Randomized Quicksort and the Entropy of the Random Source

Beatrice List, Markus Maucher, Uwe Schöning and Rainer Schuler

Abt. Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany

Abstract

The worst-case complexity of an implementation of Quicksort depends on the random number generator that is used to select the pivot elements. In this paper we estimate the expected number of comparisons of Quicksort as a function in the entropy of the random source. We give upper and lower bounds and show that the expected number of comparisons increases from $n \log n$ to n^{2}, if the entropy of the random source is bounded. As examples we show explicit bounds for distributions with bounded min-entropy and the geometrical distribution.

Keywords. QuickSort, Randomized Algorithms, Entropy

1 Introduction

Randomized QuickSort is the well known version of QuickSort (invented by Hoare [1]) where the array element for splitting the array in two parts (the "pivot" element) is selected at random. It is also well known that the expected number of comparisons (for every input permutation of the array elements) is $(2 \ln 2) \cdot n \log _{2} n-\Theta(n)$. Here, the expectation is taken over the random choices done in the algorithm. This analysis assumes random numbers which are independent and uniformly distributed.

Here we analyze randomized QuickSort without assuming such an "high entropy" of the underlying random source. Using a random number generator with a low entropy can result in a worst-case behavior that can go up to $\Theta\left(n^{2}\right)$. An extreme example is a "very bad" random number generator that produces only "1" as output. That is, in each recursive call of QuickSort the first array element is selected as pivot element. A worst case input in this case is the already sorted array.

Related work has been done by Karloff and Raghavan [2] (see also [3]) where the special case of a linear congruence generator is considered and a worst-case behavior of $\Omega\left(n^{2}\right)$ is shown.

Recursion for expected number of comparisons

Let $T_{\pi}(n)$ be the expected number of comparisons done by randomized QuickSort, when operating on an input array ($a[1], \ldots, a[n]$) whose elements are permuted according to $\pi \in S_{n}$, that is,

$$
a[\pi(1)]<a[\pi(2)]<\cdots<a[\pi(n)]
$$

where S_{n} is the set of all permutations on $\{1, \ldots, n\}$.
Let X be a random variable taking values between 1 and n (not necessarily under uniform distribution) which models the random number generator that is used to pick out a pivot element $a[X]$.

We obtain the following recursion for the expected complexity (i.e. number of comparisons) $T(n)=\max _{\pi \in S_{n}} T_{\pi}(n)$. We have $T(n)=0$ for $n \leq 1$; and for $n>1$ we get

$$
\begin{aligned}
T(n) & =\max _{\pi \in S_{n}} T_{\pi}(n) \\
& =(n-1)+\max _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot\left(T_{\pi}(i-1)+T_{\pi}(n-i)\right) \\
& \leq(n-1)+\max _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot\left(\max _{\Phi \in S_{i-1}} T_{\Phi}(i-1)+\max _{\Psi \in S_{n-i}} T_{\Psi}(n-i)\right) \\
& =(n-1)+\max _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot(T(i-1)+T(n-i))
\end{aligned}
$$

That is, there are $n-1$ comparisons with the selected pivot element, and depending on the rank i of the pivot element within the array, there are $T(i-1)$ and $T(n-i)$ additional comparisons. Here p_{i} is the probability that the pivot element has rank i within the ordering of the array, that is, $p_{i}=\operatorname{Pr}(\pi(X)=i)$. If the rank is not uniformly distributed among the numbers 1 to n, a worst case input permutation can be constructed such that the middle ranks receive relatively low probability and the extreme ranks (close to 1 or close to n) get relatively high probability, resulting in a large expected number of comparisons.

We give upper and lower bounds on the expected number $T(n)$ of comparisons. Lower bounds are given with respect to a fixed input sequence (the already sorted list of elements).

We can show (see Theorem 1) that $T(n) \leq g(n) \cdot n \cdot \log _{2} n$ for any function $g(n)$ greater than $1 /\left(\min _{\pi} \sum_{i=1}^{n} p_{i} H(i / n)\right)$, where $H(i / n)$ is the binary entropy function. Note that $\min _{\pi} \sum_{i=1}^{n} p_{i} H(i / n)$ is independent of the permutation of the elements, i.e. is identical for all distributions p and q such that $p_{i}=q_{\pi(i)}$ for all i and some permutation π.

The lower bound (see Theorem 2) is derived for a fixed permutation (the sorted list of elements), where we can assume that the order is preserved in all recursive calls of QuickSort. Therefore the lower bound $T(n) \geq n \cdot g(n)$ (Theorem 2) is w.r.t. any function $g(n)$ less than $1 / \sum_{i=1}^{n} p_{i} H(i /(n+1))$, where p_{i} is the probability of selecting $a[i]$ as a pivot element.

2 Upper bound on the number of expected comparisons

Let $\left(P_{n}\right)$ denote a sequence of probability distributions where $P_{n}=\left(p_{1, n}, \ldots, p_{n, n}\right)$ is a distribution on $(1, \ldots, n)$. In the following we use p_{i} to denote $p_{i, n}$, since n is determined by the size of the array.

Theorem 1. We have $T(n) \leq g(n) n \log _{2} n$ for any monotone increasing function g with the property

$$
g(n) \geq\left(\min _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot H\left(\frac{i}{n}\right)\right)^{-1}
$$

where $H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$ is the binary entropy function (Shannon entropy).

Proof. Using the above recursion for $T(n)$ we obtain

$$
\begin{aligned}
T(n) & =(n-1)+\max _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot(T(i-1)+T(n-i)) \\
& \leq n+\max _{\pi} \sum_{i=1}^{n} p_{i} \cdot\left(g(i-1)(i-1) \log _{2}(i-1)+g(n-i)(n-i) \log _{2}(n-i)\right) \\
& \leq n+g(n) n \max _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot\left(\frac{i}{n} \log _{2} i+\left(1-\frac{i}{n}\right) \log _{2}(n-i)\right) \\
& =n+g(n) n \max _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot\left(\frac{i}{n} \log _{2} \frac{i}{n}+\left(1-\frac{i}{n}\right) \log _{2}\left(1-\frac{i}{n}\right)+\log _{2} n\right) \\
& =n+g(n) n \log _{2} n-g(n) n \min _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot H\left(\frac{i}{n}\right)
\end{aligned}
$$

To finish the induction proof, this last expression should be at most $g(n) n \log _{2} n$. This holds if and only if

$$
g(n) \geq\left(\min _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot H\left(\frac{i}{n}\right)\right)^{-1}
$$

as claimed.

Example: In the standard case of a uniform distribution $p_{i}=\frac{1}{n}$ we obtain:

$$
g(n) \geq\left(\frac{1}{n} \cdot \sum_{i=1}^{n} H\left(\frac{i}{n}\right)\right)^{-1}
$$

This is asymptotically equal to

$$
\left(\int_{0}^{1} H(x) d x\right)^{-1}=2 \ln 2 \approx 1.38
$$

Another Example: In the median-of-3 version of QuickSort (cf. [4,5]), 3 different elements are picked uniformly at random and the median of the 3 is used as
the pivot element. In this case $p_{i}=\frac{6(i-1)(n-i)}{n(n-1)(n-2)}$. Here the constant factor of the $n \log n$-term can be asymptotically estimated by

$$
\left(6 \int_{0}^{1} x(1-x) H(x) d x\right)^{-1}=\frac{12 \ln 2}{7} \approx 1.18
$$

We ignore here the additional number of comparisons between the 3 elements to find out their median - but this does not have an influence asymptotically.

Sorting the probabilities

Using the symmetry of the function H around $\frac{1}{2}$ and its monotonicity, we get:

$$
\min _{\pi \in S_{n}} \sum_{i=1}^{n} p_{i} \cdot H\left(\frac{i}{n}\right) \geq \min _{\pi \in S_{n}} \sum_{j=0}^{n-1} q_{j} \cdot H\left(\frac{j}{2 n}\right)
$$

Here, the q_{j} are a reordering of the p_{i} in the following way (assuming n is even):

$$
\begin{array}{cc}
q_{0}=p_{n} & q_{1}=p_{1} \\
q_{2}=p_{n-1} & q_{3}=p_{2} \\
\vdots & \vdots \\
q_{n-2}=p_{n / 2} & \\
q_{n-1}=p_{n / 2-1}
\end{array}
$$

This new representation has the advantage that the H-values in the sum are in increasing order, and we can determine which permutation $\pi \in S_{n}$ actually achieves the minimum. Namely, the minimum is achieved if the q_{j} are ordered in decreasing order. (This is in accordance with the statement in the introduction that the worst case is associated with the situation that the extreme ranks occur with higher probability than the middle ranks.)

Lemma 1. Given a sum of the following form

$$
\sum_{j=1}^{n} a_{j} b_{\pi(j)}, \quad a_{j}, b_{j} \geq 0
$$

where the a_{j} are sorted in strictly increasing order and the permutation π can be chosen arbitrarily, the minimum value of the sum occurs when the permutation π is such that the $b_{\pi(j)}$ are sorted in decreasing order.

Proof. Suppose that two elements b, b^{\prime} are in the "wrong" order, i.e. $b<b^{\prime}$. We compare the situation before and after exchanging b and b^{\prime} :

$$
\left(a_{i} b+a_{j} b^{\prime}\right)-\left(a_{i} b^{\prime}+a_{j} b\right)=\left(a_{i}-a_{j}\right)\left(b-b^{\prime}\right)<0
$$

This means, interchanging b and b^{\prime} this way strictly decreases the value of the sum. Furthermore, it is easy to see that the decreasingly sorted order can always be achieved by swapping two elements which are in the "wrong" order (e.g. like in the BubbleSort algorithm).

3 A lower bound

As we saw in Section 1, the running time of QuickSort is given by the recursion

$$
T(n)=n-1+\sum_{i=1}^{n} p_{i} \cdot(T(i-1)+T(n-i))
$$

where p_{i} is the probability of choosing the element with rank i as pivot element.
To estimate a lower bound for the worst-case running time of QuickSort, we consider as input the already sorted array of numbers. Further we assume that the partitioning step of QuickSort leaves the elements of the two sub-arrays in the same relative order as in the input array.

Recall that pivot-elements are chosen according to a sequence of probability distributions $\left(P_{i}\right)$, where distribution P_{i} defines the probabilities on arrays of size i, i.e. $P_{i}=\left(p_{i, 1}, \ldots, p_{i, i}\right)$. Note that if the $p_{i, j}$ are sorted in decreasing order, then a worst-case input is the already sorted sequence of numbers. In fact, if the sequence of probability distributions $\left(P_{i}\right)$ is sufficiently uniform, it should be possible to construct a worst-case input by sorting probabilities as described in Section 2.

Theorem 2. (i) For any sequence of probability distributions $\left(P_{n}\right)$ it holds that $T(n) \geq c \cdot g(n) \cdot n-n$, for some constants $c>0$ and n_{0}, if for all $n>n_{0}, g$ satisfies the two conditions

$$
g(n) \leq\left(\sum_{i=1}^{n} p_{i, n}\left(1-\frac{(i-1)^{2}}{n^{2}}-\frac{(n-i)^{2}}{n^{2}}\right)\right)^{-1}
$$

and

$$
\frac{g(i)}{g(n)} \geq \frac{i}{n} \quad \text { for all } \quad 0 \leq i \leq n
$$

(ii) Furthermore, Part (i) still holds if we replace the two conditions by the following ones:

$$
g(n) \leq\left(\sum_{i=1}^{n} p_{i, n} H\left(\frac{i}{n+1}\right)\right)^{-1} \quad \text { and } \quad \frac{g(i)}{g(n)} \geq \frac{i}{n} \quad \text { for } \quad 0 \leq i \leq n
$$

Proof. We prove (i) first, by induction. For $n \leq n_{0}$, just set the constant $c \leq 1$ small enough.

Now we look at the case $n>n_{0}$. Let $P=\left(p_{1}, \ldots, p_{n}\right)$ be a distribution where p_{i} is the probability that we choose as a pivot element the element with rank i. Using the induction hypothesis, it holds that

$$
\begin{aligned}
& T(i-1)+T(n-i) \\
& \geq c \cdot(i-1) \cdot g(i-1)+c \cdot(n-i) \cdot g(n-i)-(n-1)
\end{aligned}
$$

$$
\begin{aligned}
& =c \cdot n \cdot g(n) \cdot\left(\frac{(i-1) \cdot g(i-1)}{n \cdot g(n)}+\frac{(n-i) \cdot g(n-i)}{n \cdot g(n)}\right)-(n-1) \\
& \geq c \cdot n \cdot g(n) \cdot\left(\frac{(i-1)^{2}}{n^{2}}+\frac{(n-i)^{2}}{n^{2}}\right)-(n-1) \\
& =c \cdot n \cdot g(n)-c \cdot n \cdot g(n) \cdot\left(1-\frac{(i-1)^{2}}{n^{2}}-\frac{(n-i)^{2}}{n^{2}}\right)-(n-1)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
T(n) & =n-1+\sum_{i=1}^{n} p_{i}(T(i-1)+T(n-i)) \\
& \geq c \cdot n \cdot g(n)-c \cdot n \cdot g(n) \cdot \sum_{i=1}^{n} p_{i}\left(1-\frac{(i-1)^{2}}{n^{2}}-\frac{(n-i)^{2}}{n^{2}}\right)
\end{aligned}
$$

Since $c \leq 1$, the induction hypothesis follows if

$$
g(n) \leq\left(\sum_{i=1}^{n} p_{i}\left(1-\frac{(i-1)^{2}}{n^{2}}-\frac{(n-i)^{2}}{n^{2}}\right)\right)^{-1}
$$

The proof of part (ii) is quite similar: For $n \geq n_{0}$,

$$
\begin{aligned}
& T(i-1)+T(n-i) \\
& \geq c \cdot n \cdot g(n) \cdot\left(\frac{(i-1)^{2}}{n^{2}}+\frac{(n-i)^{2}}{n^{2}}\right)-(n-1) \\
& =c \cdot n \cdot g(n) \cdot\left(\frac{(i-1)^{2}}{n^{2}}+\frac{(n-i)^{2}}{n^{2}}+H\left(\frac{i}{n+1}\right)\right) \\
& \quad-n \cdot g(n) \cdot H\left(\frac{i}{n+1}\right)-(n-1) \\
& \geq c \cdot n \cdot g(n)-c \cdot n \cdot g(n) \cdot H\left(\frac{i}{n+1}\right)-(n-1)
\end{aligned}
$$

The last inequality follows from Lemma 3 in the Appendix. Now

$$
\begin{aligned}
T(n) & =n-1+c \cdot \sum_{i=1}^{n} p_{i, n}(T(i-1)+T(n-i)) \\
& \geq c \cdot n \cdot g(n)-c \cdot n \cdot g(n) \cdot \sum_{i=1}^{n} p_{i, n} H\left(\frac{i}{n+1}\right) .
\end{aligned}
$$

Again using that $c \leq 1$, the induction hypothesis follows if

$$
g(n) \leq\left(\sum_{i=1}^{n} p_{i, n} H\left(\frac{i}{n+1}\right)\right)^{-1}
$$

In the second part of Theorem 2 the lower bound is given using the entropy function, similar to the upper bound in Theorem 1. This shows that up to a logarithmic factor we yield matching upper and lower bounds.

4 Distributions with bounded entropy

The uniform distribution on $[1, n]=\{1, \ldots, n\}$ has maximal entropy. In this section we consider distributions which have bounded entropy.

Uniform distributions on a subset of $\{1, \ldots, n\}$

First we consider distributions with positive probability on subsets of $[1, n]$. Let $t(n)=o(n)$ be a time constructible monotone (increasing) function. Define a distribution $P=\left(p_{1}, \ldots, p_{n}\right)$ such that

$$
p_{i}= \begin{cases}1 / t(n), & \text { if rank } a_{i} \leq t(n) / 2 \\ 1 / t(n), & \text { if rank } a_{i}>n-t(n) / 2 \\ 0, & \text { otherwise }\end{cases}
$$

That is, we choose the pivot element randomly using a uniform distribution among only the worst $t(n)$ array elements.
Now $\sum_{i=1}^{n} p_{i} H(i /(n+1))$ resp. $\sum_{i=1}^{n} p_{i} \cdot H(i / n)$ are bounded as follows:

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} H\left(\frac{i}{n+1}\right) & \leq \frac{t(n)}{2 n} \log (n+1) \\
\sum_{i=1}^{n} p_{i} H\left(\frac{i}{n}\right) & \geq \frac{t(n)}{4 n} \log \left(\frac{2 n}{t(n)}\right)
\end{aligned}
$$

This gives $T(n) \leq n \log (n) \cdot \frac{4 n}{t(n)}$ as an upper bound and $T(n) \geq \frac{c n^{2}}{t(n) \log n}-n$ as a lower bound, for some constant c.

Proof. An upper bound $T(n) \leq g(n) \cdot n \cdot \log _{2} n$ can be estimated as follows.

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \cdot H\left(\frac{i}{n}\right) & =2 \sum_{i=1}^{t(n) / 2} \frac{1}{t(n)} \cdot H\left(\frac{i}{n}\right)=\frac{2}{t(n)} \sum_{i=1}^{t(n) / 2} H\left(\frac{i}{n}\right) \\
& =\frac{2}{t(n)} \sum_{i=1}^{t(n) / 2}-\left(\frac{i}{n} \log \left(\frac{i}{n}\right)+\frac{n-i}{n} \log \left(\frac{n-i}{n}\right)\right) \\
& \geq \frac{2}{t(n)} \sum_{i=1}^{t(n) / 2} \frac{i}{n} \log \left(\frac{n}{i}\right) \\
& \geq \frac{2}{n \cdot t(n)} \log \left(\frac{2 n}{t(n)}\right) \sum_{i=1}^{t(n) / 2} i
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{2}{n \cdot t(n)} \log \left(\frac{2 n}{t(n)}\right) \frac{(t(n) / 2) \cdot(t(n) / 2+1)}{2} \\
& \geq \frac{t(n)}{4 n} \log \left(\frac{2 n}{t(n)}\right)
\end{aligned}
$$

With

$$
g(n)=\frac{4 n}{t(n) \log (2 n / t(n))}
$$

it follows from Theorem 1 that

$$
T(n) \leq \frac{4 n^{2}}{t(n)} \cdot \frac{\log _{2} n}{\log _{2}(2 n / t(n))}
$$

In the same way the lower bound can be calculated:

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \cdot H\left(\frac{i}{n+1}\right) & =2 \sum_{i=1}^{t(n) / 2} \frac{1}{t(n)} \cdot H\left(\frac{i}{n+1}\right) \\
& =\frac{2}{t(n)} \sum_{i=1}^{t(n) / 2}-\left(\frac{i}{n+1} \log \left(\frac{i}{n+1}\right)+\frac{n-i+1}{n+1} \log \left(\frac{n-i+1}{n+1}\right)\right) \\
& \leq \frac{2}{t(n)} \sum_{i=1}^{t(n) / 2} 2 \cdot \frac{i}{n+1} \log \left(\frac{n+1}{i}\right) \\
& =\frac{4}{(n+1) t(n)} \sum_{i=1}^{t(n) / 2} i \log \left(\frac{n+1}{i}\right) \\
& =\frac{4}{(n+1) t(n)}\left(\sum_{i=1}^{t(n) / 2} i \log (n+1)-\sum_{i=1}^{t(n) / 2} i \log i\right) \\
& \leq \frac{4}{(n+1) t(n)}\left(\sum_{i=1}^{t(n) / 2} i \log (n+1)-\sum_{i=1}^{t(n) / 2} i(\log (t(n) / 2)-1)\right) \\
& \left.\leq \frac{t(n)+1}{2(n+1)}(\log (n+1)-\log t(n)+2)\right) \\
& \leq \frac{t(n)+2}{2(n+1)} \log \left(\frac{4(n+1)}{t(n)}\right)
\end{aligned}
$$

where we use that $\sum_{i=1}^{t(n) / 2} i \log i \leq \sum_{i=1}^{t(n) / 2} i(\log (t(n) / 2)-1)$ (see Appendix, Lemma 2).
With the function

$$
g(n)=\frac{2(n+1)}{(t(n)+1) \log \left(\frac{4(n+1)}{t(n)}\right)}
$$

we receive a lower bound of

$$
T(n) \geq \frac{2 c n(n+1)}{(t(n)+1) \log \left(\frac{4(n+1)}{t(n)}\right)}-n=\Omega\left(\frac{n^{2}}{t(n) \log \left(\frac{4 n}{t(n)}\right)}-n\right)
$$

Min-Entropy

A distribution $\left(p_{1}, \ldots, p_{n}\right)$ has min-entropy k (cf. [6]) if $\max _{i} p_{i}=2^{-k}$. Let $P=\left(p_{1}, \ldots, p_{n}\right)$ be a distribution with min-entropy k. Then we get $T(n) \leq \frac{4 n^{2}}{2^{k}}$ as an upper bound and $T(n) \geq \frac{c n^{2}}{2^{k} \log n}-n$ as a lower bound, for a constant c.
Proof.

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \cdot H(i / n) & \geq 2 \sum_{i=1}^{2^{k} / 2} \frac{1}{2^{k}} \cdot H(i / n) \\
& \geq \ldots\left(\text { same as above, with } t(n)=2^{k}\right) \\
& \geq \frac{2^{k}}{4 n} \log \left(\frac{2 n}{2^{k}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \cdot H\left(\frac{i}{n+1}\right) & \leq 2 \sum_{i=1}^{2^{k} / 2} \frac{1}{2^{k}} \cdot H\left(\frac{i}{n+1}\right) \\
& \leq \frac{2^{k}+1}{2(n+1)} \log \left(\frac{2(n+1)}{2^{k}}\right)
\end{aligned}
$$

and thus

$$
T(n) \leq \frac{4 n^{2}}{2^{k}} \cdot \frac{\log _{2} n}{\log _{2}\left(2 n / 2^{k}\right)}
$$

and

$$
T(n) \geq \frac{2 c n(n+1)}{\left(2^{k}+1\right) \log \left(\frac{2(n+1)}{2^{k}}\right)}-n
$$

So, for min-entropy 0 (this includes the deterministic case) we get

$$
T(n) \leq \frac{4 n^{2}}{1} \cdot \frac{\log _{2} n}{\log _{2}(2 n)}=4 n^{2} \frac{\log _{2} n}{\log _{2} n+1} \leq 4 n^{2}
$$

and

$$
T(n) \geq \frac{c n(n+1)}{\log (2(n+1))}-n \geq \frac{c n^{2}}{\log (n+1)+1}-n=\theta\left(\frac{n^{2}}{\log n}\right)
$$

and for min-entropy $\log _{2} n$ (all pivot elements are equally distributed), we have

$$
T(n) \leq \frac{4 n^{2}}{n} \cdot \frac{\log _{2} n}{\log _{2} 2}=4 n \log _{2} n
$$

Bounds for geometric distributions

We consider the case that pivot elements are selected using a geometric distribution. The probability of picking an element with rank i as pivot is given by $p_{i}=q^{i-1}(1-q)$. More generally, we allow the geometric distribution to depend on the size n of the array, i.e., we define $\left(P_{i}\right)$ using $q:=1-\frac{1}{f(i)}$ for some (time constructible monotone) function $f=o(n)$. An additional probability of q^{n} is assigned to the best resp. worst pivot element (depending on if we consider a lower or upper bound), so that all p_{i} sum up to 1 .

To estimate a lower bound on the number of comparisons, we use Theorem 2 and estimate $\sum_{i=1}^{n} p_{i}\left(1-\frac{(i-1)^{2}}{n^{2}}-\frac{(n-i)^{2}}{n^{2}}\right) \leq \frac{c f(n)}{n}$, for a constant c.

Proof. Using the fact that

$$
q^{i}=\left(1-\frac{1}{f(n)}\right)^{i}=\left(1-\frac{1}{f(n)}\right)^{f(n) \cdot \frac{i}{f(n)}} \leq e^{-\frac{i}{f(n)}}
$$

it follows that

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i}\left(1-\frac{(i-1)^{2}}{n^{2}}-\frac{(n-i)^{2}}{n^{2}}\right) \\
& \leq q^{n}\left(1-\frac{(n-1)^{2}}{n^{2}}-\frac{n^{2}}{n^{2}}\right)+\frac{1}{q} \sum_{i=1}^{n} q^{i}(1-q)\left(1-\frac{(i-1)^{2}}{n^{2}}-\frac{(n-i)^{2}}{n^{2}}\right) \\
& =q^{n}\left(\frac{1}{2}+\frac{1}{n}-\frac{1}{n^{2}}\right)+\frac{1}{q n^{2}} \sum_{i=1}^{n} q^{i}(1-q)\left(2 n i+2 i-2 i^{2}-1\right) \\
& \leq q^{n}+\frac{1}{q n^{2}} \sum_{i=1}^{n} q^{i}(1-q)(2 n i+2 i) \\
& =\left(1-\frac{1}{f(n)}\right)^{n}+\frac{2 n+2}{\left(1-\frac{1}{f(n)}\right) n^{2}} \sum_{i=1}^{n}\left(1-\frac{1}{f(n)}\right)^{i} \frac{i}{f(n)} \\
& =\left(1-\frac{1}{f(n)}\right)^{n}+\frac{(2 n+2) f(n)}{(f(n)-1) n^{2}} \sum_{i=1}^{n}\left(1-\frac{1}{f(n)}\right)^{i} \frac{i}{f(n)} .
\end{aligned}
$$

We split the sum and see that for $k=0,1,2, \ldots$

$$
\begin{aligned}
& \sum_{i=k f(n)+1}^{(k+1) f(n)}\left(1-\frac{1}{f(n)}\right)^{i} \frac{i}{f(n)} \\
& \leq \sum_{i=k f(n)+1}^{(k+1) f(n)} e^{-\frac{i}{f(n)}+\ln \frac{i}{f(n)}}=\sum_{j=1}^{f(n)} e^{-\frac{k f(n)+j}{f(n)}+\ln \frac{k f(n)+j}{f(n)}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j=1}^{f(n)} e^{-k-\frac{j}{f(n)}+\ln (k+1)}=e^{-k+\ln (k+1)} \sum_{j=1}^{f(n)} e^{-\frac{j}{f(n)}} \\
& \leq e^{-k+\ln (k+1)} \cdot f(n) .
\end{aligned}
$$

Then we get

$$
\begin{aligned}
& \left(1-\frac{1}{f(n)}\right)^{n}+\frac{(2 n+2) f(n)}{n^{2}(f(n)-1)} \sum_{i=1}^{n}\left(1-\frac{1}{f(n)}\right)^{i} \frac{i}{f(n)} \\
& =\left(1-\frac{1}{f(n)}\right)^{n}+\frac{(2 n+2) f(n)}{n^{2}(f(n)-1)} \sum_{k=0}^{\lceil n / f(n)\rceil} \sum_{i=k f(n)+1}^{(k+1) f(n)}\left(1+\frac{1}{f(n)}\right)^{i} \cdot \frac{i}{f(n)} \\
& \leq e^{-\frac{n}{f(n)}}+\frac{(2 n+2) f(n)}{n^{2}(f(n)-1)} \sum_{k=0}^{\lceil n / f(n)\rceil} e^{-k+\ln (k+1)} \cdot f(n) \\
& \leq e^{-\frac{n}{f(n)}}+\frac{(2 n+2) f(n)^{2}}{n^{2}(f(n)-1)} \sum_{k=0}^{\infty} \frac{k+1}{e^{k}} \\
& \leq \frac{c f(n)}{n} \text { for a constant } c .
\end{aligned}
$$

For the last inequality, note that $f(n)=o(n)$, so that $e^{-\frac{n}{f(n)}}=o\left(\frac{f(n)}{n}\right)$.
Using Theorem 2, we get a lower bound of $c^{\prime} n^{2} / f(n)$ for the running time of the QuickSort algorithm, for some constant c^{\prime}.

To get an upper bound for geometric distributions we estimate

$$
\sum_{i=1}^{n} p_{i} H\left(\frac{i}{n}\right) \geq \frac{\log n \cdot\left(f(n)-n \cdot e^{-n / f(n)}\right)}{n}
$$

which gives $T(n) \leq \frac{n^{2}}{f(n)}$ as upper bound, if $f(n)=o(n)$.
Proof.

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} H\left(\frac{i}{n}\right) & =\frac{1-q}{q} \sum_{i=1}^{n} q^{i} H\left(\frac{i}{n}\right) \\
& \geq \frac{1-q}{q} \sum_{i=1}^{n} q^{i}\left(\frac{i}{n} \log \frac{n}{i}+\frac{n-i}{n} \log \frac{n}{n-i}\right) \\
& \geq \frac{1-q}{q} \sum_{i=1}^{n} q^{i}\left(\frac{i}{n} \log \frac{n}{i}\right) \\
& \geq \frac{1-q}{q n} \log n \sum_{i=1}^{n-1} q^{i} \cdot i
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1-q}{q n} \log n\left(\frac{q^{n}(n q-n-q)}{(1-q)^{2}}+\frac{q}{(1-q)^{2}}\right) \\
& =\frac{\log n}{n}\left(\frac{q^{n-1}(n q-n-q)}{1-q}+\frac{1}{1-q}\right)
\end{aligned}
$$

We again set $q:=1-\frac{1}{f(n)}$ to obtain

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} H\left(\frac{i}{n}\right) & =\frac{\log n}{n}\left(\frac{\left(1-\frac{1}{f(n)}\right)^{n-1}\left(n\left(1-\frac{1}{f(n)}\right)-n-1+\frac{1}{f(n)}\right)}{\frac{1}{f(n)}}+\frac{1}{\frac{1}{f(n)}}\right) \\
& =\frac{\log n f(n)}{n}\left((n-1)\left(1-\frac{1}{f(n)}\right)^{n}-n\left(1-\frac{1}{f(n)}\right)^{n-1}+1\right) \\
& =\frac{\log n f(n)}{n}\left(\left(1-\frac{1}{f(n)}\right)^{n-1}\left((n-1)\left(1-\frac{1}{f(n)}\right)-n\right)+1\right) \\
& =\frac{\log n f(n)}{n}\left(\left(1-\frac{1}{f(n)}\right)^{n-1}\left(-1-\frac{n-1}{f(n)}\right)+1\right) \\
& =\frac{\log n f(n)}{n}\left(1-\left(1-\frac{1}{f(n)}\right)^{n-1}\left(1+\frac{n-1}{f(n)}\right)\right) \\
& \geq \frac{\log n f(n)}{n}\left(1-e^{\left.-\frac{n-1}{f(n)} \cdot \frac{2 n}{f(n)}\right)}\right. \\
& \geq \frac{c \log n f(n)}{n} \text { for some constant } c>0 \text { if } f(n)=o(n)
\end{aligned}
$$

So we have an upper bound for the worst-case running time of $T(n) \leq \frac{c n^{2}}{f(n)}$ for some constant $c>0$.

References

1. Hoare, C.: Quicksort. Computer Journal 5(1) (1962) 10-15
2. Karloff, H., Raghavan, P.: Randomized algorithms and pseudorandom numbers. Journal of the Association for Computing Machinery 40 (1993) 454-476
3. Tompa, M.: Probabilistic algorithms and pseudorandom generators. Lecture Notes (1991)
4. Knuth, D.: The Art of Computer Programming. Volume Vol 3: Sorting and Searching. Addison-Wesley (1973)
5. Sedgewick, R., Flajolet, P.: Analysis of Algorithms. Addison-Wesley (1996)
6. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton University Press (1996)
7. Alon, N., Rabin, M.O.: Biased coins and randomized algorithms. In Preparata, F., Micali, S., eds.: Advances in Computing Research 5, JAI Press (1989) 499-507
8. Ash, R.: Information Theory. Dover (1965)
9. List, B.: Probabilistische Algorithmen und schlechte Zufallszahlen. PhD thesis, Universität Ulm (1999)
10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

Appendix

Lemma 2. For $0 \leq i \leq n$

$$
\sum_{i=1}^{n} i \log _{2} i \geq \sum_{i=1}^{n} i\left(\log _{2} n-1\right)
$$

Proof. Let $S(n):=\sum_{i=1}^{n} i \log _{1} i$. We prove the lemma by induction.

$$
\begin{aligned}
S(n) & =\sum_{i=1}^{n / 2} i \log _{2} i+\sum_{i=n / 2+1}^{n} i\left(\log _{2} n-1+1+\log _{2}(i / n)\right) \\
& \geq \sum_{i=1}^{n / 2} i\left(\log _{2}(n / 2)-1\right)+\sum_{i=n / 2+1}^{n} i\left(\log _{2} n-1\right)+\sum_{i=n / 2+1}^{n} i\left(1+\log _{2}(i / n)\right) \\
& =\sum_{i=1}^{n} i\left(\log _{2} n-1\right)-\sum_{i=1}^{n / 2} i+\sum_{i=n / 2+1}^{n} i\left(1+\log _{2}(i / n)\right) \\
& \geq \sum_{i=1}^{n} i\left(\log _{2} n-1\right)-\sum_{i=1}^{n / 2} i+\sum_{i=n / 2+1}^{n} i(2 i / n-1) \\
& =\sum_{i=1}^{n} i\left(\log _{2} n-1\right)-\sum_{i=1}^{n} i+2 \sum_{i=n / 2+1}^{n} i 2 / n \\
& =\sum_{i=1}^{n} i\left(\log _{2} n-1\right)+\frac{1}{n} \sum_{i=1}^{n / 2}\left(2(n / 2+i)^{2}-n i-n(n / 2+i)\right) \\
& =\sum_{i=1}^{n} i\left(\log _{2} n-1\right)+\frac{1}{n} \sum_{i=1}^{n / 2} 2 i^{2} \\
& \geq \sum_{i=1}^{n} i\left(\log _{2} n-1\right)
\end{aligned}
$$

Lemma 3. For integers $n \geq 1$ and i with $0 \leq i \leq n$,

$$
\frac{(i-1)^{2}}{n^{2}}+\frac{(n-i)^{2}}{n^{2}}+H\left(\frac{i}{n+1}\right) \geq 1
$$

Proof. We use the known inequalities $-\ln (1-x) \geq x$ resp. $-\log _{2}(1-x) \geq \frac{x}{\ln 2}$, that hold for $0 \leq x \leq 1$. So we get

$$
\begin{aligned}
& \frac{(i-1)^{2}}{n^{2}}+\frac{(n-i)^{2}}{n^{2}}+H\left(\frac{i}{n+1}\right) \\
& =\frac{i^{2}-2 i+1+n^{2}-2 i n+i^{2}}{n^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \quad-\frac{i}{n+1} \log _{2} \frac{i}{n+1}-\left(1-\frac{i}{n+1}\right) \log _{2}\left(1-\frac{i}{n+1}\right) \\
& = \\
& \quad \frac{2 i^{2}-2 i+1+n^{2}-2 i n}{n^{2}} \\
& \quad-\frac{i}{n+1} \log _{2}\left(1-\frac{n-i+1}{n+1}\right)-\frac{n-i+1}{n+1} \log _{2}\left(1-\frac{i}{n+1}\right) \\
& \geq \\
& \geq \frac{2 i^{2}-2 i+1+n^{2}-2 i n}{n^{2}}+\left(\frac{i}{n+1} \cdot \frac{n-i+1}{n+1}+\frac{n-i+1}{n+1} \cdot \frac{i}{n+1}\right) / \ln 2 \\
& \geq
\end{aligned}
$$

For the second last inequality, we use that $(n+1)^{2} \ln 2 \leq n^{2}$ for $n \geq 5$. The remaining 14 cases $(n, i)=(1,0),(1,1), \ldots,(4,4)$ can be checked by computer.

