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Abstract. This paper surveys some of the work that was inspired by
Wagner’s general technique to prove completeness in the levels of the
boolean hierarchy over NP. In particular, we show that it is DP-complete
to decide whether or not a given graph can be colored with exactly four
colors. DP is the second level of the boolean hierarchy. This result solves
a question raised by Wagner in his 1987 TCS paper; its proof uses a
clever reduction by Guruswami and Khanna. Similar results on various
versions of the exact domatic number problem are also discussed. The
result on Exact-Four-Colorability appeared in IPL, 2003, see [1]. The
results on exact domatic number problems, obtained jointly with Tobias
Riege, are to appear in TOCS, see [2].

Keywords. Exact colorability, exact domatic number, boolean hierar-
chy completeness

1 Introduction, Historical Notes, and Definitions

In the 1970s, Meyer and Stockmeyer [3,4] noted that the problem

 is a boolean formula in DNF, k£ > 0, and
MEE = < (@, k) | there exists a boolean formula ¢ with at
most k literals such that 1) is equivalent to ¢

is coNP-hard but seems to be not coNP-complete. Motivated by this observation,
they introduced the polynomial hierarchy, which is inductively defined by:

AP = 58 =TI} = P;

5P S5/ ,
AP =P7, XV =NP¥ and I}, =coXl , fori>0;

PH= [ ] =%
k>0
They observed that MEE is in X%. Figure 1 shows the inclusion structure of the
polynomial hierarchy.
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Fig. 1. Polynomial hierarchy

Papadimitriou and Zachos [5] introduced the complexity class pNPIO(logn)]

the class of problems solvable by O(logn) sequential Turing queries to NP.
Hemaspaandra [6] and Kdbler, Schéning, and Wagner [7] proved that PNF[©(ogn)]
equals PWP, the class of problems solvable by parallel (a.k.a. truth-table) access
to NP. Wagner [8] provided about half a dozen other characterizations of this
class, and he introduced the notation ©% for it. By definition, NP C 05 C Af.
It is known that if NP contains some problem that is hard for ©F, then the
polynomial hierarchy collapses to NP. The class 0% is also closely related to the
question of whether NP has sparse Turing-hard sets [9], and to various other
topics; see, e.g., [10,11,12].

In the 1980s, Papadimitriou and Yannakakis [13] noted that certain NP-hard
and coNP-hard problems seem to be not complete for NP or coNP:

— Critical Problems such as Minimal-3-Uncolorability: Given a graph G, is
it true that G is not 3-colorable but deleting any of its vertices yields a
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3-colorable graph?

— Ezact problems such as Exact-4-Colorability (to be defined in Definition 1
below).

— Unique solution problems such as Unique-SAT: Given a boolean formula, is
it true that it has exactly one satisfying assignment?

Motivated by this observation, they introduced the class of differences of NP
sets:
DP ={A—-B|A,B € NP}.

All the above problems are in DP.
For any graph G, x(G) is the chromatic number of G, i.e., the smallest number
of colors needed to legally color G. For each k, define

k-Colorability = {G |G is a graph with x(G) < k}.

The problem 2-Colorability is in P, yet 3-Colorability is NP-complete, see
Stockmeyer [14]. We now define the exact versions of colorability problems.

Definition 1 (Exact Colorability Problems). Let M, be a set that con-
sists of k moncontiguous integers, and let t be a positive integer. Define

Exact-My-Colorability = {G |G is a graph with x(G) € My},
Exact-t-Colorability = {G| G is a graph with x(G) = t}.

Merging, unifying, and expanding the results that originally were obtained
independently by Cai and Hemaspaandra [15] and by Gundermann, Wagner, and
Wechsung [16,17], Cai et al. [18,19] generalized DP by introducing the boolean
hierarchy over NP. The symbols A and V, respectively, denote the complex inter-

section and the complex union of set classes: CAD = {ANB|A € C and B € D}
and CVD ={AUB|A€C and B € D}.

Definition 2 (Boolean Hierarchy over NP). The boolean hierarchy over
NP is inductively defined by:

BHo(NP) =P, BH;(NP)=NP, BH,(NP)= NP AcoNP = DP,
BH,,(NP) = BH;_(NP) vV BHy(NP) for k > 3, and
BH(NP) = | ) BH,(NP).
k>1

Figure 2 shows the inclusion structure of the boolean hierarchy. Note further
that BH(NP) C 08 C AL C ¥F C PH. Kadin [20] was the first to show that a
collapse of the boolean hierarchy implies a collapse of the polynomial hierarchy.

Theorem 1 (Kadin). If BH;(NP) = coBH(NP) for some k > 1, then the
polynomial hierarchy collapses down to its third level: PH = X N ITY.

The collapse consequence of Theorem 1 has been strenghtened later on; see
the survey by Hemaspaandra, Hemaspaandra, and Hempel [21].
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Fig. 2. Boolean hierarchy over NP

2 Some Results Obtained by Wagner’s Technique

Wagner [22] established conditions sufficient to prove hardness for 6% and for
the levels of the boolean hierarchy over NP. We first state his sufficient condition
for proving @%-hardness.

Lemma 1 (Wagner). Let A be some NP-complete set, and let B be any
set. If there exists a polynomial-time computable function g such that for all
V1,5 0k i X* with (Vj:1<j<k)[pjq1 € A = ¢; € A] it holds that

I{i] i € A}|| is odd <= g(p1,..., k) € B, (2.1)
then B is OF-hard.

Using Lemma 1, Wagner proved dozens of problems @%-complete, including
the following variants of the colorability problem:

Color.aa = {G| G is a graph such that x(G) is odd},
Coloreq, = {(G,H) | G and H are graphs with x(G) = x(H)},
Colorieq = {(G,H) | G and H are graphs with x(G) < x(H)}.

Wagner’s technique has been applied to prove further natural problems,
which arise in a variety of contexts, @5-hard or even ©%-complete. For example,
Lemma 1 was useful in determining the complexity of the winner problem for
certain voting systems, including Carroll elections [23], Young elections [24], and
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Kemeny elections [25,26]; see Hemaspaandra and Hemaspaandra [25] for more
background on computational politics. Wagner’s technique was also useful for
showing that recognizing those graphs for which certain efficient approximation
heuristics for the independent set and the vertex cover problem do well is ©%-
complete [27,28]; see also the survey [29]. Moreover, Lemma 1 is the key lemma
for raising the trivial coNP-hardness of MEE to ©F-hardness, see Hemaspaandra
and Wechsung [30]. Note that Umans [31] proved this problem even X%-complete
using a different technique.

In what follows, we focus on completeness for exact colorability and exact
domatic number problems in the even levels of the boolean hierarchy. The fol-
lowing lemma, which is also due to Wagner [22], is the key lemma to establish
these results.

Lemma 2 (Wagner). Let A be some NP-complete set, let B be any set, and
let k > 1 be fized. If there exists a polynomial-time computable function g such
that for all @y, ..., @ in X* with (Vj:1<j <2k)[pjs1 € A = ¢; € Al it
holds that

I{ilwi € A}|| is odd <= g(¢1,-..,p2) € B, (22)

then B is BHy,(NP)-hard.

3 Exact Colorability Problems

In this section, we turn to the exact colorability problems defined in Definition 1.
Using Lemma 2, Wagner [22] proved the following result.

Theorem 2 (Wagner). Exact-Mj-Colorability is BHag(NP)-complete for
My = {6k+1,6k+3,...,8k—1}. In particular, for k =1, it is DP-complete to
determine whether or not x(G) = 7.

In [22], Wagner raised the following questions: How small can the numbers in
a k-element set M}, be chosen so as to ensure that Exact-Mp-Colorability still
is BHy;, (NP)-complete? In particular, for k = 1, is it DP-complete to determine
whether or not x(G) = 47 That is, for which threshold ¢t € {4,5,6,7} exactly
does Exact-t-Colorability jump from NP to DP-complete? These questions
have been answered recently in [1]. Note that Exact-3-Colorability is in NP
and thus cannot be DP-complete, unless the boolean hierarchy over NP (and by
Theorem 1 the polynomial hierarchy as well) collapses.

Theorem 3 (Rothe). Exact-Mj-Colorability is BHyy (NP)-complete for
My ={3k+1,3k+3,...,5k—1}. In particular, for k =1, it is DP-complete to
determine whether or not x(G) = 4.

A proof sketch for Theorem 3 is presented in the remainder of this section.
Crucially, this proof uses:

— Wagner’s tool for proving BHy,(NP)-hardness stated as Lemma 2 above,
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— the standard reduction o from 3-SAT to 3-Colorability satisfying

@ € 3-SAT = x(o(p)) =3, (3.3)
o & 3SAT = x(0(9)) =4, (3.4)

— and Guruswami and Khanna’s reduction p from 3-SAT to 3-Colorability
satisfying

¢ € 3-SAT = x(p(¢)) = 3, (3.5)
© & 3-SAT = x(p(p)) =5 (3.6)

Among the above three items, the Guruswami—Khanna reduction is the tech-
nically most challenging one. Originally, Guruswami and Khanna’s seminal re-
sult is not motivated by the issue of proving the hardness of exact colorability.
Rather, it was motivated by issues related to the hardness of approximating the
chromatic number of 3-colorable graphs. Intuitively, their result says that it is
NP-hard to 4-color a 3-colorable graph. This result had been obtained earlier
on by Khanna, Linial, and Safra [32] using the PCP theorem, which is due to
Arora, Lund, Motwani, Sudan, and Szegedy [33]. Guruswami and Khanna [34]
gave a novel proof of this result, which does not rely on the PCP theorem. Their
direct transformation in fact consists of the following two subsequent reductions:

3-SAT <P IS <P 3-Colorability,

where IS is the independent set problem. Figure 3 shows the standard reduction
3-SAT <P IS, for the specific formula

oz, y,2) =(xVyVa)A(~zVyVz)A(-zVyV-2)AxV-wyVz).

Fig.3. Graph G in the reduction 3-SAT <P IS
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Clauses in the formula correspond to triangles in the graph constructed, and
corners of two distinct triangles are connected by an edge if and only if they
correspond to some literal and its negation. Suppose the given formula has m
clauses, and denote the corresponding m triangles in G by T1,7T5,...,T,. To
each T; in G, there corresponds a tree-like structure S; shown in Figure 4:

Fig. 4. Tree-like structure S; in the Guruswami—-Khanna reduction

The three “leaves” t; 1, ti 2, and t; 3 in S; correspond to the three corners of
the triangle T;. Every “vertex” of S; has the form of the basic template, which
is a 3 x 3 grid such that the vertices in each row and column induce a 3-clique
as shown in Figure 5:

Fig. 5. Basic template in the Guruswami—-Khanna reduction

The “ground vertices” in the first column of any such basic template in fact
are shared among all basic templates in each of the tree-like structures. Since
these “ground vertices” form a 3-clique, every legal coloring assigns three distinct
colors to them, say 1, 2, and 3.

Figure 6 shows the connection pattern between the “vertices” r;, ¢;1, and s;
of S; and two additional triangles. An analogous pattern applies to s;, t;2,
and t; 3. Every vertex of the templates and the triangles is labeled by a triple
of colors, and the vertices are connected according to the following simple rule:
Two vertices are adjacent if and only if their labels differ in each coordinate.

The intuition of how to connect S; and §;, for distinct ¢ and j, is as follows.
A “vertex” in some S; (with respect to some coloring) is said to be selected if
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(111) (223) (332)
(222) (331) (113) | T4

(333) (112) (221)

(123) (132)
(312) (231)  (213) (321)
(111) (233) (322) (111) (323) (232)
(222) (311) (133) | Li,1 (222) (131) (313) | Si
(333) (122) (211) (333) (212) (121)

Fig. 6. Connection pattern between the templates of a tree-like structure

and only if at least one of the three rows in its basic template receives colors
that form an even permutation of {1,2,3}. That is, a “vertex” is selected if and
only if

— the first row has colors 1,2, 3 from left to right, or
— the second row has colors 2,3, 1, or

— the third row has colors 3,1, 2.

Fig. 7. Gadget connecting two “leaves” of the “same row” kind

Clearly, for each legal 4-coloring of S;, every “vertex” is either selected or not
selected. For each pair of “vertices,” ¢;; and t; ¢, that are adjacent in graph G,
appropriate gadgets are inserted to prevent that both these “leaves” are selected
simultaneously. (This is necessary, since otherwise any 4-coloring of the graph
constructed would imply that G has an independent set of size m.) To this end,
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two kinds of gadgets are used, the “same row” gadget and the “different rows”

gadget. Figure 7 shows the “same row” gadget, which prevents that t;; and t;,
are simultaneously selected because of the same row. Figure 8 shows the “differ-
ent rows” gadget, which prevents that ¢; ; and ¢;, are selected simultaneously
because of different rows.

Fig. 8. Gadget connecting two “leaves” of the “different rows” kind

This completes the reduction p that transforms the formula ¢ via graph G
to graph H = p(p). We omit the detailed argument of why this reduction works
to prove (3.5) and (3.6), referring to [34] instead. We merely mention that it can
be shown that:

(a) For each ¢ with 1 < i < m, there exists a 3-coloring of the vertices in S; such
that exactly one of the three “leaves” t;1, t;2, and t; 3 is selected.

(b) Every legal 4-coloring of S; selects at least one of ¢; 1, t; 2, or t; 3.

Implications (3.5) and (3.6) follow from (a) and (b).

Note that Guruswami and Khanna claimed in their conference paper [34]
that ¢ & 3-SAT implies 5 < x(H) < 6. However, as has been observed in [1], the
Guruswami—-Khanna reduction even yields the stronger implication (3.6), which
we need in order to apply Wagner’s Lemma 2.

We are now ready to apply Lemma 2 with ¥ = 1, A = 3-SAT, and B =
Exact-4-Colorability. Given two formulas ¢ and @2 satisfying

2 € 3-SAT = ¢ € 3-SAT, (3.7

define the graphs H; = p(p1) and Ha = o(p2), where p is the Guruswami-
Khanna reduction, which satisfies (3.5) and (3.6), and o is the standard reduction
from 3-SAT to 3-Colorability, which satisfies (3.3) and (3.4).

Let D be the disjoint union of H; and H,. Thus,

x(D) = max{x(H), x(Hz2)}.

Consider the following three cases:
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— If ¢1 € 3-SAT and ¢» € 3-SAT, then x(¢1) = 3 and x(¢2) = 3, so x(D) = 3.
— If 1 € 3-SAT and ¢, ¢ 3-SAT, then x(¢1) = 3 and x(p2) =4, so x(D) = 4.
— If p1 & 3-SAT and @2 & 3-SAT, then x(p1) = 5 and x(p2) =4, so x(D) = 5.

By (3.7), the case distinction is complete. It follows that (2.2) is satisfied. By
Lemma 2, Exact-4-Colorabilityis DP-hard. Since Exact-4-Colorabilityisin
DP, it is DP-complete. Completeness of Exact-M-Colorability in BHy, (NP)
for the k-element set My = {3k + 1,3k + 3,...,5k — 1} is proven analogously.

4 Exact Domatic Number Problems

For any graph G, a dominating set of G is a subset D C V(G) such that each
vertex u € V(G) — D is adjacent to some vertex v € D. Let §(G) denote the
domatic number of G, i.e., the maximum number of disjoint dominating sets.
For each k, define the problem

k-DNP = {G | G is a graph with §(G) > k}.

It is known that 3-DNP is NP-complete, whereas 2-DNP is in P; see Garey and
Johnson [35]. As suggested by Gasarch during the talk, there is no need to
present any motivation for the domatic number problem. We thus omit the
motivation and merely mention that this problem is related, for example, to the
tasks of distributing resources in a computer network or of locating facilities in
a communication network. More details can be found in, e.g., [36,2]. We now
define the exact versions of domatic number problems.

Definition 3 (Exact Domatic Number Problems). Let My be a set that
consists of k noncontiguous integers, and let t be a positive integer. Define

Exact-My-DNP = {G | G is a graph with 6(G) € M},
Exact-t-DNP = {G | G is a graph with §(G) = t}.

4.1 A General Framework for Dominating Set Problems

In order to investigate exact domatic number problems, we adopt Heggernes and
Telle’s general, uniform approach to define graph problems by partitioning the
vertex set of a graph into generalized dominating sets [37]. These are subsets
of the vertex set of a given graph, parameterized by two sets of nonnegative
integers, o and p, which restrict the number of neighbors for each vertex in the
partition. Let N = {0,1,2,...} denote the set of nonnegative integers, and let
Nt = {1,2,3,...} denote the set of positive integers.

Definition 4 (Heggernes and Telle). Let G be a given graph, let 0 C N
and p C N be given sets, and let k € Nt . Let N(v) = {w € V(Q) |[{v,w} € E(G)}
be the neighborhood of any vertex v in G.
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1. A subset U C V(G) of the vertices of G is said to be a (o, p)-set if and only
if
— for eachu € U, ||[N(u)NU|| € o, and

— for eachu ¢ U, ||[N(u) NU|| € p.

2. A (k,o,p)-partition of G is a partition of V(G) into k pairwise disjoint
subsets V1,Va, ..., Vi such that V; is a (o, p)-set for each i, 1 < i < k.

3. Define the problem

(k,0,p)-Partition = {G | G is a graph that has a (k,o, p)-partition}.

Note that (k, {0}, N)-Partition is nothing other than k-Colorability, and
(k,N,N*)-Partition is nothing other than k-DNP. This observation is illustrated
by the following example. Note further that (k, {0}, N)-Partition is a minimum
problem, whereas (k,N,NT)-Partition is a maximum problem.

Ezample 1 (Generalized Dominating Sets).  Figure 9 shows two copies of some
graph G with five vertices. Vertices labeled by the same number belong to the
same (o, p)-set, where either 0 = {0} and p = N (i.e., k-Colorability),oroc = N
and p = Nt (i.e., k-DNP). According to the partition into (o, p)-sets shown on
the left-hand side of Figure 9, G is in (4, {0}, N)-Partition. That is, G is a 4-
colorable graph and the partition indicated corresponds to the four color classes
of G. In contrast, the partition into (o, p)-sets on the right-hand side of Figure 9
shows that G is in (3, N,N*)-Partition. That is, G has a domatic number of 3.

3 3

4 3 3 3

Fig.9. A graph in (4, {0},N)-Partition (left) and (3,N,NT)-Partition (right)
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4.2 Summary of Results and Proof Ideas

Heggernes and Telle [37] obtained the NP-completeness results for the problems
(k,o,p)-Partition that are shown in Table 1. Here is the key: Table 1 gives
the smallest value of k for which (k, o, p)-Partition is NP-complete. Here, “c0”
means that this problem is efficiently solvable for all values of k; a superscript
“+» indicates a mazimum problem: For all k > 1,

(k+1,0,p)-Partition C (k, o, p)-Partition;
and a superscript “~” indicates a minimum problem: For all k > 1,

(k,0,p)-Partition C (k + 1,0, p)-Partition.

p| N N¥ {1} {0,1}

o
N - 3T 2 oo~
Nt c0” 2T 2 oo~
ar |27 2 3 3°
0,1}y |2 2 3 3-
0y |3 3 4 4

Table 1. NP-completeness for the problems (k, o, p)-Partition

We now define the exact versions of generalized dominating set problems.

Definition 5. Define Exact-(k,o, p)-Partition, the exact version of the prob-
lem (k,o, p)-Partition, to be either

— (k,0,p)-PartitionN(k — 1,0, p)-Partition if k > 2 and (k, o, p)-Partition
18 a minimum problem, or

— (k,o,p)-Partitionn(k + 1,0, p)-Partition if k > 1 and (k, o, p)-Partition
18 a maximum problem.

Note that all Exact-(k, o, p)-Partition problems are in DP. Note further
that Exact-(k, {0}, N)-Partition is nothing other than Exact-k-Colorability,
and Exact-(k,N,N*t)-Partition is nothing other than Exact-k-DNP. Table 2
gives the best known values of j | k for which Exact-(k, o, p)-Partition is (NP-
complete or coNP-complete) | DP-complete. Again, “c0” means that this prob-
lem is efficiently solvable for all values of k. Here, a dash “—” indicates that
this problem is neither a maximum nor a minimum problem and thus is not
considered.

Except the DP-completeness of Exact-(k, {0}, N)-Partition, which is proven
in [1] (see Theorem 3), all DP-completeness results in Table 2 are due to Riege
and Rothe [2]. We state the results from Table 2 in Theorem 4 below and provide
the proof ideas. We do not attempt to give full, detailed proofs, though, referring
to the original source [2] instead.
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p N Nt {0,1}
o
N () 2|5 S)
Nt () 113 ()
{1} 215 — 3|7
0,1} | 2|5 — 307
{0} 34 — 41?

Table 2. DP-completeness for the problems Exact-(k, o, p)-Partition

Theorem 4 (Riege and Rothe).

1. For each i > 5, Exact-i-DNP = Exact-(i,N,Nt)-Partition is DP-complete.
In contrast, Exact-2-DNP = Exact-(2,N,Nt)-Partition is coNP-complete.

2. For each i > 3, Exact-(i, N* ,NT)-Partition is DP-complete. In contrast,
Exact-(1,Nt Nt )-Partition is coNP-complete.

3. For each i > 5, Exact-(i,{0,1},N)-Partition is DP-complete. In contrast,
Exact-(2,{0,1},N)-Partition is NP-complete.

4. For each i > 5, Exact-(i,{1},N)-Partition is DP-complete. In contrast,
Exact-(2,{1},N)-Partition is NP-complete.

Fig. 10. Gadget for proving Exact-5-DNP DP-complete

The proof of the first part of Theorem 4 uses the gadget shown in Figure 10
to provide a reduction from 3-Colorability that satisfies the hypothesis (2.2) of
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Wagner’s Lemma 2. The construction in Figure 10 extends Kaplan and Shamir’s
reduction from 3-Colorability to 3-DNP with useful properties [38]; see also [2].
The proof of the second part of Theorem 4 uses the gadget shown in Fig-
ure 11 to provide a reduction from NAE-3-SAT that satisfies the hypothesis (2.2)
of Wagner’s Lemma 2. The problem NAE-3-SAT (“not-all-equal satisfiability”)
asks whether a given boolean formula ¢ can be satisfied such that in none of
the clauses of ¢ all literals are true. Schaefer proved that NAE-3-SAT is NP-
complete [39]. The construction in Figure 11 is inspired by Heggernes and Telle’s
reduction from NAE-3-SAT to (2,Nt,N")-Partition; see [37] and also [2].

Fig. 11. Gadget for proving Exact-(3, N, N )-Partition DP-complete

The proof of the third part of Theorem 4 uses a reduction from 1-3-SAT that
satisfies the hypothesis (2.2) of Wagner’s Lemma, 2. The problem 1-3-SAT (“one-
in-three satisfiability”) asks whether, given a boolean formula ¢, there exists a
subset T of the literals of ¢ with ||[TNC;|| = 1 for each clause C;. Schaefer proved
that 1-3-SAT is NP-complete, even if all literals in the given boolean formula are
positive [39].

Figure 12 shows this construction, which is based on Heggernes and Telle’s
reduction from 1-3-SAT to (2,{0,1},N)-Partition, see [37]. The symbol @ in
Figure 12 denotes the join operation on graphs, i.e., for any two graphs G and
G2, G1 @ G> is the graph with vertex set V(G1 @ G2) = V(G1) U V(G2) and
edge set E(G1 ® G2) = E(G1) U E(G2) U {{a,b}|a € V(G1) and b € V(G2)}.

The proof of the fourth part of Theorem 4 is obtained by suitably modifying
the proof of the third part of Theorem 4.

Generalizing the results on exact generalized dominating set problems from
Theorem 4, we obtain completeness results in the higher levels of the boolean hi-
erarchy. In Theorem 5, we state this generalization for the problem Exact-M}-DNP
only, where M}, = {4k + 1,4k + 3,...,6k — 1}. Analogously, the completeness
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G1,1 G1 Gi,2
&
G, G2 Ga,2

Fig. 12. Reduction to prove Exact-(5,{0,1}, N)-Partition DP-complete

results for Exact-(k, o, p)-Partition stated in the second, third, and fourth part
of Theorem 4 can be lifted to the higher levels of the boolean hierarchy over NP.

Theorem 5 (Riege and Rothe). Exact-M}-DNP is BHy, (NP)-complete for
My = {4k + 1,4k +3,...,6k —1}.

Finally, define the following variants of the domatic number problem:

DNPo4q = {G| G is a graph such that §(G) is odd},
DNPequ = {({G, H) | G and H are graphs with §(G) = 6(H)},
DNP1oq = {(G, H) | G and H are graphs with §(G) < §(H)}.

Theorem 6 (Riege and Rothe). DNPoga, DNPequ, and DNP1oq each are OF-
complete.

5 Conclusions and Open Questions

This survey paper has presented some of the results that were inspired by Wag-
ner’s general technique [22] to prove completeness in the levels of the boolean
hierarchy over NP and in ©%, the class of problems solvable via parallel access
to NP. In particular, ©F-completeness results were obtained for a variety of nat-
ural problems arising in computational politics [23,24,25,26] and for problems
related to certain approximation heuristics for hard graph problems [27,28,29].
In addition, Wagner’s technique was useful to prove ©%-hardness of MEE, the
minimum equivalent expression problem, see Hemaspaandra and Wechsung [30]
and also Umans [31].
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Turning to completeness in the levels of the boolean hierarchy, Theorem 3 an-
swered a question raised by Wagner in [22]: It is DP-complete to decide whether
or not a given graph can be colored with exactly four colors. Guruswami and
Khanna’s clever reduction [34] that is central to this proof was sketched, and it
was shown how this reduction can be employed by Wagner’s technique.

Theorem 4 in particular has shown that Exact-5-DNP is DP-complete. In
contrast, Exact-2-DNP is coNP-complete, and thus this problem cannot be DP-
complete unless the boolean hierarchy collapses. For i € {3,4}, the question
of whether or not the problems Exact-i-DNP are DP-complete remains open.
To close this gap, one would have to find a reduction from some NP-complete
problem to the exact domatic number problem that yields graphs having never
a domatic number of three.

In addition, we have studied the exact versions of Heggernes and Telle’s gen-
eralized dominating set problems [37], denoted by Exact-(k,o, p)-Partition,
where the parameters ¢ and p specify the number of neighbors that are al-
lowed for each vertex in the partition. Theorem 4 presented DP-completeness
results for a number of such problems that are summarized in Table 2, which
gives the best values of k for which the problems Exact-(k, o, p)-Partition are
known to be DP-complete. This value of k is not yet optimal in many cases.
For example, by Theorem 4, Exact-(5,{0,1}, N)-Partition is DP-complete and
Exact-(2,{0,1},N)-Partition is NP-complete. What about the complexity of
Exact-(4,{0,1},N)-Partition for ¢ € {3,4}? It would also be interesting to ob-
tain DP-completeness results for those cases in Table 2 that currently have only
question marks.
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