
Optimal algorithms for global optimization in

case of unknown Lipschitz constant

Matthias Horn

Mathematisches Institut, Universität Jena, D - 07737 Jena

Abstract

We consider the global optimization problem for d-variate Lipschitz functions which,
in a certain sense, do not increase too slowly in a neighborhood of the global min-
imizer(s). On these functions, we apply optimization algorithms which use only
function values. We propose two adaptive deterministic methods. The first one ap-
plies in a situation when the Lipschitz constant L is known. The second one applies
if L is unknown. We show that for an optimal method, adaptiveness is necessary
and that randomization (Monte-Carlo) yields no further advantage. Both algorithms
presented have the optimal rate of convergence.

Key words: Global optimization, Lipschitz functions, complexity, optimal rate of
convergence

MSC: primary 90C60, 90C56; secondary 68Q25, 26B35

1 Introduction

For a continuous function
f : [0, 1]d → R

we are looking for a point

x∗ ∈ [0, 1]d (1)

such that f(x∗) is close to inf f . Continuity is already sufficient to guarantee
that the second algorithm we propose converges. However, for cost estimation
and optimality results we make two further assumptions on f :

Email address: mhorn@mathe.uni.jena.de (Matthias Horn).

Preprint submitted to Elsevier Science 27 January 2005

Dagstuhl Seminar Proceedings 04401
Algorithms and Complexity for Continuous Problems
http://drops.dagstuhl.de/opus/volltexte/2005/143

(1) The function f is Lipschitz with constant L > 0:

∀x, y ∈ [0, 1]d |f(x) − f(y)| ≤ L‖x− y‖∞. (2)

(2) For the level sets

A(f, δ) := {x ∈ [0, 1]d : f(x) ≤ inf f + δ} (3)

and constants %,D > 0 we have

∀δ ≤ % λd(A(f, %)) ≤ D δd/2. (4)

Here, λd denotes Lebesgue measure on [0, 1]d. We say

f ∈ F d
L,D,%.

For the constants L,D, % we assume

% < min{L, 1
4
L2D2/d}. (5)

This way, we have F d
L,D,% 6= ∅, and for every point x ∈ [0, 1]d, the class F d

L,D,%

contains several functions f with f(x) = min f .

A function f ∈ F d
L,D,% may have many global minimizers.

Assumption (4) guarantees a minimum increase in a neighborhood of the
global minimizer or, if there are several global minimizers, in a neighborhood
of each of them. The upper bound D δd/2 for the level sets A(f, δ) allows that
for

f ∈ C2[0, 1]d

with a finite number of minimizers x∗ and a positive Hessian (∇2f)(x∗) for
each of them, we can always find parameters L,D, % such that f ∈ F d

L,D,%.
This is a consequence of Taylor expansion.

In order to find an x∗ with f(x∗) close to inf f we want to consider numerical
methods which use only function values which are chosen at sequentially or
adaptively chosen knots x1, . . . , xn. We are interested in the interdependence
of the error f(x∗)− inf f and the effort we spent to reach this error level. We
define cost(A,F d

L,D,%) to be the number of oracle calls a method A needs for
f ∈ F d

L,D,% in the worst case and ∆(A,F d
L,D,%) to be the worst case error of A.

The error numbers

en(F d
L,D,%) := inf {∆(A,F d

L,D,%) : A : cost(A,F d
L,D,%) ≤ n} (6)

2

give information about the intrinsic difficulty of the optimization problem.
Any method yielding an error of at most en(F d

L,D,%) for all f ∈ F d
L,D,% uses at

least n function calls for at least one function f ∈ F d
L,D,%. The error numbers

are benchmark for our algorithms.

In Section 2, we introduce two deterministic adaptive optimization algorithms
for the class F d

L,D,%. The first one is applicable if the Lipschitz constant L or an
upper bound L′ ≥ L is known. The second one needs no information about L.
Both algorithms work without knowledge of the other parameters D, % or any
other parameter one might know or guess. We prove upper bounds of error
and cost for both methods.

In Section 3, we prove en(F d
L,D,%) ³ L2D2/d n−2/d and see that both algorithms

of Section 2 have the optimal rate of convergence. Furthermore, wee see that
compared to optimal non-adaptive methods, adaptiveness yields a quadratic
speed-up while randomization (Monte-Carlo methods) cannot improve the
rate of convergence any further.

For illustration, we apply the second algorithm to a test function. See Section 4.

1.1 Some known complexity results

A well examined optimization problem is convex programming. Here, we have
a unique global minimizer and local and global search coincide. For this situ-
ation, methods are known whose cost behave polynomial in dimension d and
error level ε. The ellipsoid method yields an approximation to the error level
ε > 0 using O(d2 ln(1/ε)) calls of f and ∇f . For details and further complex-
ity results for convex functions we refer to the mini-course of Nemirovski
(1995).

The problem class F d
L,D,% allows many global minimizers. In this property, it

is closely related to Lipschitz optimization. For classes

FL := {f : [0, 1]d → R, |f(x) − f(y)| ≤ L ‖x− y‖ for all x ∈ [0, 1]d},

we have that a non-adaptive method using equidistant points delivers the
optimal result. The class FL is a special case of a convex and symmetric (i.e.
f ∈ F ⇒ −f ∈ F) class. In this situation, adaptiveness can, if at all, yield only
a minor improvement compared to best non-adaptive algorithms. See Novak
(1988), prop.1.3.2 for details. For FL, we have en(FL) ³ Ln−1/d. In contrast,
we will see for the class F d

L,D,% that adaption is essential for optimality and

that it leads to a quadratic speed-up: en(F d
L,D,%) ³ L2D2/dn−2/d. In both cases,

3

however, the error even of optimal methods depends exponentially in d, which
means that for FL and F d

L,D,%, the optimization problem is not tractable.

One may say that in many situations the worst case definition of error or cost
is too pessimistic and that the average case may give a more realistic picture.
A prominent model for d = 1 is to assume the Wiener measure on C[0, 1].
Even for this case we have only little knowledge of the complexity. Ritter
(1990) (Theorem 4) shows that the mean error of best non-adaptive methods
using n function calls behaves like 1/

√
n. Calvin (2004) uses sophisticated

methods to show that for best adaptive methods, the error cannot decrease
exponentially.

Remark 1 We compare our results with those of two recent papers. Pere-
vozchikov (1990) defines a class similar to F d

L,D,%. For

F̃ d
L,r,% := {f : [0, 1]d → R, |f(x) − f(y)| ≤ L‖x− y‖, λd(A(δ)) ≤ δr for δ ≤ %}

he develops an algorithm which yields the upper bound

en(F̃ d
L,r,%) ≤





O(n−1/d(1−r)), r < 1,

O(e−n), r = 1.

Lower bounds for en(F̃ d
L,r,%) are missing. Furthermore, the method of Perevoz-

chikov assumes a fixed, i.e. known Lipschitz constant.

Like our second algorithm, the method described in Jones et al. (1993)
applies for Lipschitz optimization when the Lipschitz constant is not known.
They also have in common some constructional elements. In contrast to most
other algorithms, they mix global and local search and do not apply a two step
scheme, first to search globally and then to search locally. The algorithm of
Jones et al. yields good results on some popular test functions. However, error
bounds are missing.

2 Optimization algorithms

We propose two adaptive algorithms. The first one is useful for a function
class F d

L,D,% with known Lipschitz parameter L. The second one is suitable for
the situation that the Lipschitz parameter is unknown. For both algorithms,
the knowledge of the other parameters D, % is unimportant for their definition
and their success, nevertheless they are important for the cost estimation.

First, we want to make precise what kind of methods we want to consider and
how cost and error are defined. We are interested in such algorithms which

4

use function values at adaptively chosen knots x1, . . . , xn. The first knot x1 is
independent of the objective f and fixed for a particular method. The knots xj

with j ≥ 2 may depend on the previously chosen knots and obtained function
values. Also, the number of function calls may depend on the observed data.
Every such method A can be expressed by

A(f) = φ ◦N(f).

The information operator

N : F d
L,D,% →

∞⋃

n=1

R
n

gives the function values at the adaptively chosen knots. It obtains these knots
by applying functions ψj : R

j−1 such that

xj = ψj(f(x1), . . . , f(xj−1)).

It stops after n function calls according to a stopping rule s :
⋃∞

j=1 R
j → {0, 1}

iff

∀j < n s(f(x1), . . . , f(xj)) = 1, s(f(x1), . . . , f(xn)) = 0.

The mapping

φ :
∞⋃

i=1

R
n → [0, 1]d

constructs the point x∗ using the information vector N(f).

For our methods we assume the real number model as described in detail in
Novak (1995). In particular, we assume that we can represent real numbers
exactly and that we can calculate with them exactly.

The error of a method A applied to a function f ∈ F d
L,D,% and returning

A(f) = x∗ is

∆(A, f) := | inf f − f(x∗)|.
The (worst case) error of the method A is

∆(A,F d
L,D,%) := sup {∆(A, f) : f ∈ F d

L,D,%}.

The cost(A, f) of a method A applied to a function f ∈ F d
L,D,% is the number

of function calls the method A uses for f . The (worst case) cost of A is

cost(A,F d
L,D,%) := sup {cost(A, f) : f ∈ F d

L,D,%}.

We come to some particular preliminaries for the two algorithms we propose.
Let ei be the i-th unit vector in R

d having (ei)i = 1 and (ei)j = 0 for j 6= i.

5

The algorithms use

Y (j) :=

{
d∑

l=1

al · el, al ∈ {−3−j+1, 0, 3−j+1}
}
\ {0}, j ∈ N.

Each of the sets Y (j) consists of 3d − 1 points. Let

M := (1
2
, . . . , 1

2
)T

denote the midpoint of the unit cube in R
d.

For the case of known Lipschitz parameter L, we propose the following opti-
mization algorithm S(L, k) performing k steps as described in figure 1. After
k steps, S(L, k) returns x∗. It is similar to the one of Perevozchikov (1990).

Lemma 2 Let f : [0, 1]d → R be Lipschitz with constant L > 0. Then, after
step j and for each global minimizer x∗, there exist a pair (xj, f(xj)) ∈ NL,j

such that ‖xj − x∗‖∞ ≤ 2−13−j+1.

Proof by induction.
j = 1: We have (M, f(M)) ∈ NL,1. For all x ∈ [0, 1]d we have ‖x−M‖∞ ≤ 2−1.
j → j + 1: Let (xj, f(xj)) ∈ NL,j such that ‖xj − x∗‖∞ ≤ 2−13−j+1. In step
j + 1 of the algorithm, we check whether f(xj) ≤ f∗ + L 2−13−j+1 which is
true:

|f(xj) − f∗| ≤ |f(xj) − f(x∗)| ≤ L 2−13−j+1. (7)

So we choose the pairs

(xj + y, f(xj + y)), y ∈ Y (j + 1),

to be in NL,j+1. For (at least) one of these y we have

‖y − x∗‖∞ ≤ 2−13−j.

Choose xj+1 := xj + y for such a y. 2

The sets NL,j are subsets of the equidistant meshes

mesh(j) :=

{
d∑

i=1

αi ei, αi ∈ {2−13−j+1 + l · 3−j+1, l = 0, . . . , 3j−1 − 1}
}
.

Furthermore, S(L, k) guarantees the same level of approximation as mesh(k)
in the following sense: For every global minimizer x∗ we have

min
x∈mesh(k)

‖x− x∗‖∞ ≤ 2−13−k+1, min
x∈NL,k

‖x− x∗‖∞ ≤ 2−13−k+1.

6

step 1 applying Lipschitz constant L:

oracle call: get f(M).

set NL,1 := {(M, f(M))}
set x∗ := M; f∗ := f(M).

step j , j ≥ 2, applying Lipschitz constant L:

set NL,j := ∅;
for (x, f(x)) ∈ NL,j−1 do

if (f(x) ≤ f∗ + L 2−13−j+2) then

set NL,j := NL,j ∪ {(x, f(x))};
for y ∈ Y (j) do

oracle call: get f(x+ y);

set NL,j := NL,j ∪ {(x+ y, f(x+ y))},
if (f(x+ y) < f∗) then

set x∗ := x+ y; f∗ := f(x+ y);

end if;

next y;

end if;

next x;

Fig. 1. The steps performed by S(L, k)

We are now ready to prove bounds for error and cost of S(L, k). We use the
following constants:

εk := L2−13−k+1, (8)

j(L, %) := dlog3(L/(2%))e + 3, (9)

j(L, %, d) := dlog3(L/(2%
2D2/d))e + 6, (10)

c(d) :=
3d/2

3d/2 − 1
. (11)

For d ≥ 1, we have c(d) ∈ (1, 2.37]. We use an idea of Perevozchikov (1990)
to prove the following

7

Theorem 3 (1) Error estimation: For k ∈ N, we have

∆(S(L, k), F d
L,D,%) ≤ εL,k.

(2) Cost estimation: We have
(a) for k ∈ N

cost(S(L, k), F d
L,D,%) ≤ 3d(k−1),

(b) for k ≥ j(L, %)

cost(S(L, k), F d
L,D,%)

≤
(

27
2
L/%

)d
+ c(d) (3d − 1)DLd/22−d/2

(
3(k−1)d/2 −

(
3
2
L/%

)d/2
)
.

(c) for k ≥ max{j(L, %), j(L, %, d)}

cost(S(L, k), F d
L,D,%) ≤ DLd/22−d/23(k+1)d/2+1 = DLd2−d3d+1ε

−d/2
L,k .

Proof. 1. Let f ∈ F d
L,D,%. From Lemma 2 we know that there exists a pair

(xk, f(xk)) ∈ NL,k such that ‖xk − x∗‖∞ ≤ 2−13−k+1. Then

|f(x∗) − f(x∗)| ≤ |f(xk) − f(x∗)| ≤ L 2−13−k+1.

2. For (a), we have that S(L, k) chooses only points in mesh(k), which consists
of 3d(k−1) points.

(b). Let

N∗
L,j−1 (12)

be the set of pairs (x, f(x)) ∈ NL,j−1 which in step j pass the test
f(x) ≤ f∗ + L/2 · 3−j+2. Then in step j, the number of new function eval-
uations is bounded by

|NL,j \NL,j−1| ≤ (3d − 1)N ∗
j−1.

We can use this estimation for steps j if N ∗
L,j−1 ⊂ A(f, %). As in 1., one can

show
min {f(y) : y ∈ N ∗

L,j−1} ≤ min f + L 2−13−j+2.

Furthermore,

∀x ∈ N ∗
L,j−1 f(x) ≤ f∗+L 2−13−j+2 ≤ min {f(y) : y ∈ N ∗

L,j−1}+L 2−13−j+2.

So we get
∀x ∈ N ∗

L,j−1 x ∈ A(L 3−j+2).

For x, y ∈ N ∗
L,j−1 and x 6= y we have

B(x, 2−13−j+2) ⊂ A(L 2−13−j+3), B(x, 2−13−j+2) ∩B(y, 2−13−j+2) = ∅.

8

For L 2−13−j+3 ≤ %, i.e.

j − 1 ≥ dlog3(L/(2%))e + 2 = j(L, %) − 1,

we can estimate

|N∗
L,j−1 | ≤

λd(A(L 2−13−j+3))

λd(B(x, 1
2
3−j+2))

≤ D (L 2−13−j+3)d/2

(3−j+2)d

=DLd/22−d/23(j−1)d/2 . (13)

So the number of new points in level j can be estimated by

(3d − 1)DLd/22−d/23(j−1)d/2. (14)

It follows immediately

cost(S(L, k), F d
L,D,%)

≤ |mesh(j(L, %) − 1)| +
k∑

j=j(L,%)

(3d − 1)DLd/22−d/23(j−1)d/2

≤
(

27
2
L/%

)d
+ c(d) (3d − 1)DLd/22−d/2(3(k−1)d/2 − 3(k(L,%)−2)d/2)

≤
(

27
2
L/%

)d
+ c(d) (3d − 1)DLd/22−d/2

(
3(k−1)d/2 −

(
3
2
L/%

)d/2
)
.

So we proved (b).

Under the assumptions of (c) we have for d = 1

27
2
L/% ≤ c(d)DL1/22−1/23(k−1)/2

and for d ≥ 2 (
27
2
L%
)d ≤ 3

2
· 3dDLd/22−d/23(k−1)d/2.

In both cases we conclude from (b)

cost(S(L, k), F d
L,D,%) ≤ DLd/22−d/23(k+1)d/2+1 = DLd2−d3d+1ε

−d/2
L,k .

2

We now turn to the case of unknown Lipschitz parameter L. For this situation,
we propose the algorithm Z(k) as described in figure 2. It uses the steps j of
S(L, k′) for several Lipschitz constants L(1) < L(2) < An additional

9

return x∗;

next l;

next i;

next j;

end if;

step j applying Lipschitz constant L(i);

else

step 1’ applying Lipschitz constant L(i);

if (i 6= 1, j = 1) then

for j from 1 to laststep(l, i) do # step j

for i from 1 to lastconst(l) # constant L(i)

for l from 1 to k do # diagonal l

Fig. 2. The algorithm Z(k)

step 1’ is also used:

step 1’ using Lipschitz constant L:

oracle call: get f(M);

set NL,1 := {(M, f(M))}.

The constants L(i) and two controlling functions

lastconst : N → N, l 7→ lastconst(l)

laststep : N × N → N, (l, i) 7→ laststep(l, i)

determine the behavior of the algorithm. In a first definition of the algorithm,
we only require the following properties:

• L(i+ 1) > L(i) for all i ∈ N,
• lastconst increasing,
• laststep(l, i) increasing in l, and decreasing in i.

Z(k) is a diagonal scheme. The parameter k in Z(k) is the number of per-

10

formed diagonals. In diagonal l, the algorithm examines the function assum-
ing the Lipschitz constants L(1), . . . , L(lastconst(l)), i.e.: For constant L(i),
the algorithms performs step laststep(l − 1, i) + 1 to step laststep(l, i).
While the algorithm has only one instance of f∗ and x∗ it uses separate sets
NL(i),j for each constant L(i).
Note that the objective f will be evaluated at certain points for several con-
stants L(i), i.e. several times. The midpoint M for example lastconst(k) times.
We discuss later in remark 7 why this is reasonable.

Let m, k ∈ N such that lastconst(k) ≥ m. (Among others,) the method Z(k)
performs step 1’ (step 1 if m = 1) to step laststep(k,m) applying Lipschitz
constant L(m). This way, Z(h) determines the sets

NL(m),1, . . . , NL(m),laststep(k,m).

We have the following analogue to Lemma 2:

Lemma 4 Let f ∈ F d
L,D,% with L ≤ L(m) for some m ∈ N and k ∈ N such that

lastconst(k) ≥ m. Let x∗ be a global minimizer. For 1 ≤ j ≤ laststep(k,m),
there exists a pair (xj, f(xj)) ∈ NL(m),j such that ‖xj − x∗‖∞ ≤ 2−13−j+1.

Proof. The proof is similar to that of Lemma 2. The only difference to the
situation there is that the least value found so far f∗ is shared and altered by
function evaluations applying different constants L(i). However, f∗ only once
enters the proof: in (7). Here, only f(x∗) ≤ f∗ ≤ f(xj) is needed, which is true
for the new situation, too. 2

We want to examine Z(k) for the choice

L(i) := 3i−1, i ∈ N, (15)

lastconst(l) :=

⌈
l

h

⌉
, laststep(l, i) :=





l − h(i− 1), if i ≤ b(l),

0, else,
(16)

with parameter h ∈ {3, 4, . . .}. We will discuss the choice of h in remark 6.
Let

Z(h, k)

be the so defined algorithm. We use the constants

εL,h,k := Lh+12−13−k+1, (17)

c(d, h) :=
1

1 − 3−hd/2
, c′(d, h) :=

1

1 − 3(1−h/2)d
, (18)

C(L, d, h) := c(d)
[
c(d, h)3−d/2 + c′(d, h)L−hd/2

]
, (19)

11

L(1) L(2) L(3) L(4)

NL(i),11

NL(i),10

NL(i),9

NL(i),8

NL(i),7

NL(i),6

NL(i),5

NL(i),4

NL(i),3

NL(i),2

NL(i),1

const.
mesh

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h h

?

?

? 7

7

7

7

7

7

7

7

7

7

7

7

²

²

²

²

²

²

Fig. 3. Scheme of Z(h, k) for h = 3 and k = 10

with c(d) defined as in (11). For h ≥ 3, d ≥ 1 and L ≥ 1 we have

c(d, h) ∈ (1, 1.25], c′(d, h) ∈ (1, 2.37], C(L, d, h) ∈ (0, 7.37].

Theorem 5 Let f ∈ FL(m),D,% for some m ∈ N, and k ≥ h(m− 1) + 1.

(1) Error estimation:

∆(Z(h, k), F d
L,D,%) ≤ εL,h,k,

(2) Cost estimation:

cost(Z(h, k), F d
L,D,%)

≤
[
log3 L(m) + c(2d)L(m)−13dk/he

] (
9
2
L(m)/%

)d
+

C(L(m), d, h)L(m)d/2D 2−d/23(k+1)d/2,

=
[
log3 L(m) + c(2d)2−1/h31−1/hL(m)1/hε

−1/h
L(m),h,k

] (
9
2
L(m)/%

)d
+

C(L(m), d, h) 2−d3dDL(m)(h+2)d/2ε
−d/2
L(m),h,k.

Proof 1. For the constant L(m), the algorithm performs step 1 (or 1’) up to
step k − h(m − 1). From Lemma 4 we know that for every global minimizer
x∗ there exists xk−h(m−1) ∈ NL(m),k−h(m−1) such that ‖xk−h(m−1) − x∗‖∞ ≤

12

2−13−k+h(m−1)+1. It follows immediately

|f(x∗) − f(x∗)| ≤ |f(xk−h(m−1)) − f(x∗)| ≤ L(m) 2−13−k+h(m−1)+1 = εL(m),h,k.

2. The cost estimation is similar to the one in the proof of Theorem 3. Recall
N∗

L,j−1 to be defined as in (12). Let 1 ≤ i ≤ lastconst(k). For the new points
in step j applying Lipschitz constant L(i), we have

|NL(i),j \NL(i),j−1| ≤ (3d − 1)|N ∗
L(i),j−1|.

We can use this estimation for steps j with N ∗
L(i),j−1 ⊂ A(f, %). As in 1., one

can show

min {f(y) : y ∈ NL(i),j−1} ≤ min f + L(m) 2−13−j+2.

Furthermore,

∀x ∈ N ∗
L(i),j−1 f(x) < min {f(y) : y ∈ NL(i),j−1} + L(i) 2−13−j+2,

so we get

∀x ∈ N ∗
L(i),j−1 x ∈ A(f, (L(i) + L(m))2−13−j+2).

For x, y ∈ N ∗
L(i),j−1 with x 6= y we have

B(x, 2−13−j+2) ⊂ A((2L(m) + L(i)) 2−13−j+2),

B(x, 2−13−j+2) ∩ B(y, 2−13−j+2) = ∅.
For (2L(m) + L(i))2−13−j+2 ≤ %, i.e.

j − 1 ≥ dlog3((2L(m) + L(i))/(2%))e + 1 =: j(m, i, %) − 1, (20)

we get

|N∗
L(i),j−1| ≤

λd(A((2L(m) + L(i))2−13−j+2))

λd(B(2−13−j+2(x)))
(21)

≤D(L(m) + 2−1L(i))d/2 3(j−2)d/2.

It follows immediately

|NL(i),j \NL(i),j−1| ≤ (3d − 1)D(L(m) + 2−1L(i))d/2 3(j−2)d/2. (22)

For the steps 1 (or 1’) to laststep(k, i) = k−h(i−1) and k−h(i−1) ≥ j(m, i, %)
we get the cost estimation

13

|NL(i),1| +
k−h(i−1)∑

j=2

|NL(i),j \NL(i),j−1|

≤ |mesh(j(m, i, %) − 1) | +
k−h(i−1)∑

j=j(m,i,%)

(3d − 1)D(L(m) + 2−1L(i))d/2 3(j−2)d/2

≤
(

9(2L(m) + L(i))

2%

)d

+

(3d − 1)D(L(m) + 2−1L(i))d/23(j(m,i,%)−2)d/2 3(k−h(i−1)−j(m,i,%)+1)d/2 − 1

3d/2 − 1

=

(
9(2L(m) + L(i))

2%

)d

+

(3d − 1)D(L(m) + 2−1L(i))d/2c(d)
[
3(k−h(i−1)−2)d/2 − 3(j(m,i,%)−3)d/2

]
.

In order to get an estimation for cost(Z(h, k), FL(m),D,%, we sum up these
numbers for constants L(1), . . . , L(dk/he):

cost(Z(h, k), FL(m),D,%) ≤
dk/he∑

i=1


|NL(i),1| +

k−h(i−1)∑

j=2

|NL(i),j \NL(i),j−1|



≤
m−1∑

i=1

(
9(L(m))

2%

)d

+
dk/he∑

i=m

(
9(3L(i))

2%

)d

+

m−1∑

i=1

(3d − 1)D(2−1L(m))d/2c(d)
[
3(k−h(i−1)−2)d/2 − 3(j(m,i,%)−3)d/2

]
+

dk/he∑

i=m

(3d − 1)D(2−1 · 3L(i))d/2c(d)
[
3(k−h(i−1)−2)d/2 − 3(j(m,i,%)−3)d/2

]

≤ (m− 1) ·
(

9

2

L(m)

%

)d

+

(
27

2

L(m)

%

)d dk/he−m∑

i=0

3di +

(3d − 1)D(2−1L(m))d/2c(d)3(k−2)d/2
m−2∑

i=0

3−dhi/2 +

(3d − 1)D(2−1 · 3L(m))d/2c(d)3(k−h(m−1)−2)d/2
dk/he−m∑

i=0

3(1−h/2)di (23)

≤
[
m− 1 + c(2d) 3dk/he−m+1

] (
9
2
L(m)/%

)d
+

(3d − 1)D(2−1L(m))d/2c(d)3(k−2)d/2c(d, h) +

(3d − 1)D(2−1L(m))d/2c(d)3(k−h(m−1)−1)d/2c′(d, h)

≤
[
m− 1 + c(2d) 3dk/he−m+1

] (
9
2
L(m)/%

)d
+

(3d − 1)D(2−1L(m))d/2c(d)3(k−1)d/2
[
c(d, h)3−d/2 + c′(d, h)3−(m−1)hd/2

]

14

≤
[
log3 L(m) + c(2d)L(m)−13dk/he

] (
9
2
L(m)/%

)d
+

C(L(m), d, h)L(m)d/2D 2−d/23(k+1)d/2.

With

ε
−d/2
L(m),h,k = L(m)−(h+1)d/22d/23(k−1)d/2, ε

−1/h
L(m),h,k = L(m)−1−1/h21/h3(k−1)/h,

we get

cost(Z(h, k), F d
L,D,%)

≤
[
log3 L(m) + c(2d)2−1/h31−1/hL(m)1/hε

−1/h
L(m),h,k

] (9

2

L(m)

%

)d

+

C(L(m), d, h) 2−d3dDL(m)(h+2)d/2ε
−d/2
L(m),h,k.

2

Remark 6 We can explain now the restriction on the parameter h: In order
that the sum in (23) is bounded for all k ∈ N, we need that h ≥ 3.
The parameter h allows to decide whether to focus on local or global search in
the following sense: The cost used by performing steps applying constant L(i)
are approx.

(3d − 1)D(L(m) + 2−1L(i))d/2c(d)
[
3(k−h(i−1)−2)d/2 − 3(j(m,i,%)−3)d/2

]
.

For constant L(i + 1) we spend 3−hd/2 times as much as we spend for L(i).
Choosing a high value for h leads to focus on a precise approximation of found
(local) minima. This is done in steps for small constants L(i). On the other
hand, a low value of h, 3 or 4 say, will focus more on global search, performed
by steps for big constants L(i).

Remark 7 As mentioned before, the algorithm Z does not store all function
evaluations, but only those in the sets NL(i),j. Consequently, the algorithms
evaluates f at certain points several times. The alternative would be to store
all data and, before we make an oracle call, check whether this function value
is already known. This way, we would save some oracle calls, i.e. we would
reduce cost.
Still, we do not stick to this idea. The reason is in the arithmetic cost. One can
show for Z(h, k) that the arithmetic cost (and also the storing cost) develop lin-
early to the information cost. So, the chosen cost definition cost(Z(h, k), F d

L,D,%)
is an appropriate measure for all cost we face when we want to implement the
algorithm.
On the other hand, data storing would lead to an only negligible cost reduction
while the arithmetic cost no longer behaves linear to the information cost. To

15

check whether a certain function value is already known leads to an additional
logarithmic factor for the arithmetic cost.

3 Optimality results

We find lower bounds for adaptive deterministic, non-adaptive deterministic
and adaptive randomized methods which show that

• the algorithms S(L, ·) and Z(h, ·) have the optimal convergence rate,
• adaptiveness is essential for optimality,
• up to constants, randomization (Monte-Carlo methods) gives no further

advantage.

We will need the following (technical)

Lemma 8 Let g : [0, %] → [0,∞) be piecewise linear with n ∈ N nodes

0 = δ1 < δ2 < . . . < δn = %. Let g(δi) ≤ D1/dδ
1/2
i . For f : [0, 1]d → R

and 0 ≤ δ ≤ % let λd(A(f, δ)) ≤ gd(δ). Then

∀ 0 < δ ≤ % λd(A(f, δ)) ≤ Dδd/2.

Proof. From g(δi) ≤ D1/dδ
1/2
i for i = 1, . . . , n and the convexity of the root

function we conclude

∀ 0 ≤ δ ≤ % g(δ) ≤ D1/dδ1/2.

Using λd(A(f, δ)) ≤ gd(δ) and the strict monotony of x 7→ xd we get

∀ 0 < δ ≤ % λd(A(f, δ)) ≤ Dδd/2.

2

Recall the error numbers to be defined as

en(F d
L,D,%) := inf {∆(A,F d

L,D,%) : A : cost(A,F d
L,D,%) ≤ n}.

We start with a lower bound for en(F d
L,D,%). The basic idea of the proof, to

construct a set of fooling functions, goes back to Bakvalov (1959). We will
use this principle for non-adaptive methods, too.

Theorem 9 Let m ∈ N with m ≥ L2D2/d(LD2/d − %)−1 and n = md − 2.
Then

en(F d
L,D,%) ≥

L2D2/d

4(n+ 2)2/d
.

16

Proof. Let

I := {i : i = (i1, . . . , id), ik ∈ {1, . . . ,m}, k = 1, . . . , d}, (24)

l :=
D2/dL

2m
, (25)

yi :=
l

m
· (i1 − 1/2, . . . , id − 1/2)T .

For i ∈ I define

fi (x) :=





L‖x− yi ‖∞, ‖x− yi ‖∞ ≤ l/(2m),

Ll

2m
, x ∈ [0, l]d \ B(yi , 1/(2m)),

Ll

2m
+ L max

1≤j≤d
(xj − l), ‖x‖∞ > l.

(26)

We show fi ∈ F d
L,D,%. Obviously, f is Lipschitz with constant L. If

l ≤ D2/d − %

L

(
⇔ m ≥ L2D2/d

LD2/d − %

)
, (27)

then λd(A(fi , 0)) = 0, λd(A(fi , L/(2m))) = D(L/(2m))d/2, and λ(%) ≤ D%d/2.
Condition (27) is fulfilled due to (5) and

D2/d − %

L
> 0 ⇔ % < D2/dL2.

Using Lemma 8, we get fi ∈ F d
L,D,%.

Now, let An = φ ◦ N be an algorithms which uses at most n function calls.
Then there exist (at least) two different i , j ∈ I such that

N(fi) = N(fj).

No matter where the algorithm chooses x∗ = φ ◦N(fi) = φ ◦N(fj), we will

have fi (x∗) ≥ Ll/(2m) or f j (x∗) ≥ Ll/(2m), but min fi = min fj = 0.

Consequently,

∆(An, F
d

L,D,%) ≥
l L

2m
=

L2D2/d

4(n+ 2)2/d
.

2

Corollary 10 The algorithms (S(L, k))k∈N and (Z(h, k))k∈N have the optimal
speed of convergence.

17

Proof. Let m0 := dL2D2/d(LD2/d − %)−1e and n(m) := md − 2. Let
n ≥ max{n(m0), 3, [(9/8)

d/2−1]−1}. Choose m s.th. n(m−1)+1 ≤ n ≤ n(m).
Then

en(F d
L,D,%) ≥ en(m)(F

d
L,D,%) ≥

D2/dL2

4m2
≥ D2/dL2

9n2/d
.

For k ∈ N, let

nk := bDLd/22−d/23(k+1)d/2+1c.
From Theorem 3 we know that S(L, k) uses at most nk oracle calls and delivers
an error level

∆(S(L, k), F d
L,D,%) ≤ εL,k ≤ D2/dL22−232+2/dn

−2/d
k ,

that means that the algorithms S(L, k), k ∈ N, have the optimal convergence
rate n−2/d.

For Z(h, k), we have ∆(Z(h, k), F d
L,D,%) ≤ εL(m),h,k and

cost(Z(h, k), F d
L,D,%) ≤ α(L(m), d, h) ε

−1/h
L(),h,k + β(L,D, h, d) ε

−2/d
L,h,k,

with constants α, β which can be determined with Theorem 5. For ε > 0 small
enough (i.e. for large k) we have

cost(Z(h, k), F d
L,D,%) ≤ (β(L,D, h, d) + 1) ε

−2/d
L,h,k.

Proceeding as for S(L, k), k ∈ N, we see that Z(h, k), k ∈ N, have the optimal
speed of convergence. 2

We turn to non-adaptive methods, i.e. algorithms A = φ◦N with the following
property:

∃n ∈ N ∃x1, . . . , xn ∈ [0, 1]d ∀f ∈ F d
L,D,% N(f) = (f(x1), . . . , f(xn)).

Lemma 11 Let m ≥ max{(1
4
D2/dL)−1, (2D1/d%1/2 − 4%/L)−1, L/(4%)}. For

n = md − 1, let An be a non-adaptive method with cost(An, F
d

L,D,%) = n. Then

∆(An, F
d

L,D,%) ≥
L

4(n+ 1)1/d
.

Proof. Let I as in (24). For i ∈ I define

xi := 1
m

(i1 − 1
2
, . . . , id − 1

2
)T ,

xi ,1 := 1
m

(i1 − 3
4
, i2 − 1

2
, . . . , id − 1

2
)T , (28)

xi ,2 := 1
2
(i1 − 1

4
, i2 − 1

2
, . . . , id − 1

2
)T ,

18

fi ,1
(x) :=





L ‖x− xi ,1‖∞, x ∈ B(xi ,1, 1/(4m)),

L

4m
, x ∈ B(xi , 1/(2m)) \ B(xi ,1, 1/(4m)),

L ‖x− xi ‖∞ − L

4m
, x ∈ [0, 1]d \ B(xi , 1/(2m)),

fi ,2
(x) :=





L ‖x− xi ,2‖∞, x ∈ B(xi ,2, 1/(4m)),

L

4m
, x ∈ B(xi , 1/(2m)) \ B(xi ,2, 1/(4m)),

L ‖x− xi ‖∞ − L

4m
, x ∈ [0, 1]d \ B(xi , 1/(2m)).

One can show
∀i ∈ I fi ,1

, fi ,2
∈ F d

L,D,%.

For the method An using n oracle calls, we have that in (at least) one cube

Qi := {x ∈ D : (i − (1/m, . . . , 1/m) < x < i/m}, i ∈ I,

there is no evaluation. For such an index i , we have

N(fi ,1
) = N(fi ,2

).

Consequently,

∆(An, F
d

L,D,%) ≥
L

4m
=

L

4(n+ 1)1/d
.

2

Finally, we turn to Monte-Carlo methods (MCM). For a definition of Monte-
Carlo methods, we refer to Novak (1988).
Let Q be a MCM which uses at most n oracle calls and (Ω, C, P) be the
probability space Q refers to. Let f ∈ F d

L,D,%. Then the error of Q with respect
to f is defined as

∆(Q, f) :=
∫

Ω

∆(Q(ω)(f), f)P (dω),

the error of Q as
∆(Q,F d

L,D,%) := sup
f∈F d

L,D,%

∆(Q, f).

Lemma 12 Let m be as in Theorem 9, even, and n = 2md/2. Let Q be a
Monte-Carlo method using at most n oracle calls. Then

∆(Q,F d
L,D,%) ≥

n− 1

n

L2D2/d

8(2n)2/d
.

19

Proof. Let l as in (25) and I and fi as in (24) and (26). Define

g(x) :=





Ll

2m
, ‖x‖∞ ≤ l,

Ll

2m
+ L max

1≤j≤d
(xj − l), ‖x‖∞ > l.

Let FI := {fi , i ∈ I}. We know from Theorem 9 that FI ⊂ F d
L,D,%. Now, let

A = φ ◦ N be an (adaptive) deterministic algorithm using at most n oracle
calls. For at least n different i ∈ I we have N(fi) = N(g). Consequently,

∑

f∈FI

(inf f − f(A(f))) ≥ (n− 1)Ll

2m
=

(n− 1)L2D2/d

4m2
.

The proof is complete with Novak (1988), Prop. 2.1.9 using the uniform
distribution on FI . 2

4 A numerical experiment

To illustrate the behavior of the algorithm Z(h, k), we apply it to the test
function fBR(x) : [−5, 10] × [0, 15] → R,

fBR(x) :=
(
x2 −

5.1

4π2
x2

1 +
5

π
− 6

)2

+ 10
(
1 − 1

8π

)
cos x1 + 10,

which we found in a collection of popular test functions in Törn, Žilinskas
(1989). This function has 3 global minimizers (−3.142, 12.275), (3.142, 2.275),
(9.429, 2.425) and a global minimum of approximately 0.398. We choose h = 4
and three different values for k each representing a different stadium of the
approximation. In each stadium, the algorithm approximates one more global
minimizer.

We mention once more that the focus of this paper is on theoretical results.
They tell us that in the worst case setting, the algorithm Z cannot be improved
dramatically. However, we want to change the algorithm in some heuristically
promising ways such that on the one hand the cost estimation of the original
algorithm still holds and on the other hand we have a function wise speed-up.
We will discuss these results in our forthcoming PhD thesis.

20

14

12

10

8

6

4

2

0 −4 −2 0 2 4 6 8 10

14

12

10

8

6

4

2

0 −4 −2 0 2 4 6 8 10

14

12

10

8

6

4

2

0 −4 −2 0 2 4 6 8 10

Fig. 4. The knots chosen by Z(4, 10), Z(4, 25), Z(4, 29) for fBR

k cost x∗ f∗

10 75 (3.14015, 2.28433) 0.3979647

25 4455 (3.14031, 2.28395) 0.3979585

29 11864 (3.14243, 2.27366) 0.3978912

Fig. 5. Results for Z(4, k) and fBR

21

References

Bakvalov, N. S. (1959), On approximate computation of multiple integrals
(in Russian), in Vestnik Moscow Univ. Ser. I Mat. Mekh. 4, pp. 3-18.

Calvin, J. M. (2004), Lower bounds on complexity of optimization of con-
tinuous functions, in Journal of Complexity, 20, pp. 773-795.

Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993), Lip-
schitzian optimization without the Lipschitz constant, in Journal of Opti-
mization Theory and Application 79, No. 1, pp. 157-181.

Nemirovski, A. (1995), Polynomial time methods in convex programming,
in AMS-SIAM Summer Seminar in Applied Mathematics (1995: Park City,
Utah), pp. 543-589. American Mathmatical Society, Providence.

Novak, E. (1988), Deterministic and Stochastic Error Bounds in Numerical
Analysis, Springer Lecture Notes in Mathematics 1349, Berlin.

Novak, E. (1995), The real number model in numerical analysis, in Journal
of Complexity 11, pp. 57-73.

Perevozchikov, A. G. (1990), The complexity of the computation of the
global extremum in a class of multi-extremum problems, in U.S.S.R. Comp.
Maths. Math. Phys. 30, No. 2, pp. 28-33.

Ritter, K. (1990), Approximation on the Wiener space, in Journal of Com-
plexity, 6, pp. 337-364.

Törn, A., and Žilinskas, A. (1989), Global Optimization, Springer Lec-
ture Notes in Computer Science 350, Berlin.

22

