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Abstract. If Alice has x, y, Bob has x, z and Carol has y, z can they
determine if x + y + z = N? They can if (say) Alice broadcasts x to Bob
and Carol; can they do better? Chandra, Furst, and Lipton studied this
problem and showed sublinear upper bounds. They also had matching
(up to an additive constant) lower bounds. We give an exposition of their
result with some attention to what happens for particular values of N .
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1 Introduction

Consider the following function f .

Definition 1. Let L,N ∈ N and let n = 2L−1. We view elements of {0, 1}L as
numbers in {0, . . . , n} Let f : {0, 1}L × {0, 1}L × {0, 1}L → {0, 1} be defined as

f(x, y, z) =

{
1 if x + y + z = N ;
0 otherwise.

(1)

We will refer to f as the Exact-N Problem.
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Assume Alice has x, y, Bob has x, z, and Carol has y, z. Is there a protocol
such that, at the end of it, they all know f(x, y, z)? (See [6] for the rigorous
definition of a protocol.) We assume that they can each broadcast information
to the other two. One protocol is (1) Alice broadcasts x, (2) Carol determines if
x + y + z = N or not, and then (3) Carol broadcasts 1 (for YES) or 0 (for NO).
This takes L + 1 bits. Is there a protocol that uses << L bits?

Definition 2. Let f be any function from {0, 1}L × {0, 1}L × {0, 1}L to {0, 1}.
Assume Alice has x, y, Bob has x, z, and Carol has y, z. Let d(f) be the number
of bits transmitted in the optimal deterministic protocol for f . This is called the
multiparty communication complexity of f . Note that there is always the L+1-bit
protocol of (1) Alice broadcasts x, (2) Carol computes f(x, y, z) and (3) Carol
broadcasts f(x, y, z). The cases of interest are when f can be computed with
substantially fewer than L bits.

Chandra, Furst, and Lipton [3] (see also [6]) exhibit matching (up to an
addtive constant) upper and lower sublinear bounds on d(f) for f the Exact-N
Problem. The bound they get is related to a concept in combinatorics called
3-free sets (see below), and hence is not explicit. Their motivation was that the
results gave lower bounds on branching programs.

We present their proofs with several additions.
1. A recent paper of Gasarch and Glenn [4] has tables of sizes of 3-free sets.

Those tables, together with this exposition, which tracks constants carefully,
enables us to see, for what values of L,N , and n the protocol is sublinear.

2. The lower bound in [3] is only valid when n ≥ N . One of the main points of
their paper is that, in this case, the lower bound is not constant. If n < N/3
and Alice, Bob, and Carol all know this, then there is a 0-bit protocol: they
all know that x+y+z 6= N . We give a lower bound that shows what happens
when n = αN + β, where 1

3 ≤ α ≤ 1.
3. Chandra, Furst, and Lipton[3] actually looked at the Exact-N problem with

k people and k inputs x1, . . . , xk, where person i knows all inputs except for
xi. The solution to this problem depends on k-free sets. Large k-free sets
are known and can be used to give an upper bound for the protocol. This
appears to be a new result.

Definition 3.

1. Let [n] denote the set {1, . . . , n}.
2. A set A ⊆ [n] is 3-free if there do not exist x, y, z ∈ A such that x, y, z form

an arithmetic progression of length 3.
3. Let sz(n) be the size of the largest 3-free set of [n].

2 The Upper Bound

2.1 The Upper Bound for any N

Theorem 1. Let f be the Exact-N problem. Then

d(f) ≤ 2 +
⌈
lg(

9N ln(3N)
sz(3N)

+ 1)
⌉

.
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(Note that this bound is independent of n and L. However, it is not of interest
when the players know that n ≤ N/3 since f(x, y, z) = 0 and d(f) = 0.)

We prove the upper bound by a series of statements.

Definition 4. Let c,N ∈ N.

1. Let SN be the set of all (x, y, z) such that x, y, z ≥ 0 and x + y + z = N .
2. A proper c-coloring of SN is a function COL : SN → [c] such that there does

not exist x, y, z,∈ [N ] and λ ∈ Z− {0} such that x + y + z + λ = N and

COL(x + λ, y, z) = COL(x, y + λ, z) = COL(x, y, z + λ).

3. Let χ(N) be the least c such that there is a proper c-coloring of SN .

The next theorem gives two protocols for the Exact-N problem, and hence
two different upper bounds. The first one is smaller; however, the second one
will be useful later.

Theorem 2. Let f be the Exact-N problem.

1. d(f) ≤ 2 + dlg(χ(N) + 1)e .
2. d(f) ≤ 5 + dlg(χ(2N/3) + 1)e.

Proof. 1) Let COL be a proper c-coloring of SN where c = χ(N). We represent
elements of [c] by bit strings; however, we do not allow 0 · · · 0 to represent a
color. Hence we need dlg(χ(N) + 1)e bits. We denote dlg(χ(N) + 1)e by g. Alice,
Bob, and Carol will all know COL ahead of time. We present the protocol and
then discuss why it works.

1. Alice has x, y, Bob has x, z, and Carol has y, z.
2. In this step all three players compute internally but do not broadcast.

(a) Alice computes z′ = N−x−y. (Note that x+y+z′ = N so COL(x, y, z′)
exists so long as z′ ≥ 0.) If z′ ≥ 0 then Alice computes COL(x, y, z′) =
a1 · · · ag. Otherwise a1 · · · ag = 0g.

(b) Bob computes y′ = N−x−z. (Note that x+y′+z = N so COL(x, y′, z)
exists so long as y′ ≥ 0.) If y′ ≥ 0 then Bob computes COL(x, y′, z) =
b1 · · · bg. Otherwise b1 · · · bg = 0g.

(c) Carol computes x′ = N−y−z. (Note that x′+y+z = N so COL(x′, y, z)
exists so long as x′ ≥ 0.) If z′ ≥ 0 then Carol computes COL(x′, y, z) =
c1 · · · cg. Otherwise c1 · · · cg = 0g.

3. Alice broadcasts a1a2a3 · · · ag. (Note that this is exactly g bits.) If she broad-
casts all 0’s then everyone knows f(x, y, z) = 0 and the protocol terminates.

4. If (∀i)[bi = ai] then Bob broadcasts 1. Otherwise he broadcasts 0.
5. If (∀i)[ci = ai] then Carol broadcasts 1. Otherwise she broadcasts 0.
6. If both Bob and Carol broadcast a 1 then they all know f(x, y, z) = 1. If

either of them broadcasts a 0 then they all know f(x, y, z) = 0.
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Claim 1: If f(x, y, z) = 1 then in the last three steps of the protocol Bob and
Carol broadcast 1.

Proof. If f(x, y, z) = 1 then x′ = x, y′ = y, and z′ = z. Hence (∀i)[ai = bi = ci].
(End of proof of Claim 1).

Claim 2: If in the last three steps of the protocol Bob and Carol broadcast 1
then f(x, y, z) = 1.

Proof. Assume that at the end of the protocol Bob and Carol broadcast 1. Then

COL(x′, y, z) = COL(x, y′, z) = COL(x, y, z′).

Recall that

x′ = N − y − z,

y′ = N − x− z,

and

z′ = N − x− y.

Hence

COL(N − y − z, y, z) = COL(x,N − x− z, z) = COL(x, y,N − x− y).

Let λ = (N − x− y − z). We have

COL(x + λ, y, z) = COL(x, y + λ, z) = COL(x, y, z + λ).

Since the coloring is proper we must have λ = 0 so x + y + z = N .
(End of proof of Claim 2).

2) We present an alternative protocol. We assume N is divisible by 3.

1. Alice broadcasts 1 if x ≥ N/3 and 0 otherwise,
2. Bob broadcasts 1 if z ≥ N/3 and 0 otherwise.
3. Carol broadcasts 1 if y ≥ N/3 and 0 otherwise.
4. There are four cases depending on how many of them broadcast a 1.

(a) None of them broadcast a 1. Then x + y + z 6= N and they are done.
This took 3 bits.

(b) Exactly one of them broadcasts a 1. We assume it is Alice (the other cases
are identical). Alice and Bob set x− = x − N/3. Then Alice, Bob, and
Carol execute the protocol in part 1 to determine if x− + y + z = 2N/3.
This takes 2 + dlg(χ(2N/3) + 1)e. Hence the total number of bits used
is 5 + dlg(χ(2N/3) + 1)e.
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(c) Exactly two of them broadcast a 1. We assume they are Alice and
Bob (the other cases are identical). Alice and Bob set x− = x − N/3.
Bob and Carol set z− = z − N/3. Then Alice, Bob, and Carol exe-
cute the protocol in part 1 to determine if x− + y + z− = N/3. This
takes 2 + dlg(χ(N/3) + 1)e. Hence the total number of bits used is 5 +
dlog(χ(N/3) + 1)e.

(d) All three of them broadcast a 1. Alice broadcasts a 1 if either x > N/3
or y > N , and a 0 otherwise. Bob broadcasts a 1 if z > N/3 and a 0
otherwise. If either of them broadcasts a 1 then x+y+z 6= N , otherwise
x + y + z = N . This takes 2 bits so the total number of bits is 5.

We relate χ(N) with other combinatorial concepts.

Definition 5.

1. A 3-AP is an arithmetic sequence of length 3.
2. Let C(N) be the minimum number of colors needed to color [N ] such that

there are no monochromatic 3-AP’s.

Lemma 1.

1. χ(N) ≤ C(3N).
2. C(M) ≤ 3M ln M

sz(M) .

3. χ(N) ≤ 9N ln(3N)
sz(3N) . (This follows from 1 and 2.)

Proof. 1) Assume that C(3N) = c. Let COL be a c-coloring of [3N ] with no
monochromatic 3-AP’s. We use this to construct a proper c-coloring COL′ of
SN .

COL′(x, y, z) = COL(x + 2y + 3z).

We show that COL′ is proper. Assume that there exists x, y, z, λ such that
x + y + z + λ = N and

COL′(x + λ, y, z) = COL′(x, y + λ, z) = COL′(x, y, z + λ).

Then

COL(x + 2y + 3z + λ) = COL(x + 2y + 3z + 2λ) = COL(x + 2y + 3z + 3λ).

Since COL has no monochromatic 3-AP’s we must have λ = 0. Hence COL′

is proper.

2) Let A ⊆ [M ] be a set of size C(M) with no 3-APs. We use A to obtain a
coloring of [M ]. The main idea is that we use randomly chosen translations of
A to cover all of [M ].

Let x ∈ [M ]. Pick a translation of A by picking t ∈ [−M,M ]. The probability
that x ∈ A + t is |A|

2M . Hence the probability that x /∈ A + t is 1− |A|
2M . If we pick
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s translations t1, . . . , ts at random (s to be determined later) then the expected
number of x that are not covered by any A + ti is

M

(
1− |A|

2M

)s

≤ Me−s
|A|
2M .

We need to pick s such that this quantity is < 1. We take s = 3M ln M
|A| which

yields

Me−s
|A|
2M = Me(−3/2) ln M = M−1/2 < 1.

(We could have taken s = (2+ε) ln M
|A| which works for large M , but we wanted

a value of s that works for all M .)
We color [M ] by coloring each of the s translates a different color. If a number

is in two translates then we color it by one of them arbitrarily. Clearly this
coloring has no monochromatic 3-APs. Note that it uses 3M ln M

|A| = 3M ln M
sz(M)

colors.

We now restate and prove the main theorem.

Theorem 3. Let f be the Exact-N problem. Then

d(f) ≤ 3 +
⌈
lg

9N ln(3N)
sz(3N)

⌉
.

Proof. By Theorem 2 we have

d(f) ≤ 2 + dlg(χ(N) + 1)e .

By Lemma 1

χ(N) ≤ 9N ln(3N)
sz(3N)

.

Hence

d(f) ≤ 2 +
⌈
lg(

9N ln(3N)
sz(3N)

+ 1)
⌉

.

3 What is the Complexity

Theorem 2 gives an upper bound that we will later see is very close to the lower
bound. Theorem 1 gives an upper bound as well. Neither theorem tells us if d(f)
is sublinear. In this section we establish that d(f) is sublinear and, for some
actual values of n, give upper bounds on d(f).

If n < N/3, and Alice, Bob, and Carol all know this, then there is an O(1)
protocol: since x + y + z < N they all, without any communication, know that
f(x, y, z) = 0. Hence we are interested in the case when n ≥ N/3. For definitive-
ness we will look at the case of n = N . Note that the trivial protocol of Alice
broadcasting x of length L = lg n is the one we want to beat.

We will refer the the protocol from Theorem 1 as ‘the CFL protocol’ in honor
of the authors Chandra, Furst, and Lipton.
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3.1 What Happens for Large N

Corollary 1. Let f be the Exact-N problem. The CFL-protocol shows d(f) ≤
O(
√

log N). When N = n we get O(
√

log n) = O(
√

L). (Note that this is sublin-
ear.)

Proof.

d(f) ≤ 3 +
⌈
lg

9n ln(3n)
sz(3n)

⌉
= O

(
log

n log n

sz(3n)

)
.

Behrends ([1] but see also [4]) showed that that there exists a c such that
sz(m) ≥ me−c

√
log m. It is easy to see that there exists a (possibly different)

constant c such that sz(3m) ≥ me−c
√

log m. Hence

N log N

sz(3N)
≤ N log N

Ne−c
√

log N
=

log N

e−c
√

log N
≤ (log N)(ec

√
log N ) ≤ ec

√
log n+log log n.

Hence we have

d(f) = O

(
log

(
N log N

sz(3N)

))
= O(log(ec

√
log N+log log N )) = O(

√
log N).

If n = N then

d(f) = O(
√

log N) = O(
√

logn) = O(
√

L).

3.2 What Happens for Particular Values of n?

Gasarch and Glenn [4] survey several constructions of 3-free sets and use them to
produce actual 3-free sets. The following table uses the values of sz(n) presented
there. The table gives n, sz(n), L = lg n, and d(f) = 3 +

⌈
lg 9n ln(3n)

sz(n)

⌉
. We use

sz(n) instead of sz(3n) since this is the data we had. Since 3sz(n) ≥ sz(3n) ≥
sz(n), and we end up taking logarithms, this will make our table at most 2 bits
more than the actual protocol. We also give the ratio of d(f) to

√
L since O(

√
L)

is what the analysis gives. Note the following.

1. The lowest value where we know that the CFL protocol beats the trivial
one is around 106. Since larger 3-free sets may be possible this might be
improved in the future.

2. At n = 1018, d(f) = L/2. At n = 1036, d(f) = L/3. At n = 1060, d(f) = L/4.
Hence the degree to which the CFL protocol is better than the trivial one
seems to increase with n.

3. The ratio of d(f) to
√

L (roughly) decreases from 4 to 3.5 in our data. It is
not clear if a limit exists.
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n sz(n) df L
⌈√

L
⌉

ratio

101 5.00× 100 5 4 2 2.50
102 2.40× 101 10 7 3 3.78
103 1.05× 102 12 10 4 3.79
104 5.12× 102 13 14 4 3.47
105 2.04× 103 15 17 5 3.64
106 8.19× 104 13 20 5 2.91
107 3.28× 104 18 24 5 3.67
108 1.31× 105 20 27 6 3.85
109 5.73× 105 21 30 6 3.83
1010 2.74× 106 22 34 6 3.77
1011 1.56× 107 23 37 7 3.78
1012 9.81× 107 24 40 7 3.79
1013 5.27× 108 25 44 7 3.77
1014 3.51× 109 26 47 7 3.79
1015 2.10× 1010 26 50 8 3.68
1016 1.33× 1011 27 54 8 3.67
1017 8.25× 1011 28 57 8 3.71
1018 5.68× 1012 29 60 8 3.74
1019 3.78× 1013 29 64 8 3.62
1020 2.39× 1014 30 67 9 3.67
1021 1.63× 1015 31 70 9 3.71
1022 1.22× 1016 31 74 9 3.60
1023 7.65× 1016 32 77 9 3.65
1024 5.17× 1017 32 80 9 3.58
1025 3.67× 1018 33 84 10 3.60
1026 2.46× 1019 34 87 10 3.65
1027 1.73× 1020 34 90 10 3.58
1028 1.26× 1021 35 94 10 3.61
1029 8.90× 1021 35 97 10 3.55
1030 6.33× 1022 36 100 10 3.60
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n sz(n) df L
⌈√

L
⌉

ratio
1031 4.66× 1023 37 103 11 3.65
1032 3.35× 1024 38 107 11 3.67
1033 2.40× 1025 38 110 11 3.62
1034 1.73× 1026 39 113 11 3.67
1035 1.29× 1027 39 117 11 3.61
1036 9.63× 1027 40 120 11 3.65
1037 7.09× 1028 40 123 12 3.61
1038 5.24× 1029 41 127 12 3.64
1039 3.91× 1030 41 130 12 3.6
1040 2.94× 1031 42 133 12 3.64
1041 2.20× 1032 42 137 12 3.59
1042 1.66× 1033 42 140 12 3.55
1043 1.26× 1034 43 143 12 3.6
1044 9.63× 1034 43 147 13 3.55
1045 7.31× 1035 44 150 13 3.59
1046 5.59× 1036 44 153 13 3.56
1047 4.26× 1037 45 157 13 3.59
1048 3.27× 1038 45 160 13 3.56
1049 2.53× 1039 45 163 13 3.52
1050 1.96× 1040 46 167 13 3.56
1051 1.52× 1041 46 170 14 3.53
1052 1.18× 1042 47 173 14 3.57
1053 9.13× 1042 47 177 14 3.53
1054 7.15× 1043 47 180 14 3.50
1055 5.60× 1044 48 183 14 3.55
1056 4.39× 1045 48 187 14 3.51
1057 3.45× 1046 48 190 14 3.48
1058 2.71× 1047 49 193 14 3.53
1059 2.12× 1048 49 196 14 3.50
1060 1.69× 1049 50 200 15 3.54
1061 1.34× 1050 50 203 15 3.51
1062 1.07× 1051 50 206 15 3.48
1063 8.48× 1051 51 210 15 3.52
1064 6.73× 1052 51 213 15 3.49
1065 5.33× 1053 51 216 15 3.47

4 Lower Bounds

Chandra, Furst and Lipton [3] showed that if n ≥ N , then d(f) ≥ 1 + lg χ(N).

Theorem 4. If f is restricted to x, y, z ∈ {0, . . . , N} then d(f) ≥ log χ(N).
(Note that in this case the upper bound and lower bound differ by an additive
constant of at most 2.)
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Proof. Let P be a protocol for Exact-N . We use this protocol to create a proper
coloring of SN .

Let x, y, z be such that x + y + z = N .

COL(x, y, z) = the transcript of communication if (x, y, z) is fed into the
protocol.

We first claim that this is a proper coloring. Note that if

COL(x + λ, y, z) = COL(x, y + λ, z) = COL(x, y, z + λ)

then the transcripts of (x + λ, y, z), (x, y + λ, z), and (x, y, z + λ) are identical.
By a standard result in communication complexity (see [6]) the transcript for
(x, y, z) will be identical to this transcript. Since x + y + z = N we have that
the protocol says 1 on (x + λ, y, z). Hence x + λ + y + z = N so λ = 0.

Therefore the number of possible transcripts that lead to a YES is at least
χ(N). Note that the number of transcripts that lead to a NO is at least 1. By a
standard result in communication complexity (see[6]) we obtain d(f) is at least
the lg of the number of transcripts. Hence d(f) ≥ 1 + lg χ(N).

We present a lower bound that covers cases close to n ≤ N/3.

Theorem 5. Let 0 ≤ α < 1 and β ∈ N. If f is restricted to x, y, z ∈ {0, . . . , αN+
β} then d(f) ≥ log χ( 3α−1

2 N + β).

Proof. Let f be be the Exact-N problem restricted to x, y, z ∈ {0, . . . , αN +β}.
We proceed by reducing an easier problem to our problem.

Fix an integer 0 ≤ m ≤ αN . Let fm be the Exact-N problem where the
inputs are restricted by

x, y ∈ {m, . . . , αN + β} and z ∈ {0, . . . , αN + β}.
This problem is clearly easier than the original problem. Hence d(fm) ≤ d(f).
Since m is a fixed positive parameter of the problem, each party can inde-

pendently subtract m from x and y, and add 2m to z. The sum will remain the
same and all the inputs will remain non-negative, i.e. we will get a problem fm′

with the inputs restricted by

x, y ∈ {0, . . . , αN −m + β} and z ∈ {2m, . . . , αN + 2m + β}
which is equivalent to fm. Hence d(fm′

) = d(fm) ≤ d(f).
Let m = 1−α

2 N . Note that m > 0 since α < 1. Denote fm′
with this value

of m by f ′. So f ′ is the Exact-N problem with x, y ∈ {0, . . . , 3α−1
2 N + β} and

z ∈ {(1−α)N, . . . , N+β}. We can further make this problem easier by narrowing
the range of z to be { 3(1−α)

2 N, . . . , N + β}. Let f ′′ be this problem. Note that
x + y + z = N iff x + y + (z − 3(1−α)

2 N + β) = 3α−1
2 N + β.

Let M = 3α−1
2 N + β. Let f ′′′ be the Exact-M problem restricted to x, y, z ∈

{0, . . . ,M}. By the above iff statement we have that d(f ′′) = d(f ′′′). We can
apply Theorem 4 to f ′′′ and hence d(f ′′′) ≥ log χ(M) = log χ( 3α−1

2 N + β).
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We can use Theorems 1, and the fact that χ(N) is not constant (see [3]), and
another protocol to establish a sharp cutoff between where d(f) is constant and
where it is not.

Theorem 6.

1. Let 0 ≤ α ≤ 1
3 and β ∈ N. If f is restricted to x, y, z ∈ {0, . . . , αN +β} then

d(f) = O(1).
2. Let α > 1

3 . If f is restricted to x, y, z ∈ {0, . . . , αN} then d(f) is not con-
stant.

Proof. 1) We describe a protocol for this case.

1. Alice broadcasts 1 if x ≥ N/3 and 0 otherwise. Bob broadcasts 1 if z ≥ N/3
and 0 otherwise. Carol broadcasts 1 if y ≥ N/3 and 0 otherwise.

2. There are four cases depending on how many of them broadcast a 1.
(a) None of them broadcast a 1. Then x + y + z 6= N and they are done.

This took 3 bits.
(b) Exactly one of them broadcasts a 1. We assume it is Alice (the other

cases are identical). Bob broadcasts 1 if z ≥ N
3 − β and 0 otherwise.

Carol broadcasts 1 if y ≥ N
3 − β and 0 otherwise.

(c) If either broadcasts 0 then x + y + z 6= N and they are done. If both
broadcast 1 then (1) Alice and Bob set x− = x−N

3 , (2) Bob and Carol set
z− = z−D, (3) Alice and Carol set y− = y−D, and (4) Alice, Bob and
Carol use the protocol from Theorem 1.1 to determine if x−+y−+z− =
β. This will take 3 + log χ(β) bits, a constant.

3. Exactly two of them broadcasts a 1. We assume they are Alice and Bob
(the other cases are identical). Carol broadcasts 1 if y ≥ N

3 − 2β and 0
otherwise. If she broadcasts 0 then x + y + z 6= N and they are done. If she
broadcasts 1 then (1) Alice and Bob set x− = x −N/3, (2) Bob and Carol
set z− = z −N/3, (3) Alice and Carol set y− = y −D, and (4) Alice, Bob
and Carol use the protocol from Theorem 1 to determine if x′+y′+z′ = 2β.
This takes 3 + lg(χ(β)) bits, a constant.

4. All three of them broadcasts a 1. Alice broadcasts a 0 if either x > N/3 or
y ≥ N/3 and a 1 otherwise. If she broadcasts a 0 then x+ y + z 6= N so they
are done. If she broadcasts a 1 then Carol broadcasts 0 if z > N/3 and 1
otherwise. If she broadcasts a 1 then x+y+z = N , otherwise x+y+z 6= N .
In either case they are done. This took 5 bits total.

2) By Theorem 5 d(f) ≥ log χ( 3α−1
2 N + β). Since α > 1

3 there is a constant
γ such that d(f) ≥ lg(χ(γN)). It is known that χ(γ) is not constant. One can
prove this from Gallai’s Theorem, as was done in [3], or from van der Waerden’s
Theorem, which we leave as an exercise.

In the case where n ≤ αn + β we have a lower bound of lg χ( 3α−1
2 N + β)

and an upper bound of 3 + lg(χ(N)) or 5 + lg(χ(2N/3)) How do these bounds
compares?
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We first need a lemma about the behavior of lg(χ(N)). Note that it is purely
combinatorial lemma proven using the upper and lower bounds on the Exact-N
problem.

Lemma 2. For any γ > 0 there is a constant c such that lg(χ(N)) ≤ c +
lg(χ(γN)).

Proof. Let f be the Exact-N problem with no restrictions on the input. By
Theorem 4 lg(χ(N)) ≤ d(f). By Theorem 2.2 d(f) ≤ 5 + lg(χ(2N/3)) Hence we
have lg(χ(N)) ≤ d(f) ≤ 5 + lg(χ(2N/3)). We can iterate this p times to obtain

lg(χ(N)) ≤ 5p + lg(χ((
2
3
)pN)).

Let p be the least integer such that ( 2
3 )p < γ. Clearly

lg(χ(N)) ≤ 5p + lg(χ((
2
3
)pN)) ≤ 5p + lg(χ(γN)).

Theorem 7. Let α > 1/3 and β ∈ N. Let f be be the Exact-N problem restricted
to x, y, z ∈ {0, . . . , αN + β}. Then the upper and lower bounds for d(f) from
Theorems 5 and Theorem 2 differ by an additive constant (which depends on α).

Proof. We express the lower bound on d(f) from Theorem 5 as lg(χ(γN)) where
γ > 0. Hence we have lg(χ(γN)) ≥ d(f).

By Theorem 2 we have d(f) ≤ lg(χ(N)). By Lemma 2 these upper and lower
bounds differ by an additive constant.

5 What Else is Known

Chandra, Furst, and Lipton [3] actually proved a generalization of what we have
presented here.

Consider the following function f .

Definition 6. Let k, L,N ∈ N and let n = 2L − 1. We view elements of {0, 1}L

as numbers in {0, . . . , n} Let fk : {0, 1}L × · · · × {0, 1}L → {0, 1} (there are k
inputs to fk) be defined as

fk(x1, . . . , xk) =

{
1 if

∑k
i=1 xi = N ;

0 otherwise.
(2)

We refer to fk as the Exact-N problem for k players.

The following lemmas and theorem can be proven by the same techniques
for the k = 3 case.

Definition 7. Let c,N ∈ N.

1. Let Sk
N be the set of all (x1, . . . , xk) such that

∑k
i=1 xi = N .
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2. A proper c-coloring of Sk
N is a function COL : Sk

N → [c] such that there does
not exist x1, . . . , xk ∈ [N ] and λ ∈ Z− {0} such that x1 + · · ·+ xk + λ = N
and

c(x1 + λ, x2, . . . , xk) = c(x1, x2 + λ, . . . , xk) = c(x1, x2, . . . , xk + λ).

3. Let χk(N) be the least c such that there is a proper c-coloring of Sk
N .

Theorem 8. Let fk be the Exact-N problem for k players.

1. d(fk) ≤ k + dlg χk(N)e .
2. d(fk) ≤ 2k +

⌈
lg χk(k−1

k N)
⌉
.

Definition 8.

1. If k ∈ N then a k-AP is an arithmetic sequence of length k.
2. Let Ck(N) be the minimum number of colors needed to color [n] such that

there are no monochromatic k-AP’s.
3. szk(n) is the size of the largest k-free set of [n].

Lemma 3.

1. χk(N) ≤ Ck(kN).
2. Ck(M) ≤ 3M ln M

szk(M) .

3. χk(N) ≤ 9N ln(3N)
szk(3N) . (This follows from 1 and 2.)

Theorem 9. Let fk be the Exact-N problem for k players. Then

d(fk) ≤ k +
⌈
lg

9N ln(3N)
szk(3N)

⌉
.

The following bound on k-free sets is known ([8] but see also [7]).

Theorem 10. szk(M) ≥ Me−c(log M)1/(k+1)
.

Combining Theorems 9 and 10 yields the following result. This result appears
here for the first time. It seems that Chandra, Furst, and Lipton were unaware
of the bounds from [8] and hence could not obtain an explicit upper bound for
d(fk).

Theorem 11. Let fk be the Exact-N problem for k players. Then

d(fk) ≤ O((log N)1/(k+1)).

Theorem 12. Let 0 ≤ α < 1 and β ∈ N. If fk is restricted to x1, x2, . . . , xk ∈
{0, . . . , αN + β} then d(fk) ≥ log χ(kα−1

k−1 N + β).

Theorem 13. Let t ∈ N. If fk is restricted to x1, . . . , xk ∈ {0, . . . , N
t } then

d(fk) ≥ log χ(N
2 (k

t − 1)).
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6 Open Problems

1. The upper bound on d(f) depends on the size of large 3-free sets. Larger
3-free sets will imply lower upper bounds on d(f). It is an open problem

to obtain sz(m) >> ne−c
√

log m. It is known that sz(m) < O(m
√

log log m
log m )

([2] but see also [5]). If sz(m) = Θ(m
√

log log m
log m ) then in the n = N case

d(f) ≤ O(log log n) = O(log L).
2. The estimates on the lower bound on d(f) are far from those on the upper

bounds. Any improvement on lower bounds on χ(N) would help here.
3. Similar open problems to those above apply for d(fk).
4. There has been no empirical work on 4-free sets or k-free sets (except for [9]

which deals with very small numbers). Empirical work on 4-free sets would
enable us to show where the protocol for d(f4) is really sublinear, and also
when it is substantially better than the protocol for d(f3).
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