
Querying Semantic Web Resources Using
TRIPLE Views

Zoltán Miklós1, Gustaf Neumann1, Uwe Zdun1, and Michael Sintek2

1 Vienna University of Economics, Department for Information Systems
{zoltan.miklos, gustaf.neumann, uwe.zdun}@wu-wien.ac.at

2 DFKI GmbH, Kaiserslautern, sintek@dfki.de

Abstract. Resources on the Semantic Web are described by metadata
related to some formal or informal ontology. It is a common situation that
a casual user does not know domain ontology in detail. This makes it dif-
ficult to formulate queries in this ontology to find the relevant resources.
Users consider the resources in their specific context, so the most straight-
forward solution is to formulate queries in an ontology that corresponds
to a user-specific view. We present an approach based on multiple views,
expressed in simple ontologies. This allows a user to query heterogeneous
data repositories in terms of multiple, relatively simple view ontologies.
We present how ontology developers can define such views on ontologies
and the corresponding mapping rules. These ontologies are represented
in Semantic Web ontology languages, like RDFS, DAML+OIL or OWL.
We present our approach with examples from the e-learning domain us-
ing the Semantic Web query and transformation language TRIPLE.

1 Introduction

One of the main motivations for the development of the Semantic Web is that
the expansion of the World Wide Web makes it increasingly difficult for users to
obtain relevant information. On the Semantic Web resources are annotated with
metadata related to some ontology. Ontologies are formal explicit specifications
of a shared conceptualization. Ontologies play a central role on the Semantic
Web because they represent the relations among semantic information, hence
all query or reasoning services have to be based on ontologies. Several ontology
languages have been proposed and investigated recently, such as RDFS [11],
DAML+OIL [12], OWL[13].

There are several problems which make the querying for Semantic Web re-
sources difficult:

– User Perspective: Users who are interested to find resources formulate queries
related to some ontology. The user’s (or their agent’s) view of a domain is
often different than a domain expert’s view. On the other hand, users are
expected be be familiar with the domain ontology to efficiently formulate
queries. Users could avoid to learn the domain ontology if they could formu-
late their queries in an ontology that corresponds to their domain-specific
view.

Dagstuhl Seminar Proceedings 04391
Semantic Interoperability and Integration
http://drops.dagstuhl.de/opus/volltexte/2005/47



– Application Integration: In the current state of the Semantic Web, ontologies
are developed from scratch, therefore many ontologies describing the same
domain exist. It is also widely believed that in the future development of the
Semantic Web this ontology heterogeneity will remain and multiple ontolo-
gies for any particular domain will coexist. Applications face the problem to
obtain information from sources which are described by different, indepen-
dently developed ontologies.

– Performance Overhead: In many Semantic Web domains large or very large
data sets exists. Queries can produce a considerable performance overhead.
Problem-specific views of the resources could potentially minimize this prob-
lem.

– Lack of formal definitions: In the domain of e-learning, brokerage platforms
(such as UNIVERSAL [18]) and RDF-based peer-to-peer networks (such as
Edutella [19]) were developed, which act as a common mediators to access
multiple data sources. Although during the last decade various standardized
vocabularies for metadata were developed (e.g. LOM, SCORM), they are
mostly informally defined and do not allow deeper reasoning. Furthermore, it
is currently rather hopeless to define in this domain a large common ontology
that covers aspects like the teaching domain, didactic goals, technical aspects
of the delivery system, and so on.

In this paper, we propose an approach to overcome the problem of hetero-
geneous ontologies. Rather than defining a large single ontology, we propose to
distinguish one or more “source ontologies” and a number of “target ontologies”.
The source ontologies describe the resource instances and are usually rather com-
plex. The target ontologies individually cover certain aspects of the application
domain. A user who wants to query the heterogeneous data sources can formu-
late queries in terms of (multiple) relatively simple target ontologies. A view
of the resources, described in the source ontologies, is created. In the view the
resources are expressed with the target ontologies.

For our implementation we used the Semantic Web query and transformation
language TRIPLE [2]. TRIPLE does not limit ourselves to use the same ontology
language for the used ontologies. We specify the view mappings with description
logic. We demonstrate that a specific class of mappings which is highly relevant
in practical situations can be expressed in TRIPLE.

We present our approach firstly using an introductory example from the e-
learning domain in Section 2. In Section 3 we describe our solution. In Section
4 we give a short overview of the language TRIPLE. Section 5 describes our
approach using the previously introduced scenario in TRIPLE. In Section 6 we
give a description Logic specification for our mappings. Section 7 provides related
work and Section 8 concludes the paper with our plans for future research.

2 Example: E-learning Scenario

In this section we describe a typical e-learning scenario in the Semantic Web
context that we use for the examples in this paper. Semantic Web technologies

2



can improve the efficiency of e-learning in several ways. In our example we use
ontologies to support finding the relevant resources. These include online courses,
online books, different kinds of exercises, etc.

The Learn@WU system (http://learn.wu-wien.ac.at/) is an e-learning
system that supports these kinds of resources and presents them on the Web.
A subsystem of Learn@WU allows students to interactively try out exercises in
tests which are randomly chosen from the learning resources.

Students are not aware of the learning resource ontology and are not inter-
ested how e-learning experts organize the learning resources, instead they have
their own view of exercises. The interactive test system only requires this limited
view of exercises, not the whole learning resource ontology.

Learning Resource

subclassOf

Book

subclassOf

subclassOf

Exercise

Multiple Choice QuestionYesNoQuestionFillInQuestion

subclassOf

OpenQuestion

subclassOf

Learning Progress Test

subclassOf

Non-Auto

subclassOf

Auto

subclassOf

Non Mark ReaderMark Reader

subclassOf

Learning Resource Ontology (Excerpt) Exercise Type Ontology (Excerpt)

subClassOf
subClassOf

subClassOf
subclassOf

subClassOf

subClassOf

Fig. 1. The learning resource ontology, the exercise ontology and possible mappings

An excerpt of the learning resource ontology is depicted on the left hand side
of Figure 1. The ontology of exercise types, as depicted on the right hand side
of the figure, is a typical smaller ontology that only consists of a part of the
learning resources in a particular context. There is a set of equivalences between
these two ontologies which have to be considered during a mapping, as depicted
by dotted lines in the figure.

3 Creating Views in a Target Ontology

Our approach relies on the distinction between two kinds of ontologies, source
ontologies and target ontologies. Source ontologies are developed by domain ex-
perts for representing the Semantic Web resources in a particular domain. In
contrast, target ontologies reflect a user’s perspective or a domain-specific or
problem-specific view on Semantic Web resources. Note that this distinction be-
tween source and taget ontologies is only conceptual; of course, any ontology can
be a source ontology or target ontology as well.

Throughout this paper we use the following terms:

3



Target ontology: This is an ontology that covers a small aspect of an applica-
tion domain. Examples of a target ontology from the e-learning domain are
various kinds of online examples that can be automatically evaluated or are
suited for a mark reader. Another example is a target ontology that contains
the supported formats suitable for various delivery machines.

Source ontology: A (pre-existing) ontology that was developed specifically for
a certain application.

Data repository: The metadata for the resources is defined in terms of some
source ontologies. There might be multiple repositories using the same source
ontology.

View model and mapping model: The rules to map the resources in the
source ontologies to one or more target ontologies. The mapping model is
specific to its source ontologies and target ontologies. Different view models
can be defined on top of a mapping.

View: A set of resources, expressed in the target ontology. The view is created
according to a mapping model and a view model.

Query: A user can use a view to query resources using the target ontologies
solely.

Mapping1

Classification(R1, SO1)

Repository R1

lr1, 
lr2,
lr3, 
...

lr1[type->wuw:yesNoQuestion].
lr2[type->wuw:FillInQuestion].
lr3[type->wuw:MultipleChoiceQuestion].
...

Classification(R1, TO1)

lr1[type->exty:MarkReader]. 
lr2[type->exty:Interactive].
lr3[type->exty:MarkReader].
...

Source Ontology SO1

Target Ontology TO1

View(SO1, TO1, R1, Mapping1) ClientsQuery

Result

wuw

SO1

TO1

exty

Fig. 2. Mapping Ontologies into Views

The ontology editors provide a set of mapping rules between the resources
and the properties of the resources in the source ontologies and application on-
tologies. When the view rules are applied using the involved ontologies, mapping
rules, and instance resources, a context-specific view, expressed in the applica-
tion ontologies, is created. Thus clients can query the view using the application

4



Classification(R1, SO1)

Repository 
R1

Repository 
R2

Classification(R2, SO1)

Repository 
R3

Classification(R3, SO2)

Classification(R1, TO1)

Classification(R2, TO1)

Classification(R3, TO1)
TO1

Mapping 1

TO1

Mapping 2

SO2

SO1

Repository 
R4

Classification(R4, SO4)

Classification(R4, TO2)

TO2

Mapping 3

SO3

View

Query
&

Fig. 3. View with Multiple Ontologies

ontology only, without further knowledge of the more complex source ontologies.
This architecture is depicted in Figure 2.

More than two ontologies can also be involved in a view. We depicted this
situation in Figure 3. In the examples of Section 5 we use two ontologies only
for reasons of simplicity and brevity. The examples use the language TRIPLE
which is briefly explained in the next section.

4 Overview of TRIPLE

TRIPLE [2] is a rule language for the Semantic Web which is based on Horn logic
and borrows many basic features from F-Logic [15] but is especially designed for
querying and transforming RDF models.

TRIPLE can be viewed as a successor of SiLRI (Simple Logic-based RDF
Interpreter [16]). One of the most important differences to F-Logic and SiLRI
is that TRIPLE does not have fixed semantics for object-oriented features like
classes and inheritance. Its modular architecture allows such features to be eas-
ily defined for different object-oriented and other data models like UML, Topic
Maps, or RDF Schema. Description logics extensions of RDF (Schema) like OIL,
DAML+OIL, and OWL that cannot be fully handled by Horn logic are provided
as modules that interact with a description logic classifier, e.g. FaCT [17], re-
sulting in a hybrid rule language.

Namespaces and Resources TRIPLE has special support for namespaces and re-
source identifiers. Namespaces are declared via clause-like constructs of the form

5



nsabbrev := namespace., e.g.: rdf := ”http://www.w3.org/...rdf-syntax-ns#”.
Resources are written as nsabbrev:name, where nsabbrev is a namespace abbrevi-
ation and name is the local name of the resource. Resource abbreviations can be
introduced analogously to namespace abbreviations, e.g. isa := rdfs:subClassOf.

Statements and Molecules Inspired by F-Logic object syntax, an RDF statement
(triple) is written as: subject[predicate → object]. Several statements with the
same subject can be abbreviated as “molecules”:
stefan[hasAge → 33; isMarried → yes; . . .].
RDF statements (and molecules) can be nested, e.g.:
stefan[marriedTo → birgit[hasAge → 32]].

Models RDF models, i.e., sets of statements, are made explicit in TRIPLE
(“first class citizens”).3 Statements, molecules, and also Horn atoms that are
true in a specific model are written as atom@model (similar to Flora-2 module
syntax), where atom is a statement, molecule, or Horn atom and model is a
model specification (i.e., a resource denoting a model), e.g.: michael[hasAge →
35]@factsAboutDFKI.

TRIPLE also allows Skolem functions as model specifications. Skolem func-
tions can be used to transform one model (or several models) into a new one
when used in rules (e.g., for ontology mapping/integration):
O[P → Q]@sf(m1, X, Y ) ←− . . ..

If all (or many) statements/molecules or Horn atoms in a formula (see Section
4) are from one model, the following abbreviation can be used: formula@model.
All statements/molecules and Horn atoms in formula without an explicit model
specification are implicitly suffixed with @model.

Logical Formulae TRIPLE uses the usual set of connectives and quantifiers
for building formulae from statements/molecules and Horn atoms, i.e., ∧, ∨, ¬,
∀, ∃, etc.4 All variables must be introduced via quantifiers, therefore marking
them is not necessary (i.e., TRIPLE does not require variables to start with an
uppercase letter as in Prolog).

Clauses and Blocks A TRIPLE clause is either a fact or a rule. Rule heads may
only contain conjunctions of molecules and Horn atoms and must not contain (ex-
plicitly or implicitly) any disjunctive or negated expressions. To assert that a set
of clauses is true in a specific model, a model block is used: @model {clauses}, or,
in case the model specification is parameterized: ∀ Mdl @model(Mdl) {clauses}.

5 Examples for Querying Using TRIPLE Views

In this section we provide examples for resolving typical problem scenarios in
TRIPLE using the view concepts presented in Section 3.
3 Note that the notion of model in RDF does not coincide with its use in (mathemat-

ical) logics.
4 For TRIPLE programs in plain ASCII syntax, the symbols AND, OR, NOT,

FORALL, EXISTS, <-, ->, etc. are used.

6



5.1 Simple Views

At first, we have to define the ontologies under our considerations. The excerpt
of the Learn@WU ontology for learning resources, as introduced in Section 2
can be defined by the following TRIPLE statements:

@wuw:ont {
wuw:LearningResource[rdfs:subClassOf -> rdfs:Resource].
wuw:Book[rdfs:subClassOf -> wuw:LearningResource].
wuw:Exercise[rdfs:subClassOf -> wuw:LearningResource].
wuw:OpenQuestion[rdfs:subClassOf -> wuw:Exercise].
wuw:FillInQuestion[rdfs:subClassOf -> wuw:Exercise].
wuw:YesNoQuestion[rdfs:subClassOf -> wuw:Exercise].
wuw:MultipleChoiceQuestion[rdfs:subClassOf -> wuw:Exercise].
...

}

In this code we define a class hierarchy of learning resources which are ex-
pressed in a TRIPLE model wuw:ont. We assume that the RDF Schema [11]
semantics have been defined before (see appendix).

The RDF Schema rules define the subClassOf and type relationships used
in the ontologies below. Using the type rules we can derive resources from the
learning resource ontology:

question1_1[rdf:type -> wuw:OpenQuestion; wuw:difficulty -> low].
question1_2[rdf:type -> wuw:FillInQuestion;

wuw:difficulty -> medium].
question1_3[rdf:type -> wuw:YesNoQuestion; wuw:difficulty -> high].
question2_1[rdf:type -> wuw:YesNoQuestion; wuw:difficulty -> low].
question2_2[rdf:type -> wuw:MultipleChoiceQuestion;

wuw:difficulty -> medium].
question3_1[rdf:type -> wuw:MultipleChoiceQuestion;

wuw:difficulty -> high].
book1[rdf:type -> wuw:Book].
...

Now consider there is a second ontology which defines exercise types and
which is used by the web test subsystem of Lean@WU. This ontology is much
simpler than the learning resource ontology and uses less resources and prop-
erties. For instance, all difficulty properties and all resources that are not
exercises (like the book resource in the above example) can be omitted. The
ontology is expressed as a second triple model:

@exty:ont {
exty:LearningProgressTest[rdfs:subClassOf -> rdfs:Resource].

7



exty:Auto[rdfs:subClassOf -> exty:LearningProgressTest].
exty:NonAuto[rdfs:subClassOf -> exty:LearningProgressTest].
exty:MarkReader[rdfs:subClassOf -> exty:Auto].
exty:NonMarkReader[rdfs:subClassOf -> exty:Auto].

}

The concept of integrating these two ontologies is to use the wuw ontology
as source ontology and the exty ontology as target ontology. Clients only use
views expressed in the target ontology for the queries. We first define a mapping
between the two ontologies and then define view models based on the mapping.
A very simple mapping only uses the subClassOf relationship to model the
equivalence relationships between the two ontologies. The mapping is placed in
separate mapping model:

@exty:mappings {
wuw:MultipleChoiceQuestion[rdfs:subClassOf -> exty:MarkReader].
wuw:YesNoQuestion[rdfs:subClassOf -> exty:MarkReader].
wuw:FillInQuestion[rdfs:subClassOf -> exty:Auto].
wuw:Exercise[rdfs:subClassOf -> exty:LearningProgressTest].

}

For any given set of models, we can now – in a next step – define the rules for
creating a view in a view model:

FORALL Ont1, Ont2, Mappings @view(Ont1, Ont2, Mappings) {
FORALL R,P,O R[P -> O] <- R[P -> O]@Ont2.
FORALL R,P,O R[P -> O] <-

R[P -> O]@rdfschema(view(Ont1, Ont2, Mappings)).
FORALL R,C1,C2 R[rdf:type -> C1]

R[rdf:type -> C2]@rdfschema(Ont1) AND
C2[rdfs:subClassOf -> C1]@Mappings.

}

The view model is parameterized, and takes two ontologies and a mapping
between the ontologies as parameters. In this example Ont1 is the source and
Ont2 the target ontology. The first rules states that everything in Ont2 holds.
Then, in the second rule, the RDF schema semantics, defined before, are applied
to the view model. Finally we use the mapping model with its subClassOf
relationships to create a view of the two ontologies according to the mapping.

Note that the definitions above are typically implemented by different roles,
such as providers of ontologies and providers of view models. The actual resources
are usually produced by the users of the system. The users (or the user tools
respectively) are usually interested in creating queries as well, but here it is
important that it is possible to generate queries with very simple means. For

8



instance, user might compose queries in GUI-based tools. The view concept
helps us to limit the query syntax in such a way, and yet produce usable and
user-customizable results.

For instance, a typical query using the above ontology view definition might
be that the web test system requires those resources that are of type MarkReader
(i.e. these are those exercises that it can automatically test in web forms). The
system simply has to query the view for resources of the particular type and
gets all resources in the view that are exercises of type MarkReader. Note that
the simplicity of the query is due to the above view definition.

FORALL R <- (R[rdf:type -> exty:MarkReader])@view(wuw:ont,
exty:ont, exty:mappings).

The output of the TRIPLE engine for the example above is:

R = question3_1
R = question2_2
R = question2_1
R = question1_3

5.2 Constraining the Views with Property Values

As already motivated in Section 2, the simple mapping rules used in the previous
section might be not enough. Sensible views often have to be created under con-
sideration of the current values of triples, for instance, property values. Consider
a simple example as an extension of the scenario in the previous section: the web
test system should create a shuffled mix from the set of exercises that are the
basis for test questions. Further consider the test questions are defined as being
either of type FillInQuestion, YesNoQuestion, or MultipleChoiceQuestion,
and are not of the difficulty low. Moreover, the web test system should only use
those questions from the result set that it can test automatically in web forms
(i.e. those of type MarkReader).

We have to use a more complex inclusion rule in the mapping to implement
the definition of test questions:

@exty:mappings {
...
FORALL R R[rdf:type -> exty:TestQuestion] <-

((R[rdf:type -> wuw:MultipleChoiceQuestion] OR
R[rdf:type -> wuw:YesNoQuestion] OR
R[rdf:type -> wuw:FillInQuestion]) AND

(R[wuw:difficulty -> medium] OR
R[wuw:difficulty -> high]))@rdfschema(wuw:ont).

}

9



Note that the exty:TestQuestion definition is simply composed from AND
and OR statements. That means it can easily be created, say, by a tool that allows
users to graphically compose ontologies.

The query for the view created with this mapping again is quite simple. It
simply adds the new test question type definition to the previous MarkReader
query by composition with AND:

FORALL R <- (R[rdf:type -> exty:TestQuestion]
AND R[rdf:type -> exty:MarkReader])@view(wuw:ont,

exty:ont, exty:mappings).

The output of the Triple engine for this query is:

R = question2_2
R = question3_1
R = question1_3

6 Description Logic Specification of Mappings

An interesting class of mappings are those that can be specified with a standard
description logic like SHIQ [9] or its Semantic Web variants (OIL, DAML+OIL,
OWL).

The advantage of this approach is that users can create relatively interesting
mappings with a simple point-and-click interface, since description logic expres-
sions do not use any variables and therefore only class and property (role) names
plus a small set of connectives (conjunction, disjunction, negation, . . . ) have to
be dealt with.

The mappings are specified by connecting class expressions of the source
(OntS) and target (OntT ) ontology with the usual implication:

COntS v COntT

The most simple case is where COntS and COntT are simple class names
(“primitive concepts”), e.g.:

wuw:MultipleChoiceQuestion v exty:MarkReader

The corresponding RDFS/OWL expression (in TRIPLE syntax) uses the
rdfs:subClassOf to relate the two classes:

wuw:MultipleChoiceQuestion[rdfs:subClassOf -> exty:MarkReader].

The view definition @view(Ont1, Ont2, Mappings) contains the following
rule to map instances from COntS to COntT :

10



FORALL R,C1,C2 R[rdf:type -> C2] <-
R[rdf:type -> C1]@rdfschema(Ont1) AND
C1[rdfs:subClassOf -> C2]@Mappings.

For the case of complex class expressions, it is much simpler to create TRIPLE
rules (via an automatic mapping) instead of writing rules that handle these class
expressions directly.5 For expressions of the form COntS v COntT , COntS be-
comes the body and COntT becomes the head of a TRIPLE rule:

TRIPLE(COntT ) ← TRIPLE(COntS ).

As a consequence, COntT can only be a very simple class expression (i.e., no
disjunction or negation is allowed).

As the following example shows, the mapping from the description logic ex-
pression to the corresponding TRIPLE rule is straight forward:

(wuw:MultipleChoiceQuestion
t wuw:YesNoQuestion
t wuw:FillInQuestion)

u ∃wuw:difficulty.{middle, high}
v exty:TestQuestion

FORALL R R[rdf:type -> exty:TestQuestion] <-
((R[rdf:type -> wuw:MultipleChoiceQuestion] OR

R[rdf:type -> wuw:YesNoQuestion] OR
R[rdf:type -> wuw:FillInQuestion]) AND

(R[wuw:difficulty -> medium] OR
R[wuw:difficulty -> high]))@rdfschema(wuw:ont).

7 Related Work

Our work follows the mediator architecture suggested by Wiederhold [10]. He
addresses the problem in the database context, that for end users the lack of
abstraction and the need to understand the representation of data hinders the
access of the available data. An other motivation for the mediator architecture
was the problem of combining information from multiple databases or other
information sources, where the representation and is different. In the mediator
architecture a mediator plays the role of a virtual database: users might formulate
the queries as if the data would be available in a mediator database and translates
the queries to the data sources. The mediator synthesizes the answers from the
sources and returns the answer to the user. In our approach it is possible for
users to formulate their queries only in terms of the target ontology.

Several approaches have been proposed and implemented to build mediators
over relational databases, for example [20].

5 An alternative would be to access a description logic classifier from within the
TRIPLE engine.

11



Calvanese et al. [8] analyze the problems of ontology integration. They de-
scribe the ontologies with Description Logics. They argue, that for capturing the
mappings between ontologies the use of Description Logic is not sufficient and
suggest an different notion based on queries. In our implementation the mappings
build specific subset of the possible mappings we can define in description logics,
but we argue that these are highly relevant in practical situations, since they are
sufficient to implement a graphical tool which supports ontology mappings.

Mitra et al. [1] investigate the integration heterogeneous sources (UML,
DAML+OIL). They define articulation rules that establish correspondence be-
tween concepts in different ontologies. These articulation rules are used to rewrite
queries. They use a common ontology format, which is the ONION conceptual
model.

The currently available ontology editors for Semantic Web also support some
form of ontology mappings. Noy et al. [21] surveys ontology mapping support of
these tools.

Recently many researchers investigate different aspects of ontology mappings
for the Semantic Web.

Halevy et al. [14] developed a data management infrastructure for Semantic
Web applications. The main focus of their work to enable interoperability of
XML sources. They developed a mapping language, which is based on XQuery.
The mappings are also used to support query answering, which is possible in
both directions using their query answering algorithm.

On the Semantic Web the data from heterogeneous sources is described by
different ontologies. Doan et al. [7] argue that in case of information process-
ing the mapping between ontologies should happen (semi-)automatically. They
developed a system that employs machine learning techniques to find the map-
pings.

Data integration problems and possible solutions are extensively analyzed
in database literature. Wache [3] provides a classification of the problems. The
schematic and data heterogeneity conflicts are described in [4]. Semantic con-
flicts are analyzed by Kashyap et al. [5] and Goh [6]. Structural or semantic
heterogeneity or data inconsistency can cause integration conflicts:

– Structural conflicts occur if we compare the structure of the data models
of different information sources. In case of structural conflicts the semantic
of the data is the same, the difference is in the representation structure.
Structural conflicts are for example label conflicts, where the data attributes
are equivalent but different labels are used.

– In case of a semantic conflict the equivalent structural elements have to be
interpreted with different semantics. A typical semantic conflict is the unit
and scale conflict, when two numeric values have the same semantics, but
the values have a different meaning, for example “price”, if it is represented
in one information system implicitly given in Euro, while in other systems
in Dollar. Another typical semantic conflict is that two information sources
use different data representation types.

12



Due the large number of possible conflicts, often individual treatment of the
problems is necessary. We only have concentrated on a subset of these problems
that can be resolved with mapping rules between resources and their properties
in two ontologies.

8 Conclusion and Future Work

On the Semantic Web, resources are described with metadata, related to some
ontology. Using our approach, users or applications can express their queries for
resources with respect to an ontology that reflects a user-specific or application-
specific view of the domain (i.e. in the application ontologies). We demonstrated
with some typical application cases from the e-learning domain how mapping
rules and views can be defined using the language TRIPLE. These views allow
clients to formulate queries only in the application ontologies. The mapping rules
connect the instances described by the “source ontology” with the terminologies
(classes and properties) of the “application ontology”. The mapping rules can be
formulated in Description Logic; we demonstrated a specific class of mappings
which is highly relevant in practical situations and can be expressed in TRIPLE.

Our approach has several advantages:

– Users can formulate their queries in the target ontology in a more natural
way than in the source ontology. The mappings in our method are developed
by ontology developers and usually not by the users who submit queries.
Our motivation was not to require the user to be familiar with the domain
expert’s ontology; mapping rules can be created in any case only by persons
who are familiar with the source ontology.

– If the source ontology evolves, the application ontology often remains the
same, only the mappings have to be updated or rewritten. In this way the
users are not affected by the changes in the source ontology.

– As in other mediator approaches, our approach can be used to integrate data
described in different, independently developed ontologies.

– Integration with other software systems is possible.
– Queries based on views can potentially be more efficient than queries based

on the source ontologies.
– Because our implementation uses TRIPLE, the ontologies we connect with

views can be represented in different ontology languages like RDFS or DAML+OIL.

Of course, our approach has some limitations:

– Some syntactic and semantic mapping conflicts (discussed in Section 7) can
hardly be resolved with our approach alone.

– Our approach assumes that some mapping between different involved on-
tologies can be found. If it is not (easily) possible, other data integration
approaches (e.g. imperative approaches) may be more appropriate. Specifi-
cally if programmatic specification of data integration is constantly required
(e.g. by the end user), rule-based approaches might be cumbersome.

13



– The possible efficiency gain due to using a view has to be contrasted to
the efficiency of creating the view. Specifically when the resources in source
ontology often change, creating views can cause problems. This problem can
be resolved by introducing caching structures in the view computation.

In our future research we plane to address more mapping conflicts, e.g. se-
mantic conflicts. We also want to investigate how to integrate our approach with
other data integration approaches.

References

1. Mitra P., Wiederhold G., Decker S.: A scalable framework for the interoperation
of information sources. In Semantic Web Working Symposium, pp. 317–329, 2001.

2. Sintek, M., Decker, S.: TRIPLE–A Query, Inference, and Transformation Lan-
guage for the Semantic Web. In Proceedings of the First International Semantic
Web Conference (ISWC), Sardinia, June 2002.

3. Wache, H.: Semantische Mediation fur heterogene Informationsquellen. Akademis-
che Verlagsgesellschaft AKA GmbH, Berlin, Reihe “Dissertationen zur
Künstlichen Intelligenz (DISKI)”, Nr. 261, 2003. In German.

4. Kim, W., Seo, J.: Classifying Schematic and Data Heterogeneity in Multidatabase
Systems. IEEE Computer. Vol 24. No. 12. December, 1991.

5. Kashyap, V., Sheth, A. P.: Semantic and Schematic Similarities Between Database
Objects: A Context-Based Approach. In VLDB Journal 5(4): 276-304(1996).

6. Goh, C.: Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Systems. Ph.D. Thesis, MIT Sloan School of Management, 1996.

7. Doan, A., Madhavan, J., Domingos P., Halevy, A.: Learning to Map between On-
tologies on the Semantic Web. In 11th International World Wide Web Conference
(WWW’2002), Hawaii, USA, 2002.

8. Calvanese, D., De Giacomo, G., Lenzerini, M.: Ontology of Integration and In-
tegration of Ontologies. In Proceedings of the 2001 Description Logic Workshop
(DL 2001).

9. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Expressive Description
Logics. In Proceedings of the 6th International Conference on Logic for Program-
ming and Automated Reasoning (LPAR’99), 1999.

10. Wiederhold, G.: Mediators in the Architecture of Future Information Systems. In
IEEE Computer, Vol. 25, No. 3. March, 1992.

11. RDF Schema. http://www.w3.org/TR/rdf-schema/.

12. DAML+OIL. http://www.w3.org/TR/daml+oil-reference.

13. OWL. http://www.w3.org/TR/owl-ref/.

14. Halevy, A., Ives, Z., Tatarinov, I., Mork, P.: Piazza: Data Management Infrastruc-
ture for Semantic-Web Applications. InProceedings of the Twelfth International
World Wide Web Conference, Budapest, Hungary, May 2003.

15. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and Frame-
Based Languages, In Journal of the ACM, Jul. 1995., vol 42, pp. 741–843.

16. Decker, S., Brickley, D., Saarela J., Angele, J.: A query and inference service for
RDF. In The Query Languages Workshop, QL’98, WorldWideWeb Consortium
(W3C), Boston, USA, 1998., http://www.w3.org/TandS/QL/QL98/.

17. Horrocks, I.: The FaCT System. 2001., http://www.cs.man.ac.uk/∼horrocks/FaCT/

14



18. Brantner, S., Enzi, T., Guth, S., Neumann, G., Simon, B.: UNIVERSAL - Design
and Implementation of a Highly Flexible E-Market Place of Learning Resources,
In Proceedings of the IEEE International Conference on Advanced Learning Tech-
nologies., Madison (WI), USA, August, 2001.

19. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M.: Edutella: A P2P Networking
Infrastructure Based on RDF. In Proceedings of the 11th International World Wide
Web Conference (WWW2002), Hawaii, USA, May 2002.

20. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou,
Y., Ullman, J., Widom, J.: The TSIMMIS Project: Integration of Heterogeneous
Information Sources. In Proceedings of IPSJ Conference, pp. 7-18, Tokyo, Japan,
October 1994.

21. Noy, N. F., Musen, M. A.: Evaluating Ontology-Mapping Tools: Requirements
and Experience. In Workshop on Evaluation of Ontology Tools at EKAW’02
(EON2002). 2002. http://www.smi.stanford.edu/pubs/SMI Reports/SMI-2002-
0936.pdf.

Complete example

// 0. rdf schema semantics

FORALL Mdl @rdfschema(Mdl) {

FORALL O,P,V O[P->V] <- O[P->V]@Mdl.

FORALL O,P,V O[P->V] <- EXISTS S

(S[rdfs:subPropertyOf->P] AND O[S->V]).

FORALL O,P,V O[rdfs:subClassOf->V] <-

EXISTS W (O[rdfs:subClassOf->W] AND W[rdfs:subClassOf->V]).

FORALL O,P,V O[rdfs:subPropertyOf->V] <-

EXISTS W (O[rdfs:subPropertyOf->W] AND W[rdfs:subPropertyOf->V]).

FORALL O,T O[rdf:type->T] <-

EXISTS S (S[rdfs:subClassOf->T] AND O[rdf:type->S]).

}

// 1. learning object ontology plus some resources at WUW

// wuw := ’http://learn.wu-wien.ac.at/#’

@wuw:ont {

// some classes for learning objects

wuw:LearningResource[rdfs:subClassOf -> rdfs:Resource].

wuw:Book[rdfs:subClassOf -> wuw:LearningResource].

wuw:Exercise[rdfs:subClassOf -> wuw:LearningResource].

wuw:OpenQuestion[rdfs:subClassOf -> wuw:Exercise].

wuw:FillInQuestion[rdfs:subClassOf -> wuw:Exercise].

wuw:YesNoQuestion[rdfs:subClassOf -> wuw:Exercise].

wuw:MultipleChoiceQuestion[rdfs:subClassOf -> wuw:Exercise].

// some learning resources

question1_1[rdf:type -> wuw:OpenQuestion; wuw:difficulty -> low].

question1_2[rdf:type -> wuw:FillInQuestion; wuw:difficulty -> medium].

question1_3[rdf:type -> wuw:YesNoQuestion; wuw:difficulty -> high].

15



question2_1[rdf:type -> wuw:YesNoQuestion; wuw:difficulty -> low].

question2_2[rdf:type -> wuw:MultipleChoiceQuestion; wuw:difficulty -> medium].

question3_1[rdf:type -> wuw:MultipleChoiceQuestion; wuw:difficulty -> high].

book1[rdf:type -> wuw:Book].

}

// 2. exercise types ontology

// exty := ’http://www.exercisetype.org/#’

@exty:ont {

exty:LearningProgressTest[rdfs:subClassOf -> rdfs:Resource].

exty:Auto[rdfs:subClassOf -> exty:LearningProgressTest].

exty:NonAuto[rdfs:subClassOf -> exty:LearningProgressTest].

exty:MarkReader[rdfs:subClassOf -> exty:Auto].

exty:NonMarkReader[rdfs:subClassOf -> exty:Auto].

}

// 3. mapping definitions

@exty:mappings {

wuw:MultipleChoiceQuestion[rdfs:subClassOf -> exty:MarkReader].

wuw:YesNoQuestion[rdfs:subClassOf -> exty:MarkReader].

wuw:FillInQuestion[rdfs:subClassOf -> exty:Auto].

wuw:Exercise[rdfs:subClassOf -> exty:LearningProgressTest].

}

// 4. view ontology

FORALL Ont1, Ont2, Mappings @view(Ont1, Ont2, Mappings) {

FORALL R,P,O R[P -> O] <- // everything in Ont2 holds

R[P -> O]@Ont2.

FORALL R,P,O R[P -> O] <- // apply rdf schema semantics on "self"

R[P -> O]@rdfschema(view(Ont1, Ont2, Mappings)).

FORALL R,C1,C2 R[rdf:type -> C1] <- // rdfs:subClassOf mapping

R[rdf:type -> C2]@rdfschema(Ont1) AND

C2[rdfs:subClassOf -> C1]@Mappings.

}

// 5. query

// give me the types of all resources from the WUW ontology

// wrt. view ontology (i.e., in terms of exty ontology)

FORALL R,O <- R[rdf:type -> O]@view(wuw:ont, exty:ont, exty:mappings).

// query Mark Readers for online system

FORALL R <- (R[rdf:type -> exty:MarkReader])@view(wuw:ont, exty:ont, exty:mappings).

16


