generate a finite number of finite sequences of inputs
that covers each transition and verifies the final state by a given identifying
sequence.

The machines given in figure 1 are so small that each of these algorithms
indicated the errors very soon if the implementation is incorrect. The last algo-
rithm can be used to prove that ms3 and my4 are correct implementations of m;.
The last algorithm can not be used for ms since it has infinitely many states.

4 Discussion

In this paper we have shown that functions can be used very well as specifications,
and that these specifications are a very suited basis for automatic testing. The
functional programming language CLEAN is a very good carrier of the functions
as specifications. Using generics and lazy evaluation, test data can be generated
in a very convenient and flexible way. Using higher order functions, specifications
can be manipulated very easily.

Specification based testing has three advantages over test script based testing:

— One specifies the property that has to be obeyed by the implementation,
instead of some instances of this property, i.e. a higher level of abstraction.

14

— The test instances are derived automatically instead of manually.

— After changes in the specification, the automatically generated test cases are
always consistent with the current specification. For manually derived test
cases, one has to check their validity after each change in the specification.

The proposed test method for reactive systems is successfully applied in sev-
eral cases. For instance, a commercial controller of an embedded system written
in C4++ was tested based on a specification by a finite state machine of about
300 states. In another application a Smart Card Applet in JAVA was tested
with a specification based on parameterized inputs, outputs and state [6]. Here
the specifying state machine and the applet were developed incrementally and
synchronously. Automatic testing based on the current specification appears to
be very convenient and effectively to check the conformance between the speci-
fication and the implementation. In both situations GAST spotted conformance
issues much faster and more accurately than manual tests could have done.

5 More Information

More information can be obtained from:

— The web-site of GAST: www.cs.ru.nl/~pieter or the web-site of CLEAN:
www.cs.ru.nl/~clean.
— Sending an email to pieter@cs.ru.nl.

An old version of this library is incorporated in version 2.1 of CLEAN.

Acknowledgements

We thank Rinus Plasmeijer and Jan Tretmans for useful feedback that helped
to improve this paper.

References

1. See www.junit.org. Similar tools exists for many programming languages.

2. Bernot, G., Gaudel, M. C., and Marre, B. Software testing based on formal specifi-
cations: a theory and a tool, Software Engineering Journal, Nov. 1991, pp387—405.

3. P. Koopman, A. Alimarine, J. Tretmans and R. Plasmeijer. GAST: Generic Auto-
mated Software Testing. In R. Pena, IFL 2002, LNCS 2670, pp 84-100, 2002.

4. P. Koopman and R. Plasmeijer. Testing reactive systems with GAST. In S. Gilmore,
Trends in Functional Programming 4, pp 111-129, 2004.

5. P. Koopman and R. Plasmeijer. Generic Generation of Elements of Types Draft
proceedings TFP’05, see www.cs.ru.nl/"marko/tfp05, 2005.

6. A. van Weelden et al: On-the-Fly Formal Testing of a Smart Card Applet. SEC
2005. Or technical report NIII-R0403, at www.cs.ru.nl/research/reports.

7. K. Claessen, J. Hughes. QuickCheck: A lightweight Tool for Random
Testing of Haskell Programs. ICFP, ACM, pp 268-279, 2000. See also
www.cs.chalmers.se/ rjmh/QuickCheck.

15

8. R. Plasmeijer, M van Eekelen. Clean language report version 2.1.
www.cs.ru.nl/"clean.
9. J. Tretmans. Testing Concurrent Systems: A Formal Approach. In J. Baeten and
S. Mauw, editors, CONCUR’99 — 10", LNCS 1664, pp 46—65, 1999.
10. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
— a survey. Proc. IEEE, 84(8):1090-1126, 1996.
11. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean. In:
Arts, Th., Mohnen M.: IFL 2001, LNCS 2312, pp 168-185, 2002.

16

