
Description and Matching of Services
in Mobile Environments?

Johannes Grünbauer1 and Michael Klein2

1Institut für Informatik, Technische Universität München,
85748 Garching, Germany, gruenbau@in.tum.de

2Institute for Program Structures and Data Organization, Universität Karlsruhe,
76128 Karlsruhe, Germany, kleinm@ipd.uni-karlsruhe.de

Service oriented computing is a new paradigm that is especially interesting
in mobile environments. As a characteristics, functionality is hidden behind an
interface and described as a black box with the help of a service description lan-
guage. This enables participants of the network to enlarge the limited capabilities
of their devices by using services provided by others. As service requestors and
providers are not fixedly tied together but are dynamically matched and bound,
this architecture is especially advantageous in mobile environments and their
constantly changing situation.

Typically a service usage follows the so called service triangle (see Figure 1):
The service provider (which can be mobile) wants to offer a certain functionality.
He describes it as service using the service description language (Step 1) and
publishes this description at the service repository (Step 2). This repository can
be central or distributed. If a requestor (which can be mobile, too) want to use
a certain functionality, he described his requirements as service request (Step 3)
and sends it to the repository (Step 4). Here, a matchmaking of the request and
the offers takes place (Step 5). Matching offers are returned to the requestor,

? The ideas for this paper have been developed at the Dagstuhl Seminar 04441 on
Mobile Information Management in October 2004 together with Georgia Koloniari,
George Samaras, and Can Türker.

Repository


Requestor


(mobile 
client
)


Provider


(mobile 
server
)


1. 
describe
offer


2. 
publish
2. 
publish


3. 
describe


request


4. 
search
For
4. 
search
For


5. 
match


6. 
select


7. 
configure


6. 
select


7. 
configure


8. 
invoke
8. 
invoke
 9. 
execute


10. 
transfer
results
10. 
transfer
results


Fig. 1. The service triangle.

Dagstuhl Seminar Proceedings 04441
Mobile Information Management
http://drops.dagstuhl.de/opus/volltexte/2005/167



Flight booking


Tools on 


mobile devices


(functionality is 


independent from the 


location)


Restaurant


Car


Taxi


(location affects 


functionality, 


context
 -
related)


Flight booking


Tools on 


mobile devices


(functionality is 


independent from the 


location)


Restaurant


Car


Taxi


(location affects 


functionality, 


context
 -
related)


mobile
 non
-
mobile


location


dependent


not


location


dependent


Fig. 2. Classification of services in mobile environments.

who selects one of them (Step 6), configures it according to his requirements
(Step 7), and invokes the corresponding service provider directly (Step 8). The
provider executes the service with the given configuration (Step 9) and – if there
are any results – returns them to the requestor (Step 10).

In the following, we want to analyze three topics from this process with re-
gard to their characteristics with regard to mobile environments: Service offer
descriptions (Section 1), service request descriptions (Section 2), and the match-
making (Section 3). We conclude the paper with a look on some challenges in
this area.

1 Service Offer Descriptions in Mobile Environments

First, we give a classification of services in mobile environments. This can be
done by splitting the space along two dimensions (see Figure 2):

– Mobility. Whether the service itself is mobile or not.
– Location Dependency. Whether the content of the service is dependent from

the location where it is used.

The simplest services are non-mobile, non location dependent services like a
flight booking service in the internet. It runs on a central server and provides a
functionality that is not bound to a specific location. In contrast, a restaurant
booking service could enable a client to reserve a place in a restaurant in a certain
area. Therefore, this is a location dependent service. Examples for service where
the providing device itself is mobile could be a taxi reservation service (location
dependent) or tools like a dictionary on a mobile device (not location dependent).

2



functional attributes
 non
-
functional attributes


format of document


size of document


compression degree


…


availability


bandwidth


transactional guarantees


costs


…


location


security


Fig. 3. Important functional and non-functional attributes for services in mobile envi-
ronments.

When describing these services, it is necessary to give information about cer-
tain attributes that are of special importance in mobile environments. They can
be divided in functional and non-functional attributes (see Figure 3). Important
functional attributes could be the format, size, or compression degree of a file as
mobile devices typically have limited capabilities in dealing with all file types.
With regard to non-functional attributes, availability, bandwidth requirements,
transactional guarantees, and costs could be relevant when checking whether a
given service is appropriate in a mobile situation.

However, filling the attributes of a service description leads to problems in
a mobile environment: Changes in the environment can also lead to changes
in the description, so frequent updates of the description would be necessary.
To avoid this, the description could be split up into two parts: a static part
containing the regular service description and a dynamic part, which captures
the current context of the service provider like his current location, the times of
availability and so on. This division could be done logically only or lead to two
different documents which could be stored in two different repositories. With
our classification from above, mobile services would have a large dynamic part
whereas non-mobile service would only have a small one.

2 Service Request Descriptions in Mobile Environments

Requesting services is quite similar to performing a database query. The user
or a program needs to have a certain query language to get information from
a service. In this section we take a look on the request descriptions in mobile
environments.

In mobile environments there exists additional information which has to be
given to the service–the context information (cf. Sect.1). The context adds addi-
tional constraints to the request. We call these constraints implicit information.

3



ad
-
hoc part


preferences

…


location constraints


…


bandwidth, load


constraints
…


Request


User Profile


User Context


System Context


generates


generates


generates


Fig. 4. Generating requests.

Example 1 (Taxi Service). A person queries a service to get a taxi (“I need a
taxi within the next 20 minutes.”). We have to distinguish between implicit and
explicit information. The explicit information is, that a taxi is needed within
the next 20 minutes. But this information is completely worthless if the service
doesn’t know where the taxi should be in 20 minutes. So, here the implicit
information is the location of the user. ¤

Of course, there should exist the possibility to turn implicit information into
explicit information since user should always keep his right of self-determination.
So, if the user wants a taxi to be at a certain place (not at his current position),
he should alway be able to generate a request with this information.

Example 2 (Reservation Service). Another example is a service, which can be
used to reserve a table in a restaurant (“I want to reserve a table in a restau-
rant.”). The implicit information for the service request could be:

– restaurant should be nearby
– restaurant sohuld be available
– the user prefers Chinese over Italian food. ¤

As shown in Fig.4, a mobile request is assembled by different parts: The ad-
hoc part, the preferences, the location constraints and the bandwidth and load
constraints.

The ad-hoc-Part is the request generated by the user. This is the explicit
information the user gives to the service (“I need a taxi within the next 20
minutes” or “I want to reserve a table in a restaurant.”).

The implicit information is generated by different aspects:

– The preferences are generated by the user profile. This profile can be set up
manually or be generated by the user’s behaviour over a period. Like in the
example shown above, it could contain information like “user prefers chinese
food” or “user likes musical shows”.

4



– The user context generates the location constraints. This makes sense in case
of using a PDA with a travel guide system which can e.g. offer information
about sights nearby the user’s current position.

– Furthermore, the system context generates bandwidth constraints. Let’s go
back to the travel guide example and let’s assume, the user wants to watch
an information movie about a sight he is currently standing in front of. If
the bandwidth is low, the system should provide the user a movie with a low
resolution or sound with a low quality.

3 Matching Service Descriptions

One of the most challenging part is that of the service matching. If the user
starts a request for a service, there are different ways how he gets a result for
the request. Figure 5 shows two extreme approaches.

1. On the left hand side the manual selection is shown. The user gives a simple
request to the matcher. The matcher creates a list of services using a built-in
heuristics and returns it to the service requestor. The user has now to pick
one result manually and choose by himself which one he likes best. If he
doesn’t find a service he likes, he has to refine the request and start another
search. This is the behaviour of common internet search engines, like google
or altavista.
As an example, the request could contain search words like

request: {subject:taxi, time:18:20–18:40, location:plaza-hotel}
2. The other approach (right hand side of Fig.5) is the automatic selection of a

service. The input to the matcher is a expressive and rich request description.
That means, the request is combined by the user input data and the input
given by the system context. The matcher now finds out which service is the
best for the user and return exactly one result.
Example:

request: subject:taxi, time:20min︸ ︷︷ ︸
user input

⊕ location:plaza-hotel, time:18:20–18:40︸ ︷︷ ︸
context input

In mobile environments, both matching types are thinkable. For ad-hoc queries,
the first type is used because of its simple request descriptions; within mobile
application, the second type should be used in order to ease the usage of the
program.

However, both extreme approaches are not completely brilliant. The problem
is, that in the first approach requires too much user interaction, and maybe the
user has to refine his request a several times until he gets a suitable result. The
problem with the second approach is that the matcher is too restrictive and takes
away the user’s right of self-determination.

5



Matcher


„
simple
“


request


offers


Matcher


„
complex
“


request


offers


Manual 
selection
 Automatic 
selection


 
 List of matching services 


with ranking and 


suggestions


 
 Requestor has to choose 


or refine the request


 
 One single service is 


selected and invoked by 


the system


 
 Based on the system 


context


Fig. 5. Two extremes of matching services.

4 Further Challenges

In this paper, we analyzed the requirements and approaches for describing and
matching services especially in mobile environments.

The following topics have not been addressed and can be seen as further
challenges in the area:

– How detailed should be the service request? What constructs are needed?
Are simple conjunctive queries sufficient?

– How to efficiently provide a list of ranked matches? What similarity measures
are reasonable?

– How to refine requests using relevance feedback?
– How to monitor the system context during service execution?

6


