Functional quantization and metric entropy for Riemann-Liouville processes

Harald Luschgy* and Gilles Pagès ${ }^{\dagger}$

January 24, 2005

Abstract

We derive a high-resolution formula for the $L 2$-quantization errors of Riemann-Liouville processes and the sharp Kolmogorov entropy asymptotics for related Sobolev balls. We describe a quantization procedure which leads to asymptotically optimal functional quantizers. Regular variation of the eigenvalues of the covariance operator plays a crucial role.

Keywords: Functional quantization, metric entropy, Gaussian process, Riemann-Liouville process, optimal quantizer.

MSC: 60G15, 60E99, 41A46.

1 Introduction

Functional quantization of stochastic processes can be seen as a discretization of the path-space of a process and the approximation (coding) of a process by finitely many deterministic functions from its path-space. In a Hilbert space setting this reads as follows.

Let $(H,<\cdot, \cdot>)$ be a separable Hilbert space with norm $\|\cdot\|$ and let $X:(\Omega, \mathcal{A}, \mathbb{P}) \rightarrow H$ be a random vector taking its values in H with distribution \mathbb{P}_{X}. For $n \in \mathbb{N}$, the $L 2$-quantization problem for X of level n (or of nat-level $\log n$) consists in minimizing

$$
\left(\mathbb{E} \min _{a \in \alpha}\|X-a\|^{2}\right)^{1 / 2}=\left\|\min _{a \in \alpha}\right\| X-a\| \|_{L 2(\mathbb{P})}
$$

over all subsets $\alpha \subset H$ with $\operatorname{card}(\alpha) \leq n$. Such a set α is called n-codebook or n-quantizer. The minimal nth quantization error of X is then defined by

$$
\begin{equation*}
e_{n}(X):=\inf \left\{\left(\mathbb{E} \min _{a \in \alpha}\|X-a\|^{2}\right)^{1 / 2}: \alpha \subset H, \operatorname{card}(\alpha) \leq n\right\} \tag{1.1}
\end{equation*}
$$

Under the integrability condition

$$
\begin{equation*}
\mathbb{E}\|X\|^{2}<\infty \tag{1.2}
\end{equation*}
$$

the quantity $e_{n}(X)$ is finite.

[^0]For a given n-quantizer α one defines an associated closest neighbour projection

$$
\pi_{\alpha}:=\sum_{a \in \alpha} a \mathbf{1}_{C_{a}(\alpha)}
$$

and the induced α-quantization (Voronoi quantization) of X by

$$
\begin{equation*}
\hat{X}^{\alpha}:=\pi_{\alpha}(X), \tag{1.3}
\end{equation*}
$$

where $\left\{C_{a}(\alpha): a \in \alpha\right\}$ is a Voronoi partition induced by α, that is a Borel partition of H satisfying

$$
\begin{equation*}
C_{a}(\alpha) \subset V_{a}(\alpha):=\left\{x \in H:\|x-a\|=\min _{b \in \alpha}\|x-b\|\right\} \tag{1.4}
\end{equation*}
$$

for every $a \in \alpha$. Then one easily checks that, for any random vector $X^{\prime}: \Omega \rightarrow \alpha \subset H$,

$$
\mathbb{E}\left\|X-X^{\prime}\right\|^{2} \geq \mathbb{E}\left\|X-\hat{X}^{\alpha}\right\|^{2}=\mathbb{E} \min _{a \in \alpha}\|X-a\|^{2}
$$

so that finally

$$
\begin{align*}
e_{n}(X)= & \inf \left\{\left(\mathbb{E}\|X-\hat{X}\|^{2}\right)^{1 / 2}: \hat{X}=f(X), f: H \rightarrow H \text { Borel measurable },\right. \tag{1.5}\\
& \operatorname{card}(f(H)) \leq n\} \\
= & \inf \left\{\left(\mathbb{E}\|X-\hat{X}\|^{2}\right)^{1 / 2}: \hat{X}: \Omega \rightarrow H \text { random vector, } \operatorname{card}(\hat{X}(\Omega)) \leq n\right\} .
\end{align*}
$$

Observe that the Voronoi cells $V_{a}(\alpha), a \in \alpha$ are closed and convex (where convexity is a characteristic feature of the underlying Hilbert structure). Note further that there are infinitely many α-quantizations of X which all produce the same quantization error and \hat{X}^{α} is \mathbb{P}-a.s. uniquely defined if \mathbb{P}_{X} vanishes on hyperplanes.

A typical setting for functional quantization is $H=L 2([0,1], d t)$ but is obviously not restricted to the Hilbert space setting. Functional quantization is the natural extension to stochastic processes of the so-called optimal vector quantization of random vectors in $H=\mathbb{R}^{d}$ which has been extensively investigated since the late 1940's in Signal processing and Information Theory (see [4], [8]). For the mathematical aspects of vector quantization in \mathbb{R}^{d}, one may consult [5], for algorithmic aspects see [15] and "non-classical" applications can be found in [14], [16]. For a first promising application of functional quantization to the pricing of financial derivatives through numerical integration on path-spaces see [17].

We address the issue of high-resolution quantization which concerns the performance of n quantizers and the behaviour of $e_{n}(X)$ as $n \rightarrow \infty$. The asymptotics of $e_{n}(X)$ for \mathbb{R}^{d}-valued random vectors has been completely elucidated for non-singular distributions \mathbb{P}_{X} by the Zador Theorem (see [5]) and for a class of self-similar (singular) distributions by [6]. In infinite dimensions no such global results hold, even for Gaussian processes.

It is convenient to use the symbols \sim and \lesssim, where $a_{n} \sim b_{n}$ means $a_{n} / b_{n} \rightarrow 1$ and $a_{n} \lesssim b_{n}$ means $\lim \sup _{n \rightarrow \infty} a_{n} / b_{n} \leq 1$. A measurable function $\varphi:(s, \infty) \rightarrow(0, \infty)(s \geq 0)$ is said to be regularly varying at infinity with index $b \in \mathbb{R}$ if, for every $c>0$,

$$
\lim _{x \rightarrow \infty} \frac{\varphi(c x)}{\varphi(x)}=c^{b}
$$

Now let X be centered Gaussian. Denote by $K_{X} \subset H$ the reproducing kernel Hilbert space (Cameron-Martin space) associated to the covariance operator

$$
\begin{equation*}
C_{X}: H \rightarrow H, C_{x} y:=\mathbb{E}(<y, X>X) \tag{1.6}
\end{equation*}
$$

of X. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots>0$ be the ordered nonzero eigenvalues of C_{X} and let $\left\{u_{j}: j \geq 1\right\}$ be the corresponding orthonormal basis of $\operatorname{supp}\left(\mathbb{P}_{X}\right)$ consisting of eigenvectors (Karhunen-Loève basis).
 $\bigotimes_{j=1}^{d} N\left(0, \lambda_{j}\right)$ with respect to the l_{2}-norm on \mathbb{R}^{d}, and thus we can read off the asymptotic behaviour of $e_{n}(X)$ from the high-resolution formula

$$
\begin{equation*}
e_{n}\left(\bigotimes_{j=1}^{d} N\left(0, \lambda_{j}\right)\right) \sim q(d) \sqrt{2 \pi}\left(\Pi_{j=1}^{d} \lambda_{j}\right)^{1 / 2 d}\left(\frac{d+2}{d}\right)^{(d+2) / 4} n^{-1 / d} \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

where $q(d) \in(0, \infty)$ is a constant depending only on the dimension d (see [5]). Except in dimension $d=1$ and $d=2$, the true value of $q(d)$ is unknown. However, one knows (see [5]) that

$$
\begin{equation*}
q(d) \sim\left(\frac{d}{2 \pi e}\right)^{1 / 2} \quad \text { as } d \rightarrow \infty \tag{1.8}
\end{equation*}
$$

Assume $\operatorname{dim} K_{X}=\infty$. Under regular behaviour of the eigenvalues the sharp asymptotics of $e_{n}(X)$ can be derived analogously to (1.7). In view of (1.8) it is reasonable to expect that the limiting constants can be evaluated. The recent high-resolution formula is as follows.

Theorem 1 ([11]) Let X be a centered Gaussian. Assume $\lambda_{j} \sim \varphi(j)$ as $j \rightarrow \infty$, where φ : $(s, \infty) \rightarrow(0, \infty)$ is a decreasing, regularly varying function at infinity of index $-b<-1$ for some $s \geq 0$. Set, for every $x>s$,

$$
\psi(x):=\frac{1}{x \varphi(x)}
$$

Then

$$
e_{n}(X) \sim\left(\left(\frac{b}{2}\right)^{b-1} \frac{b}{b-1}\right)^{1 / 2} \psi(\log n)^{-1 / 2} \text { as } n \rightarrow \infty
$$

A high-resolution formula in case $b=1$ is also available (see [11]). Note that the restriction $-b \leq-1$ on the index of φ is natural since $\sum_{j=1}^{\infty} \lambda_{j}<\infty$. The minimal L^{r}-quantization errors of $X, 0<r<\infty$, are strongly equivalent to the $L 2$-errors $e_{n}(X)$ (see [2]) and thus exhibit the same high-resolution behaviour.

A related quantization problem is the Kolmogorov metric entropy problem for the closed unit ball

$$
\begin{equation*}
U_{X}:=\left\{x \in K_{X}:\|x\|_{K_{X}} \leq 1\right\}=\left\{x \in \operatorname{supp}\left(\mathbb{P}_{X}\right): \sum_{j \geq 1} \frac{<x, u_{j}>^{2}}{\lambda_{j}} \leq 1\right\} \tag{1.9}
\end{equation*}
$$

of K_{X} (Strassen ball). Note that U_{X} is a compact subset of H. For $n \in \mathbb{N}$, the metric entropy problem for U_{X} consists in minimizing

$$
\max _{x \in U_{X}} \min _{a \in \alpha}\|x-a\|=\left\|\min _{a \in \alpha}\right\| X^{\prime}-a\| \|_{L^{\infty}(\mathbb{P})}
$$

over all subsets $\alpha \subset H$ with $\operatorname{card}(\alpha) \leq n$, where X^{\prime} is any H-valued random vector with $\operatorname{supp}\left(\mathbb{P}_{X^{\prime}}\right)=$ U_{X}. The nth entropy number is then defined by

$$
\begin{equation*}
e_{n}\left(U_{X}\right):=\inf \left\{\max _{x \in U_{X}} \min _{a \in \alpha}\|x-a\|: \alpha \subset H, \operatorname{card}(\alpha) \leq n\right\} \tag{1.10}
\end{equation*}
$$

If $d:=\operatorname{dim} K_{X}<\infty$, then $e_{n}\left(U_{X}\right)=e_{n}\left(\mathcal{E}_{d}\right)$, the nth entropy number of the ellipsoid

$$
\mathcal{E}_{d}:=\left\{x \in \mathbb{R}^{d}: \sum_{j=1}^{d} \frac{x 2_{j}}{\lambda_{j}} \leq 1\right\}
$$

with respect to the l_{2}-norm on \mathbb{R}^{d}. Thus we can read off the asymptotic behaviour of $e_{n}\left(U_{X}\right)$ from the formula

$$
\begin{equation*}
e_{n}(\mathcal{E}) \sim p(d)\left(\Pi_{j=1}^{d} \lambda_{j}\right)^{1 / 2}\left(\operatorname{vol}\left(B_{d}(0,1)\right)\right)^{1 / d} n^{-1 / d} \text { as } n \rightarrow \infty \tag{1.11}
\end{equation*}
$$

where the constant $p(d) \in(0, \infty)$ is unknown for $d \geq 3$ and $p(d) \sim q(d), d \rightarrow \infty$ (see [9], [5]).
If $\operatorname{dim} K_{X}=\infty$, the recent solution of the Kolmogorov metric entropy problem for U_{X} is as follows.

Theorem 2 ([12]) Assume the situation of Theorem 1. Then

$$
e_{n}\left(U_{X}\right) \sim\left(\frac{b}{2}\right)^{b / 2} \varphi(\log n)^{1 / 2} \text { as } n \rightarrow \infty
$$

This formula is still valid for $b=1$ and, ignoring the probabilistic interpretation, also for $b \geq 0$ $(00:=1)$ provided $\lambda_{j} \rightarrow 0$ as $j \rightarrow \infty$. (see [7], [12]). A different approach via the inverse of $e_{n}\left(U_{X}\right)$, the Kolmogorov ε-entropy, is due to Donoho [3]. (However, his result does not provide the correct constant.)

From Theorems 1 and 2 we conclude that functional quantization and metric entropy are related by

$$
\begin{equation*}
e_{n}(X) \sim\left(\frac{2 \log n}{b-1}\right)^{1 / 2} e_{n}\left(U_{X}\right) \text { as } n \rightarrow \infty \tag{1.12}
\end{equation*}
$$

The paper is organized as follows. In Section 2 we investigate Riemann-Liouville processes in $H=L 2([0,1], d t)$. For $\rho \in(0, \infty)$, the Riemann-Liouville process $X^{\rho}=\left(X_{t}^{\rho}\right)_{t \in[0,1]}$ on $[0,1]$ is defined by

$$
\begin{equation*}
X_{t}^{\rho}:=\int_{0}^{t}(t-s)^{\rho-\frac{1}{2}} d W_{s} \tag{1.13}
\end{equation*}
$$

where W is a standard Brownian motion. We derive a high-resolution formula for X^{ρ} and correspondingly, the precise entropy asymptotics for fractional Sobolev balls. As a consequence we obtain a new result for fractionally integrated Brownian motions. In Section 3 we describe a quantization procedure which furnishes asymptotically optimal quantizers in the situation of Theorem 1. Here the Karhunen-Loève expansion plays a crucial rôle. In Section 4 we discuss a dimension conjecture.

2 Riemann-Liouville processes

Let $X^{\rho}=\left(X_{t}^{\rho}\right)_{t \in[0,1]}$ be the Riemann-Liouville process of index $\rho \in(0, \infty)$ as defined in (1.13). Its covariance function is given by

$$
\begin{equation*}
\mathbb{E} X_{s}^{\rho} X_{t}^{\rho}=\int_{0}^{s \wedge t}(t-r)^{\rho-\frac{1}{2}}(s-r)^{\rho-\frac{1}{2}} d r . \tag{2.1}
\end{equation*}
$$

Using $\rho \wedge \frac{1}{2}$-Hölder continuity of the application $t \mapsto X_{t}^{\rho}$ from $[0,1]$ into $L 2(\mathbb{P})$ and the Kolmorogov criterion one checks that X^{ρ} has a pathwise continuous modification so that we may assume without
loss of generality that X^{ρ} is pathwise continuous. In particular, X^{ρ} can be seen as a centered Gaussian random vector with values in

$$
H=L 2([0,1], d t) .
$$

The following high-resolution formula relies on a theorem by Vu and Gorenflo [18] on singular values of Riemann-Liouville integral operators

$$
\begin{equation*}
R_{\beta} g(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1} g(s) d s, \quad \beta \in(0, \infty) . \tag{2.2}
\end{equation*}
$$

Theorem 3 For every $\rho \in(0, \infty)$,

$$
e_{n}\left(X^{\rho}\right) \sim \pi^{-\left(\rho+\frac{1}{2}\right)}(\rho+1 / 2)^{\rho}\left(\frac{2 \rho+1}{2 \rho}\right)^{1 / 2} \Gamma(\rho+1 / 2)(\log n)^{-\rho} \text { as } n \rightarrow \infty .
$$

Proof. For $\beta>1 / 2$, the Riemann-Liouville fractional integral operator R_{β} is a bounded operator from $L 2([0,1], d t)$ into $L 2([0,1], d t)$. The covariance operator

$$
C_{\rho}: L 2([0,1], d t) \rightarrow L 2([0,1], d t)
$$

of X^{ρ} is given by the Fredholm transformation

$$
C_{\rho} g(t)=\int 1_{0} g(s) E X_{s}^{\rho} X_{t}^{\rho} d s
$$

Using (2.1), one checks that C_{ρ} admits a factorization

$$
C_{\rho}=S_{\rho} S_{\rho}^{*},
$$

where

$$
S_{\rho}=\Gamma(\rho+1 / 2) R_{\rho+\frac{1}{2}} .
$$

Consequently, it follows from Theorem 1 in [18] that the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots>0$ of C_{ρ} satisfy

$$
\begin{equation*}
\lambda_{j} \sim \Gamma(\rho+1 / 2) 2(\pi j)^{-(2 \rho+1)} \text { as } j \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

Now the assertion follows from Theorem 1 (with $\varphi(x)=\Gamma(\rho+1 / 2) 2 \pi^{-b} x^{-b}$ and $b=2 \rho+1$).
An immediate consequence for fractionally integrated Brownian motions on $[0,1]$ defined by

$$
\begin{equation*}
Y_{t}^{\beta}:=\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1} W_{s} d s \tag{2.4}
\end{equation*}
$$

for $\beta \in(0, \infty)$ is as follows.
Corollary 1 For every $\beta \in(0, \infty)$,

$$
e_{n}\left(Y^{\beta}\right) \sim \pi^{-(\beta+1)}(\beta+1)^{\beta+\frac{1}{2}}\left(\frac{2 \beta+2}{2 \beta+1}\right)^{1 / 2}(\log n)^{-\left(\beta+\frac{1}{2}\right)} \text { as } n \rightarrow \infty .
$$

Proof. For $\rho>1 / 2$, the Ito formula yields

$$
X_{t}^{\rho}=\left(\rho-\frac{1}{2}\right) \int_{0}^{t}(t-s)^{\rho-\frac{3}{2}} W_{s} d s .
$$

Consequently,

$$
Y_{t}^{\beta}=\frac{1}{\beta \Gamma(\beta)} \beta \int_{0}^{t}(t-s)^{\beta+\frac{1}{2}-\frac{3}{2}} W_{s} d s=\frac{1}{\Gamma(1+\beta)} X_{t}^{\beta+\frac{1}{2}} .
$$

The assertion follows from Theorem 3.
Remark. The preceding corollary provides new high-resolution formulas for $e_{n}\left(Y^{\beta}\right)$ in the cases $\beta \in(0, \infty) \backslash \mathbb{N}$.

One further consequence is a precise relationship between the quantization errors of RiemannLiouville processes and fractional Brownian motions. The fractional Brownian motion with Hurst exponent $\rho \in(0,1]$ is a centered pathwise continuous Gaussian process $Z^{\rho}=\left(Z_{t}^{\rho}\right)_{t \in[0,1]}$ having the covariance function

$$
\begin{equation*}
\mathbb{E} Z_{s}^{\rho} Z_{t}^{\rho}=\frac{1}{2}\left(s^{2 \rho}+t^{2 \rho}-|s-t|^{2 \rho}\right) \tag{2.5}
\end{equation*}
$$

Corollary 2 For every $\rho \in(0,1)$,

$$
e_{n}\left(X^{\rho}\right) \sim \frac{\Gamma(\rho+1 / 2)}{(\Gamma(2 \rho+1) \sin (\pi \rho))^{1 / 2}} e_{n}\left(Z^{\rho}\right) \text { as } n \rightarrow \infty .
$$

Proof. By [11], we have

$$
e_{n}\left(Z^{\rho}\right) \sim \pi^{-\left(\rho+\frac{1}{2}\right)}(\rho+1 / 2)^{\rho}\left(\frac{2 \rho+1}{2 \rho}\right)^{1 / 2}(\Gamma(2 \rho+1) \sin (\pi \rho))^{1 / 2}(\log n)^{-\rho}, n \rightarrow \infty .
$$

Combining this formula with Theorem 3 yields the assertion
Observe that strong equivalence $e_{n}\left(X^{\rho}\right) \sim e_{n}\left(Z^{\rho}\right)$ as $n \rightarrow \infty$ is true for exactly two values of $\rho \in(0,1)$, namely for $\rho=1 / 2$ where even $e_{n}\left(X^{1 / 2}\right)=e_{n}\left(Z^{1 / 2}\right)=e_{n}(W)$ and, a bit mysterious, for $\rho=0.81557 \ldots$

Now consider the Strassen ball U_{ρ} of X^{ρ}. Since the covariance operator C_{ρ} satisfies $C_{\rho}=$ $\Gamma\left(\rho+\frac{1}{2}\right) R_{\rho+\frac{1}{2}}\left(\Gamma\left(\rho+\frac{1}{2}\right) R_{\rho+\frac{1}{2}}\right)^{*}$, one gets

$$
\begin{align*}
U_{\rho} & =\Gamma(\rho+1 / 2) R_{\rho+\frac{1}{2}}\left(B_{L 2}(0,1)\right) \tag{2.6}\\
& =\left\{R_{\rho+1 / 2} g: g \in L 2([0,1], d t), \int 1_{0} g(t)^{2} d t \leq \Gamma(\rho+1 / 2) 2\right\},
\end{align*}
$$

a fractional Sobolev ball. Theorem 2 and (2.3) yield the solution of the entropy problem for fractional Sobolev balls.

Theorem 4 For every $\rho \in(0, \infty)$,

$$
\begin{aligned}
e_{n}\left(U_{\rho}\right) & \sim\left(\frac{\rho+\frac{1}{2}}{\pi}\right)^{\rho+\frac{1}{2}} \Gamma(\rho+1 / 2)(\log n)^{-\left(\rho+\frac{1}{2}\right)} \\
& \sim\left(\frac{\rho}{\log n}\right)^{1 / 2} e_{n}\left(X^{\rho}\right) \text { as } n \rightarrow \infty
\end{aligned}
$$

3 Asymptotically optimal functional quantizers

Let X be a H-valued random vector satisfying (1.2). For every $n \in \mathbb{N}, L 2$-optimal n-quantizers $\alpha \subset H$ exist, that is

$$
\left(\mathbb{E} \min _{a \in \alpha}\|X-a\|^{2}\right)^{1 / 2}=e_{n}(X)
$$

If card $\left(\operatorname{supp}\left(\mathbb{P}_{X}\right)\right) \geq n$, optimal n-quantizers α satisfy $\operatorname{card}(\alpha)=n, \mathbb{P}\left(X \in C_{a}(\alpha)\right)>0$ and the stationarity condition

$$
a=\mathbb{E}\left(X \mid\left\{X \in C_{a}(\alpha)\right\}\right), a \in \alpha
$$

or what is the same

$$
\begin{equation*}
\hat{X}^{\alpha}=\mathbb{E}\left(X \mid \hat{X}^{\alpha}\right) \tag{3.1}
\end{equation*}
$$

for every Voronoi partition $\left\{C_{a}(\alpha): a \in \alpha\right\}$ (see [10]). In particular, $\mathbb{E} \hat{X}^{\alpha}=\mathbb{E} X$.
Now let X be centered Gaussian with $\operatorname{dim} K_{X}=\infty$. The Karhunen-Loève basis $\left\{u_{j}: j \geq 1\right\}$ consisting of normalized eigenvectors of C_{X} is optimal for the quantization of Gaussian random vectors (see [10]). So we start with the Karhunen-Loève expansion

$$
X \stackrel{H}{=} \sum_{j=1}^{\infty} \lambda_{j}^{1 / 2} Z_{j} u_{j}
$$

where $Z_{j}=<X, u_{j}>/ \lambda_{j}^{1 / 2}, j \geq 1$ are i.i.d. $N(0,1)$-distributed random variables. The design of an asymptotically optimal quantization of X is based on optimal quantizing blocks of coefficients of variable (n-dependent) block length. Let $n \in \mathbb{N}$ and fix temporarily $m, l, n_{1}, \ldots, n_{m} \in \mathbb{N}$ with $\Pi_{j=1}^{m} n_{j} \leq n$, where m denotes the number of blocks, l the block length and n_{j} the size of the quantizer for the j th block

$$
Z^{(j)}:=\left(Z_{(j-1) l+1}, \ldots, Z_{j l}\right), \quad j \in\{1, \ldots, m\} .
$$

Let $\alpha_{j} \subset \mathbb{R}^{l}$ be an $L 2$-optimal n_{j}-quantizer for $Z^{(j)}$ and let $\widehat{Z^{(j)}}=\widehat{Z^{(j)}}{ }^{\alpha_{j}}$ be a α_{j}-quantization of $Z^{(j)}$. Then, define a quantized version of X by

$$
\begin{equation*}
\hat{X}^{n}:=\sum_{j=1}^{m} \sum_{k=1}^{l} \lambda_{(j-1) l+k}^{1 / 2}\left(\widehat{Z^{(j)}}\right)_{k} u_{(j-1) l+k} . \tag{3.2}
\end{equation*}
$$

It is clear that $\operatorname{card}\left(\hat{X}^{n}(\Omega)\right) \leq n$. Using (3.1) for $Z^{(j)}$, one gets $\mathbb{E} \hat{X}^{n}=0$. If

$$
\widehat{Z^{(j)}}=\sum_{b \in \alpha_{j}} b \mathbf{1}_{C_{b}\left(\alpha_{j}\right)}\left(Z^{(j)}\right)
$$

then

$$
\hat{X}^{n}=\sum_{a \in \times_{j=1}^{m} \alpha_{j}}\left(\sum_{j=1}^{m} \sum_{k=1}^{l} \lambda_{(j-1) l+k}^{1 / 2} a_{k}^{(j)} u_{(j-1) l+k}\right) \Pi_{j=1}^{m} \mathbf{1}_{C_{a}(j)}\left(\alpha_{j)}\left(Z^{(j)}\right)\right.
$$

where $a=\left(a^{(1)}, \ldots, a^{(m)}\right) \in \times_{j=1}^{m} \alpha_{j}$. Observe that in general, \hat{X}^{n} is not a Voronoi quantization of X since it is based on the (less complicated) Voronoi partitions for $Z^{(j)}, j \leq m$. (\hat{X}^{n} is a Voronoi quantization if $l=1$ or if $\lambda_{(j-1) l+1}=\ldots=\lambda_{j l}$ for every j.) Using again (3.1) for $Z^{(j)}$ and the independence structure, one checks that \hat{X}^{n} satisfies a kind of stationarity equation:

$$
\mathbb{E}\left(X \mid \hat{X}^{n}\right)=\hat{X}^{n}
$$

Lemma 1 Let $n \geq 1$. For every $l \geq 1$ and every $m \geq 1$

$$
\begin{equation*}
\mathbb{E}\left\|X-\hat{X}^{n}\right\|^{2} \leq \sum_{j=1}^{m} \lambda_{(j-1) l+1} e_{n_{j}}\left(N\left(0, I_{l}\right)\right) 2+\sum_{j \geq m l+1} \lambda_{j} . \tag{3.3}
\end{equation*}
$$

Furthermore, (3.3) stands as an equality if $l=1$ (or $\lambda_{(j-1) l+1}=\ldots=\lambda_{j l}$ for every $j, l \geq 1$).
Proof. The claim follows from the orthonormality of the basis $\left\{u_{j}: j \geq 1\right\}$. We have

$$
\begin{aligned}
\mathbb{E}\left\|X-\hat{X}^{n}\right\|^{2} & =\sum_{j=1}^{m} \sum_{k=1}^{l} \lambda_{(j-1) l+k} \mathbb{E}\left|Z_{k}^{(j)}-\left(\widehat{Z^{(j)}}\right)_{k}\right| 2+\sum_{j \geq m l+1} \lambda_{j} \\
& \left.\leq \sum_{j=1}^{m} \lambda_{(j-1) l+1} \sum_{k=1}^{l} \mathbb{E} \mid Z_{k}^{(j)}-\widehat{Z^{(j)}}\right)_{k} \mid 2+\sum_{j \geq m l+1} \lambda_{j} \\
& =\sum_{j=1}^{m} \lambda_{(j-1) l+1} e_{n_{j}}\left(Z^{(j)}\right) 2+\sum_{j \geq m l+1} \lambda_{j} .
\end{aligned}
$$

Set

$$
\begin{equation*}
C(l):=\sup _{k \geq 1} k^{2 / l} e_{k}\left(N\left(0, I_{l}\right)\right) 2 . \tag{3.4}
\end{equation*}
$$

By (1.7), $C(l)<\infty$. For every $l \in \mathbb{N}$,

$$
\begin{equation*}
e_{n_{j}}\left(N\left(0, I_{l}\right) 2 \leq n_{j}^{-2 / l} C(l)\right. \tag{3.5}
\end{equation*}
$$

Then one may replace the optimization problem which consists, for fixed n, in minimizing the right hand side of Lemma 1 by the following optimal allocation problem:

$$
\begin{equation*}
\min \left\{C(l) \sum_{j=1}^{m} \lambda_{(j-1) l+1} n_{j}^{-2 / l}+\sum_{j \geq m l+1} \lambda_{j}: m, l, n_{1}, \ldots, n_{m} \in \mathbb{N}, \Pi_{j=1}^{m} n_{j} \leq n\right\} \tag{3.6}
\end{equation*}
$$

Set

$$
\begin{align*}
& m=m(n, l):=\max \left\{k \geq 1: n^{1 / k} \lambda_{(k-1) l+1}^{l / 2}\left(\Pi_{j=1}^{k} \lambda_{(j-1) l+1}\right)^{-l / 2 k} \geq 1\right\}, \tag{3.7}\\
& n_{j}=n_{j}(n, l):=\left[n^{1 / m} \lambda_{(j-1) l+1}^{l / 2}\left(\Pi_{i=1}^{m} \lambda_{(i-1) l+1}\right)^{-l / 2 m}\right], j \in\{1, \ldots, m\}, \tag{3.8}
\end{align*}
$$

where $[x]$ denotes the integer part of $x \in \mathbb{R}$ and

$$
\begin{equation*}
l=l_{n}:=\left[(\max \{1, \log n\})^{\vartheta}\right], \vartheta \in(0,1) . \tag{3.9}
\end{equation*}
$$

In the following theorem it is demonstrated that this choice is at least asymptotically optimal provided the eigenvalues are regularly varying.

Theorem 5 Assume the situation of Theorem 1. Consider \hat{X}^{n} with tuning parameters defined in (3.7)-(3.9). Then \hat{X}^{n} is asymptotically n-optimal, i.e.

$$
\left(\mathbb{E}\left\|X-\hat{X}^{n}\right\|^{2}\right)^{1 / 2} \sim e_{n}(X) \text { as } n \rightarrow \infty .
$$

Note that no block quantizer with fixed block length is asymptotically optimal (see [11]). As mentioned above, \hat{X}^{n} is not a Voronoi quantization of X. If $\alpha_{n}:=\hat{X}^{n}(\Omega)$, then the Voronoi quantization $\hat{X}^{\alpha_{n}}$ is clearly also asymptotically n-optimal.

The key property for the proof is the following l-asymptotics of the constants $C(l)$ defined in (3.4). It is interesting to consider also the smaller constants

$$
\begin{equation*}
Q(l):=\lim _{k \rightarrow \infty} k^{2 / l} e_{k}\left(N\left(0, I_{l}\right)\right) 2 \tag{3.10}
\end{equation*}
$$

(see (1.7)).
Proposition 1 The sequences $(C(l))_{l \geq 1}$ and $(Q(l))_{l \geq 1}$ satisfy

$$
\lim _{l \rightarrow \infty} \frac{C(l)}{l}=\lim _{l \rightarrow \infty} \frac{Q(l)}{l}=\inf _{l \geq 1} \frac{C(l)}{l}=\inf _{l \geq 1} \frac{Q(l)}{l}=1 .
$$

Proof. From [11] it is known that

$$
\begin{equation*}
\liminf _{l \rightarrow \infty} \frac{C(l)}{l}=1 . \tag{3.11}
\end{equation*}
$$

Furthermore, it follows immediately from (1.7) and (1.8) that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \frac{Q(l)}{l}=1 . \tag{3.12}
\end{equation*}
$$

(The proof of the existence of $\lim _{l \rightarrow \infty} C(l) / l$ we owe to S. Dereich.) For $l_{0}, l \in \mathbb{N}$ with $l \geq l_{0}$, write

$$
l=n l_{0}+m \text { with } n \in \mathbb{N}, m \in\left\{0, \ldots, l_{0}-1\right\} .
$$

Since for every $k \in \mathbb{N}$,

$$
\left[k^{l_{0} / l}\right]^{n}\left[k^{1 / l}\right]^{m} \leq k,
$$

one obtains by a block-quantizer design consisting of n blocks of length l_{0} and m blocks of length 1 for quantizing $N\left(0, I_{l}\right)$,

$$
\begin{equation*}
e_{k}\left(N\left(0, I_{l}\right)\right) 2 \leq n e_{\left[k^{l_{0} / l}\right]}\left(N\left(0, I_{l_{0}}\right)\right) 2+m e_{\left[k^{1 / l}\right]}(N(0,1)) 2 . \tag{3.13}
\end{equation*}
$$

This implies

$$
\begin{aligned}
C(l) & \leq n C\left(l_{0}\right) \sup _{k \geq 1} \frac{k^{2 / l}}{\left[k^{l_{0} / l}\right]^{2 / l_{0}}}+m C(1) \sup _{k \geq 1} \frac{k^{2 / l}}{\left[k^{1 / l}\right]^{2}} \\
& \leq 4^{1 / l_{0}} n C\left(l_{0}\right)+4 m C(1) .
\end{aligned}
$$

Consequently, using $n / l \leq 1 / l_{0}$,

$$
\frac{C(l)}{l} \leq \frac{4^{1 / l_{0}} C\left(l_{0}\right)}{l_{0}}+\frac{4 m C(1)}{l}
$$

and hence

$$
\limsup _{l \rightarrow \infty} \frac{C(l)}{l} \leq \frac{4^{1 / l_{0}} C\left(l_{0}\right)}{l_{0}} .
$$

This yields

$$
\begin{equation*}
\limsup _{l \rightarrow \infty} \frac{C(l)}{l} \leq \liminf _{l_{0} \rightarrow \infty} \frac{C\left(l_{0}\right)}{l_{0}}=1 . \tag{3.14}
\end{equation*}
$$

It follows from (3.13) that

$$
Q(l) \leq n Q\left(l_{0}\right)+m Q(1) .
$$

Consequently

$$
\frac{Q(l)}{l} \leq \frac{Q\left(l_{0}\right)}{l_{0}}+\frac{m Q(1)}{l}
$$

and therefore

$$
1=\lim _{l \rightarrow \infty} \frac{Q(l)}{l} \leq \frac{Q\left(l_{0}\right)}{l_{0}} .
$$

This implies

$$
\begin{equation*}
\inf _{l_{0} \geq 1} \frac{Q\left(l_{0}\right)}{l_{0}}=1 . \tag{3.15}
\end{equation*}
$$

Since $Q(l) \leq C(l)$, the proof is complete.
The n-asymptotics of the number $m\left(n, l_{n}\right) l_{n}$ of quantized coefficients in the Karhunen-Loève expansion in the quantization \hat{X}^{n} is as follows.

Lemma 2 ([12], Lemma 4.8) Assume the situation of Theorem 1. Let $m\left(n, l_{n}\right)$ be defined by (3.7) and (3.9). Then

$$
m\left(n, l_{n}\right) l_{n} \sim \frac{2 \log n}{b} \text { as } n \rightarrow \infty
$$

Proof of Theorem 5. For every $n \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{j=1}^{m} \lambda_{(j-1) l+1} n_{j}^{-2 / l} & \leq \sum_{j=1}^{m} \lambda_{(j-1) l+1}\left(n_{j}+1\right)^{-2 / l}\left(\frac{n_{j}+1}{n_{j}}\right)^{2 / l} \\
& \leq 4^{1 / l} m n^{-2 / m l}\left(\Pi_{j=1}^{m} \lambda_{(j-1) l+1}\right)^{1 / m} \\
& \leq 4^{1 / l} m \lambda_{(m-1) l+1} .
\end{aligned}
$$

Therefore, by Lemma 1 and (3.5),

$$
\mathbb{E}\left\|X-\hat{X}^{n}\right\|^{2} \leq 4^{1 / l} \frac{C(l)}{l} m l \lambda_{(m-1) l+1}+\sum_{j \geq m l+1} \lambda_{j}
$$

for every $n \in \mathbb{N}$. By Lemma 2, we have

$$
m l=m\left(n, l_{n}\right) l_{n} \sim \frac{2 \log n}{b} \text { as } n \rightarrow \infty
$$

Consequently, using regular variation at infinity with index $-b<-1$ of the function φ,

$$
m l \lambda_{(m-1) l+1} \sim m l \lambda_{m l} \sim\left(\frac{2}{b}\right)^{1-b} \psi(\log n)^{-1}
$$

and

$$
\sum_{j \geq m l+1} \lambda_{j} \sim \frac{m l \varphi(m l)}{b-1} \sim \frac{1}{b-1}\left(\frac{2}{b}\right)^{1-b} \psi(\log n)^{-1} \text { as } n \rightarrow \infty,
$$

where, like in Theorem 1, $\psi(x)=1 / x \varphi(x)$. Since by Proposition 1,

$$
\lim _{n \rightarrow \infty} \frac{4^{1 / l_{n}} C\left(l_{n}\right)}{l_{n}}=1,
$$

one concludes

$$
\mathbb{E}\left\|X-\hat{X}^{n}\right\|^{2} \lesssim\left(\frac{2}{b}\right)^{1-b} \frac{b}{b-1} \psi(\log n)^{-1} \text { as } n \rightarrow \infty .
$$

The assertion follows from Theorem 1.

Numerical and computational aspects: As soon as the Karhunen-Loève basis $\left(u_{j}\right)_{j \geq 1}$ of a Gaussian process X is explicit, it is possible to compute the asymptotically optimal functional quantization (3.2) which solves the minimization problem (3.6) as well as its distribution and induced quantization error (at least for a given $\vartheta \in(0,1)$). This is possible since some optimal (or at least locally optimal) vector quantizations of the $N\left(0, I_{d}\right)$-distribution has been already computed and kept off line. Let us be more specific.

In 1-dimension, the normal distribution $N(0,1)$ has only one stationary n-quantizer - hence optimal - since its probability density is log-concave (for this result due to Kiefer, see e.g. [5]). Deterministic methods to compute these optimal quantizers are based on the stationary equation (3.1). They are very easy to implement, converge very fast with a very high accuracy. The Newton-Raphson algorithm is a possible choice (see [15] for details). Closed forms for the lowest quadratic quantization error $\mathbb{E}\|Z-\widehat{Z}\|^{2}$ and for the distribution of the optimal n-quantization \widehat{Z}^{α} as a function of the optimal n-quantizer α are also available in [15]. These three quantities have been tabulated up to very high values of n. A file can be downloaded at the URL www. proba.jussieu.fr/pageperso/pages.html.

In higher dimension, one still relies on the stationary equation (3.1) which reads:

$$
\mathbb{E}\left(\mathbf{1}_{C_{a}(\alpha)}(Z)(a-Z)\right)=0, \quad a \in \alpha
$$

One must keep in mind that the left hand side of the above equation is but the gradient of the (squared) quantization error $\mathbb{E}\left\|Z-\widehat{Z}^{\alpha}\right\|^{2}$ viewed as a function of the quantizer α (assumed to be of full size n). A stochastic gradient descent based on this integral representation can be implemented easily since the normal distribution $N\left(0, I_{d}\right)$ can be simulated on a computer from (pseudo-)random numbers (e.g. by the Box-Muller method). This algorithm is known as the Competitive Learning Vector Quantization (or $C L V Q$) algorithm. It has been extensively investigated both from a theoretical (see e.g. [14], [1]) and numerical (see e.g. [15] as concerns normally distributed vectors) viewpoints. The algorithm reads as follows: let $(\zeta(t))_{t \geq 1}$ be an i.i.d. sequence of $N\left(0, I_{d}\right)$-distributed random vectors, let $\left(\gamma_{t}\right)_{t \geq 1}$ be a decreasing sequence of positive gain parameters satisfying $\sum_{t} \gamma_{t}=$ $+\infty$ and $\sum_{t \geq 1} \gamma 2_{t}<+\infty$ and let $\alpha(0) \in\left(\mathbb{R}^{d}\right)^{n}$ denote a starting n-quantizer. Then, at time $t \in \mathbb{N}$, one updates the running n-quantizer $\alpha(t-1):=\left(\alpha_{1}(t-1), \ldots, \alpha_{n}(t-1)\right)$ as follows

Competitive phase: select $i(t) \in \operatorname{argmin}\left\{i:\left\|\alpha_{i}(t-1)-\zeta(t)\right\|=\min _{j}\left\|\alpha_{j}(t-1)-\zeta(t)\right\|\right\}$
LEARNING PHASE: $\quad \alpha_{i(t)}(t-1)=\left(1-\gamma_{t}\right) \alpha_{i(t)}(t-1)+\gamma_{t} \zeta(t)$

$$
\alpha(t)_{j}=\alpha_{j-1}(t-1), \quad j \neq i(t)
$$

Some further details concerning the numerical implementation of this procedure can be found in [15], especially some heuristics concerning the initialization and the specification of the gain parameter sequence usually choosen of the form $\gamma_{t}=\frac{A}{B+t}$. It converges toward some local minima of the quantization error at a $\sqrt{\gamma_{t}}$-rate. Some d-dimensional grids ($d=2$ up to 10) can be downloaded at the above URL for many values of n in the range 2 up to 2000 . These quantizations were carried out to solve numerically multi-dimensional stopping time problems (pricing of American options on baskets, see [16] and the references therein).

The 1-dimensional optimal quantization of the $N(0,1)$-distribution has already been used to produce some optimal scalar product functional quantization - i.e. based on blocks of fixed length 1- in [17] with some promising applications to the pricing of path-dependent European options in stochastic volatility models (this work is also based on results about diffusion processes from [13]).

To be competitive with other methods (Monte Carlo, pde's) one needs to have good performances for not too large values of n. Within this range of values, it is more efficient to perform directly a numerical optimisation of (3.3) (or (3.6)) with $l=1$ rather than using the theoretical asymptotically optimal parameters (3.7) and (3.8).

As far as numerical implementation of functional quantization with n-varying block length is concerned, some first numerical experiments carried out by Benedikt Wilbertz [19] for Brownian motion suggest that it slightly improves the scalar approach for high values of n, say $n \leq 106$, simply using up to 3 -dimensional n_{j}-quantizers with some n_{j} not greater than 100 . A similar improvement can be obtained for lower values of n (say $n \geq 20000$) by using product quantizers made of blocks with mixed lengths (1, 2 or 3).

Examples: The basic example (among Riemann-Liouville processes) is $X^{1 / 2}=W$ and $H=$ $L 2([0,1], d t)$, where

$$
\begin{equation*}
\lambda_{j}=(\pi(j-1 / 2))^{-2}, u_{j}(t)=\sqrt{2} \sin \left(t / \sqrt{\lambda_{j}}\right), j \geq 1 \tag{3.16}
\end{equation*}
$$

Since for $\delta, \rho \in(0, \infty)$,

$$
X^{\delta+\rho}=\frac{\Gamma\left(\delta+\rho+\frac{1}{2}\right)}{\Gamma\left(\rho+\frac{1}{2}\right)} R_{\delta}\left(X^{\rho}\right)
$$

one gets expansions of $X^{\delta+\rho}$ from Karhunen-Loève expansions of X^{ρ}. In particular,

$$
X^{\delta+\frac{1}{2}}=\Gamma(\delta+1) \sum_{j=1}^{\infty} \sqrt{\lambda_{j}} Z_{j} R_{\delta}\left(u_{j}\right)
$$

However, the functions $R_{\delta}\left(u_{j}\right), j \geq 1$, are not orthogonal in H so that the nonzero correlation between the components of $\left(Z^{(j)}-\widehat{Z^{(j)}}\right)$ prevents the previous estimates for $\mathbb{E}\left\|X-\widehat{X}^{n}\right\|^{2}$ given in Lemma 1 from working in this setting in the general case.

However, when $l=1$ (scalar product quantizers made up with blocks of fixed length $l=1$), one checks that these estimates still stand as equalities since orthogonality can now be substituted by the independence of $Z_{j}-\hat{Z}_{j}$ and stationarity property (3.1) of the quantizations $\hat{Z}_{j}, j \geq 1$. It is often good enough for applications to use scalar product quantizers (see [10], [17]). If, for instance $\delta=1$, then

$$
X:=X^{3 / 2}=\sum_{j=1}^{\infty} \sqrt{\lambda_{j}} Z_{j} R_{1}\left(u_{j}\right)
$$

where

$$
R_{1}\left(u_{j}\right)(t)=\sqrt{2 \lambda_{j}}\left(1-\cos \left(t / \sqrt{\lambda_{j}}\right)\right)
$$

Note that $\left\|R_{1}\left(u_{j}\right)\right\|^{2}=\lambda_{j}\left(3-4(-1)^{j-1} \sqrt{\lambda_{j}}\right), j \geq 1$. Set

$$
\hat{X}^{n}=\sum_{j=1}^{m} \sqrt{\lambda_{j}} \hat{Z}_{j} R_{1}\left(u_{j}\right)
$$

The quantization \widehat{X}^{n} is non Voronoi (it is related to the Voronoi tessellation of W) and satisfies

$$
\begin{equation*}
\mathbb{E}\left\|X-\widehat{X}^{n}\right\|^{2}=\sum_{j=1}^{m} \lambda 2_{j}\left(3-4(-1)^{j-1} \sqrt{\lambda_{j}}\right) e_{n_{j}}(N(0,1)) 2+\sum_{j \geq m+1} \lambda 2_{j}\left(3-4(-1)^{j-1} \sqrt{\lambda_{j}}\right) . \tag{3.17}
\end{equation*}
$$

It is possible to optimize the (scalar product) quantization error using this expression instead of (3.6). As concerns asymptotics, if the parameters are tuned following (3.7)-(3.9) with $l=1$ and λ_{j} replaced by

$$
\nu_{j}:=\lambda 2_{j}\left(3+4 \sqrt{\lambda_{j}}\right) \sim 3 \pi^{-4} j^{-4} \quad \text { as } \quad n \rightarrow \infty,
$$

and using Theorem 3 gives

$$
\begin{equation*}
\left(\mathbb{E}\left\|X-\hat{X}^{n}\right\|^{2}\right)^{1 / 2} \lesssim\left(\frac{3(12 C(1)+1)}{4}\right)^{1 / 2} e_{n}(X) \text { as } n \rightarrow \infty \tag{3.18}
\end{equation*}
$$

Numerical experiments seem to confirm that $C(1)=Q(1)$. Since $Q(1)=\pi \sqrt{3} / 2$ (see [5], p. 124), the above upper bound is then

$$
\left(\frac{3(6 \pi \sqrt{3}+1)}{4}\right)^{1 / 2}=5.02357 \ldots
$$

4 Dimension

Let X be a H-valued random vector satisfying (1.2). For $n \in \mathbb{N}$, let $\mathcal{C}_{n}(X)$ be the (nonempty) set of all $L 2$-optimal n-quantizers. Introduce the integral number

$$
\begin{equation*}
\left.d_{n}(X):=\min \{\operatorname{dim} \operatorname{span}(\alpha)): \alpha \in \mathcal{C}_{n}(X)\right\} . \tag{4.1}
\end{equation*}
$$

It represents the dimension at level n of the functional quantization problem for X. Here $\operatorname{span}(\alpha)$ denotes the linear subspace of H spanned by α. In view of Section 3, a reasonable conjecture for Gaussian random vectors is $d_{n}(X) \sim 2 \log n / b$ in regular cases, where $-b$ is the regularity index. We have at least the following lower estimate in the Gaussian case.

Proposition 2 Assume the situation of Theorem 1. Then

$$
d_{n}(X) \gtrsim \frac{1}{b^{1 /(b-1)}} \frac{2 \log n}{b} \text { as } n \rightarrow \infty .
$$

Proof. For every $n \in \mathbb{N}$, we have

$$
\begin{equation*}
d_{n}(X)=\min \left\{k \geq 0: e_{n}\left(\bigotimes_{j=1}^{k} N\left(0, \lambda_{j}\right)\right) 2+\sum_{j \geq k+1} \lambda_{j} \leq e_{n}(X) 2\right\} \tag{4.2}
\end{equation*}
$$

(see [10]). Define

$$
c_{n}:=\min \left\{k \geq 0: \sum_{j \geq k+1} \lambda_{j} \leq e_{n}(X) 2\right\}
$$

Clearly, c_{n} increases to infinity as $n \rightarrow \infty$ and by (4.2), $c_{n} \leq d_{n}(X)$ for every $n \in \mathbb{N}$. Using Theorem 1 and the fact that ψ is regularly varying at infinity with index $b-1$, we obtain

$$
\left((b-1) \psi\left(c_{n}\right)\right)^{-1} \sim \sum_{j \geq c_{n}+1} \lambda_{j} \sim e 2_{n}(X) \sim\left(\frac{2}{b}\right)^{1-b} \frac{b}{b-1} \psi(\log n)^{-1}
$$

and thus

$$
\psi\left(c_{n}\right) \sim\left(\frac{2}{b}\right)^{1-b} \frac{1}{b} \psi(\log n) \sim \psi\left(\frac{1}{b^{1 /(b-1)}} \frac{2 \log n}{b}\right) \text { as } n \rightarrow \infty
$$

Consequently,

$$
c_{n} \sim \frac{1}{b^{1 /(b-1)}} \frac{2 \log n}{b} \text { as } n \rightarrow \infty .
$$

This yields the assertion.
For Riemann-Liouville processes one concludes

$$
d_{n}\left(X^{\rho}\right) \gtrsim(2 \rho+1)^{-1 / 2 \rho} \frac{2 \log n}{2 \rho+1}
$$

(see (2.3)).
For the metric entropy problem one may introduce the numbers $d_{n}\left(U_{X}\right)$ analogously. Then, in the situation of Theorem 1 it is known that $d_{n}\left(U_{X}\right) \gtrsim 2 \log n / b$ (see [12]). It remains an open question whether $d_{n}(X) \sim d_{n}\left(U_{X}\right) \sim 2 \log n / b$.

References

[1] Bouton C., Pagès G., About the multi-dimensional Competitive Learning Vector Quantization Algorithm with constant gain, Ann. Applied Probab., 7 (3) (1997), 670-710.
[2] Dereich, S., High resolution coding of stochastic processes and small ball probabilities, PhD thesis, TU Berlin, 2003.
[3] Donoho, D.L., Counting bits with Kolmogorov and Shannon, Technical Report 38, Stanford University, 2000.
[4] Gersho, A., Gray, R.M., Vector Quantization and Signal Compression. Kluwer, Boston, 1992.
[5] Graf, S., Luschgy, H., Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics, Vol. 1730, Springer, Berlin, 2000.
[6] Graf, S., Luschgy, H., The point density measure in the quantization of self-similar probabilities, Math. Proc. Cambridge Phil. Soc., (to appear).
[7] Graf, S., Luschgy, H., Sharp asymptotics of the metric entropy for ellipsoids, J. Complexity, 20 (2004), 876-882.
[8] Gray, R.M., Neuhoff, D.L., Quantization, IEEE Trans. Inform., 44, (1998) 2325-2383.
[9] Kolmogorov, A.N., Tikhomirov, V.M., ε-entropy and ε-capacity of sets in functional spaces, Amer. Math. Soc. Transl. Ser., 2(17) (1961), 272-364.
[10] Luschgy, H., Pagès, G., Functional quantization of stochastic processes, J. Funct. Anal., 196 (2002), 486-531.
[11] Luschgy, H., Pagès, G., Sharp asymptotics of the functional quantization problem for Gaussian processes, Ann. Probab., 32 (2004), 1574-1599.
[12] Luschgy, H., Pagès, G., Sharp asymptotics of the Kolmorogov entropy for Gaussian measures, J. Funct. Anal., 212 (2004), 89-120.
[13] Luschgy, H., Pagès, G., Functional quantization of 1-dimensional Brownian diffusions, Preprint. LPMA Université Paris 6, 853, 2003.
[14] Pagès, G., A space vector quantization method for numerical integration, J. Computational and Applied Math., 89 (1997), 1-38.
[15] Pagès, G., Printems, J., Optimal quadratic quantization for numerics: the Gaussian case, Monte Carlo Methods and Applications, 9 (2003), 135-166.
[16] Pagès, G., Pham, H., Printems, J., Optimal quantization methods and applications to numerical methods and applications in finance, Handbook of Computational and Numerical Methods in Finance (ed. S. Rachev), 253-298, Birkhäuser, 2004.
[17] Pagès, G., Printems, J., Functional quadratic quantization for pricing derivatives, Preprint LMPA 930, Université Paris 6, 2004.
[18] Vu Kim Tuan, Gorenflo, R., Asymptotics of singular values of Volterra integral operators, Numer. Funct. Anal. and Optimiz., 17 (1996), 453-461.
[19] Wilbertz, B., Work in progress, 2004.

[^0]: *Universität Trier, FB IV-Mathematik, D-54286 Trier, Germany. E-mail: luschgy@uni-trier.de
 ${ }^{\dagger}$ Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6, case 188, 4, pl. Jussieu, F-75252 Paris Cedex 5. E-mail:gpa@ccr.jussieu.fr

