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Sand 1, 72076 Tübingen, Germany,
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Abstract. In many real-world optimization problems sparse solution
vectors are often preferred. Unfortunately, evolutionary algorithms can
have problems to eliminate certain components completely especially in
multi-modal or neutral search spaces. A simple extension of the real-
valued representation enables evolutionary algorithms to solve these types
of optimization problems more efficiently. In case of multi-objective opti-
mization some of these compositional optimization problems show most
peculiar structures of the Pareto front. Here, the Pareto front is often
non-convex and consists of multiple local segments. This feature invites
parallelization based on the ’divide and conquer’ principle, since subdi-
vision into multiple local multi-objective optimization problems seems
to be feasible. Therefore, we introduce a new parallelization scheme for
multi-objective evolutionary algorithms based on clustering.

Keywords: Multi-objective Evolutionary Algorithms (MOEAs); Solution Rep-
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1 Introduction

In many real-world optimization problems sparse solution vectors are preferred
over solution vectors where all the decision variables are non-zero. One exam-
ple is given by compositional optimization of a recipe for a medical drug which
requires to optimize the percentage of several hundreds of potential ingredients.
Any pharmacist would prefer a simple recipe made of only few ingredients over
a recipe made from all available ingredients for practical reasons. Another ex-
ample is the inference of regulatory networks. Here, the problem is given by
finding suitable parameters defining the dynamics of a regulatory network to fit
a measured time series. In case the network structure is a priori unknown, the
number of parameters to optimize is given by a fully connected network, but any
practitioner knows that regulatory networks, especially biological ones, are of-
ten sparsely connected. Therefore, again sparse solution vectors are preferred. A
final example, which will be used to illustrate our results, is the multi-objective
portfolio selection problem. The portfolio selection problem is given by the task
of how to invest a limited amount of money in multiple available assets. This

Dagstuhl Seminar Proceedings 04461
Practical Approaches to Multi-Objective Optimization
http://drops.dagstuhl.de/opus/volltexte/2005/251



2 Felix Streichert, Holger Ulmer, and Andreas Zell

problem is explained in detail in sec. 2. This problem also calls for sparse so-
lution vectors. On the one hand, because many solutions on the Pareto front
consist only of a limited subset of all available assets and on the other hand, an
investor many be interested to limit the overall number of assets he is invest-
ing in. We introduce an alternative hybrid encoding for evolutionary algorithms
(EAs), which combines a standard real-valued vector with an additional binary
vector and which is able to outperform the standard encoding on compositional
optimization problems.
These kind of optimization problems have a number of intriguing features. Each
subset of non-zero parameters can be considered as a subspace of the true so-
lution space and each of these subspaces has its own local optimum. Therefore,
the search space is highly multi-modal. In case of multi-objective optimization
this leads to multiple localized Pareto fronts. This feature invites parallelization
based on the ’divide and conquer’ principle, since subdivision into multiple lo-
cal multi-objective optimization problems seems to be feasible. Unfortunately,
without any a priori knowledge of the shape of the true Pareto front it is dif-
ficult to decide which subdivision scheme to use. Therefore, we suggest to use
an adaptive subdivision scheme based on repeated clustering to identify suitable
subdivisions for a ’divide and conquer’ approach.
This paper is structured as follows, in sec. 2 we introduce the constrained portfo-
lio selection problem. In sec. 3 we show that a hybrid encoding outperforms the
standard encoding on the portfolio selection problem even in case the standard
encoding is enhanced with a repair mechanism together with Lamarckism. Then,
we present our results on parallelizing multi-objective evolutionary algorithms
(MOEAs) using a clustering based parallelization scheme in sec. 4. Finally, we
discuss the results in sec. 5.

2 The Portfolio Selection Problem

There are numerous optimization problems in the area of financial engineering
for example index tracking, credit scoring, identifying default rules, time series
prediction, trading rules, etc. But one of the most prominent is the portfolio
selection problem. The portfolio selection problem is given by the task of how
to distribute a limited amount of money between multiple assets available for a
profitable investment strategy.
Markowitz made an early approach to give the portfolio selection problem a
mathematical background, the Markowitz mean-variance model [10, 11]. This
model assumes that an investor would always try to maximize the return of his
investments while at the same time securing his investments from a possible loss.
Therefore, the portfolio problem gives a multi-objective optimization problem,
maximizing the expected return on the one hand and on the other hand mini-
mizing the risk (variance) of the portfolio.
The Markowitz mean-variance model gives a multi-objective optimization prob-
lem, with two output dimensions. A portfolio p consisting of N assets with
specific volumes for each asset given by weights wi is to be found, which:
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minimizes the variance of the portfolio : σp =
∑N

i=1

∑N

j=1
wi · wj · σij , (1)

maximizes the return of the portfolio : µp =
∑N

i=1
wi · µi, (2)

subject to
∑N

i=1
wi = 1 (3)

and 0 ≤ wi ≤ 1 (4)

where i = 1, .., N is the index of the asset, N represents the number of assets
available, µi the estimated return of asset i and σij the estimated covariance
between two assets. Usually, µi and σij are to be estimated from historical data.

While the optimization problem given in equ. 1 and equ. 2 is a quadratic
optimization problem for which computationally effective algorithms exist, this
is not the case if real-world constraints are added:

Cardinality constraints restrict the maximum number of assets used in
the portfolio,

∑N

i=1
sign(wi) = k.

Buy-in thresholds give the minimum amount that is to be purchased, i.e.
wi ≥ li ∀ wi > 0; i = 1, .., N .

Roundlots give the smallest volumes ci that can be purchased for each asset,
wi = yi · ci; i = 1, .., N and yi ∈ Z.

These constraints are often hard constraints, i.e. they must not be vio-
lated. Other real world constraints like sector/industry constraints, immuniza-
tion/duration matching and taxation constraints can be considered as soft con-
straints and should be implemented as additional objectives, since this yields
the most information. While we do consider the above hard constraints, we cur-
rently do not include soft constraints in our experiments. Since the mentioned
constraints are hard constraints a repair mechanism is used all the time regard-
less of the representation used.
The portfolio selection problem will be used throughout this paper as an ex-
emplary compositional optimization problem and multi-objective optimization
problem for parallelization. The features and characteristics of the portfolio se-
lection problem inspired both the hybrid representation used in sec. 3 and the
clustering based parallelization scheme in sec. 4.

3 Hybrid Representation for Compositional Optimization

Preliminary experiments indicated that Pareto-optimal solutions for the port-
folio selection problem are rarely composed of all available assets, but only a
limited selection of the available assets especially in case of cardinality con-
straints, see Fig. 16. For K = 2 there are several distinct regimes of two assets
combinations that form the Pareto front. The same holds true for larger values
of K. But the less restrictive the cardinality constraints are, the less distinct the
regimes.
The problem to find the best combinations of assets for a portfolio resembles
a one-dimensional binary knapsack problem. This kind of problem has already
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Fig. 1. Comparing the standard encoding to the hybrid encoding.

been addressed by means of EA using a binary genotype. We suggest to use the
very same genotype in addition to the vector of decision variables W, see Fig. 1.
Each bit of the bit-string B determines whether the associated asset will be an
element of the portfolio or not, so that the actual value of the decision variable
is w′

i = bi ·wi. This is the value that will be processed by the repair mechanism.
With this hybrid encoding it is much easier for the EA to add or remove the
associated asset simply by mutating the bit-string B.
The hybrid representation is altered by mutating/crossing each genotype B and
W separately from each other. Binary operators are acting on the binary vector
B and real-valued operators are acting on the real-valued decision vector W.
Alternatively, we discuss the impact of a repair mechanism, which is able to re-
solve the cardinality constraint in a deterministic way, with and without Lamar-
ckism. With Lamarckism the EA with the standard encoding should also be able
to explore sparse decision vectors W as efficiently as the hybrid encoding, since
it is also limited to a sparse decision vector. Unfortunately, this strategy has two
drawbacks. First, it is not as flexible as the hybrid encoding as it will be shown
in sec. 3.3. And second, the repair mechanism is limited to optimization problem
where the cardinality is a hard constraint. In case the cardinality of the decision
vector is an optional goal as in case of inferring regulatory networks of unknown
network topology, this strategy cannot be applied anymore.
A general comparison between the standard encoding and the hybrid encoding
has been performed in [15]. A more detailed discussion on this encoding style
and the general parameters that were used to obtain these results can be found
in [16].

3.1 Experimental Results

The comparison of the different EA representation was performed on data sets
given by Beasley [1] available at http://mscmga.ms.ic.ac.uk/info.html. The nu-
merical results presented here were performed on the Hang Seng data set with 31
assets. On this data set we use several combinations of real-world constraints to
compare the performance of the different EA encodings and crossover operators.
First, we compare the portfolio selection problem without cardinality constraints
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Fig. 2. Comparing the standard and the
hybrid encoding with and without Lamar-
ckism without cardinality constraints.

Fig. 3. Comparing the standard and the
hybrid encoding with and without Lamar-
ckism with k = 4.

and with cardinality constraints k = 4. In a second set of experiments we also
add buy-in thresholds (li = 0.1) and roundlots constraints (ci = 0.02) to the
portfolio selection problem.
We measure the performance of the algorithms by calculating the S-metric [20],
i.e. the area under the currently achieved Pareto front bounded by µmax of the
maximum return asset and σ = 0. We compare this area to the area under the
Pareto front of the unconstrained portfolio selection problem calculated through
quadratic programming also given in the benchmark data set. The percentage
difference (∆area) of the MOEA calculated solution and the reference solution
is to be minimized and gives the measure of quality. But only without any real-
world constraints can this measure drop to zero, otherwise the ∆area is limited
by the constraints. Additionally, the ∆area is limited due to the limited size of
the archive population, which gives the Pareto front identified by the MOEA.
To obtain reliable results we repeat each MOEA experiment for 50 times for
each parameter setting and problem instance. A single MOEA run is terminated
after 100,000 fitness evaluations.

3.2 Results without Additional Constraints

Without Lamarckism the hybrid encoding clearly outperforms the standard en-
coding regardless of the cardinality constraint imposed, see Fig. 2 and 3. This is
due to the fact that even without cardinality constraints the Pareto front con-
tains portfolios consisting of only few available assets. But the standard encoding
has difficulties to remove surplus assets and to obtain a sparse decision vector.
Halfway this is caused by the effect of the repair mechanism used, which makes
the search space neutral to some extend. Only the hybrid encoding is able to
counter the effect of the neutral search space especially in case of k = 4.
With Lamarckism on the other hand the both representations perform signif-
icantly better. The standard encoding recovers from the negative effect of the
repair mechanism, since the problem with the neutral search space is partially
resolved by Lamarckism. Even without cardinality constraints the MOEA with
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Fig. 4. Comparing the standard and the
hybrid encoding with and without Lamar-
ckism without cardinality constraints but
with additional constraints.

Fig. 5. Comparing the standard and the
hybrid encoding with and without Lamar-
ckism with k = 4 and additional con-
straints.

standard encoding is able to remove surplus assets more efficiently than before,
because of constraint 3 and 4. With cardinality constraints the decision vector
becomes as sparse as in case of the hybrid encoding. Therefore, the standard
encoding with Lamarckism is able to equal the performance of the hybrid en-
coding. But still the hybrid encoding with Lamarckism performs significantly
better than the standard encoding in both cases, because Lamarckism removes
some of the neutrality of the search space for the hybrid encoding too and the
cardinality of the bit vector is set to reasonably values immediately.

3.3 Results with Additional Constraints

With additional buy-in thresholds and roundlot constraints the repair mecha-
nism again increases the neutrality of the search space. Especially the standard
encoding suffers form this effect. Without Lamarckism the standard encoding
finds only portfolios where the weights of the assets are wi ≈ 1/k, see Fig. 5.
This also applies to the problem instance without cardinality constraints since
the buy-in threshold imposes an implicit cardinality constraint of k = 10, see
Fig. 4. With Lamarckism the neutrality of the search space is a little bit removed
such that the MOEA with the standard encoding is able to explore portfolio with
wi < 1/k but still the neutral search space prevents to remove surplus assets
by keeping wi > li. This is the reason why there is virtually no difference for
the standard encoding with and without Lamarckism on the problem instance
without explicit cardinality constraints, see Fig. 4. But while in case of k = 4
the standard encoding with Lamarckism is able to find better portfolios, it is
still limited to a subspace of the true search space and converges prematurely,
see Fig. 5.
The hybrid encoding is again able to counteract the negative effect of the neu-
tral search space and to search efficiently for space decision vectors. And again
the hybrid encoding performs better with Lamarckism than without, because it
removes some of neutrality of the search space, see Fig. 4 and 5.



Parallelizing MOEAs 7

3.4 Exemplary Pareto fronts for the Portfolio Selection Problem

Fig. 16 gives exemplary results on the Hang Seng data set with 31 assets and
the DAX data set with 85 assets, respectively. The obtained Pareto fronts illus-
trate the multiple local segments that make up the complete efficiency frontier
for the cardinality constrained portfolio selection problem. Such structures for
k > 2 could not have concluded from the results presented by Beasley et al. [4],
although they pooled results from multiple optimization algorithms like Tabu
Search, Simulated Annealing and Genetic Algorithms. Similar structures also
occur in other optimization problems, since cardinality constraints may cause
the search space to become highly multi-modal.
This observation caused us to believe that a ’divide and conquer’ approach might
be feasible on such problem instances where the search space is structured and
can be subdivided into subspaces. Unfortunately, without a priori knowledge
such structures can only be identified on the fly during the exploration of the
search space. In a previous publication we suggested the use of clustering al-
gorithms to identify and maintain niches in multi-modal search spaces [14]. It
is most straightforward to use the same method to identify structure in multi-
objective search spaces required for parallelization based on the ’divide and
conquer’ principle.

4 Utilizing the ’Divide and Conquer’ Approach to

parallelize MOEAs

A good overview over alternative parallelization strategies for MOEAs is given
in [18]. Basically, three different approaches to parallelize MOEAs can be dis-
tinguished: the island model, the master-slave model and the diffusion model.
Since we want to use the ’divide and conquer’ approach only the island model
is worth considering.
The most straightforward implementation of island MOEAs runs a number of
MOEA populations independently, each trying to obtain the complete Pareto
front and every mrate generations migration takes place [13, 9]. Miki et al. also
applied an island MOEA, but at regular intervals, the subpopulations are aggre-
gated, sorted according to a randomly selected objective, and then redistributed
onto different processors [12]. This approach allows the subpopulation to spe-
cialize on given objectives during the optimization, and was also used in [5, 6].
Another approach by Deb et al. uses the dominance principle [2] to guide the
individual subpopulation to different sections of the global Pareto front [8]. Un-
fortunately, the individual search directions have to be set beforehand, which
requires a priori knowledge of the shape of the Pareto front, and moreover this
approach cannot be applied to concave Pareto fronts.
The cone separation technique uses a geometrical approach to subdivide a given
Pareto front [3], see Fig. 6 for an example. A reference point R is given by the
extreme values of the current Pareto front and R is the origin of k subdividing de-
marcation lines. The authors point out, that in order to have each subpopulation
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Fig. 6. Exemplary partitioning using the
cone separation approach [3].
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Fig. 7. Exemplary partitioning using k-
Means (k = 5) on the Pareto front.

focusing on a specific region in objective space, the demarcation lines for each
region have to be treated as zone constraints using the constrained dominance
principle [7]. Again, this approach has several drawbacks. In case of discontinuous
or non evenly distributed Pareto fronts small or empty subpopulations can be
generated, which do not reflect any problem inherent structures. And finally, the
geometrical subdivision scheme of cone separation becomes rather complicated
in case of more than two objectives.

4.1 The Clustering Based Parallelization Scheme

Instead of choosing a subdivision scheme a priori using the dominance principle
or a static geometrical approach, we decided to search for a suitable subdivision
scheme on the fly by means of clustering algorithms. Each mrate generations,
all subpopulations Pi,remote are gathered, the aggregated Pareto front Plocal

is clustered and all individuals are redistributed onto the available processors
depending on the cluster centroids. For clustering, we decided to use k-Means
clustering on the current Pareto front, because k-Means allows use to choose
the number of clusters according to the number of available processors k=k (k
does not correspond to the cardinality constraint of the previous section). In
case the size of Plocal is smaller than k, next level Pareto fronts are also used
for clustering. We further distinguish between two variants for clustering, first
a search space based clustering and second an objective space clustering. Fig. 7
gives an impression of an objective space based clustering.
One advantage of the clustering based parallelization scheme is that each sub-
population is guaranteed to be non-empty. Depending on the shape of the Pareto
front this cannot be guaranteed for the cone separation approach. Since we used
cone separation as a reference algorithm we decided to assign random individu-
als to an empty subpopulation to prevent any further complications.
To limit subpopulations to their specific region, we implemented zone constraints
based on the constrained dominance principle [7] using the cluster centroids. In
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g = 0;
for (i = 0; i < k; i++) do Pi,remote.initialize();
foreach Pi,remote do Pi,remote.evaluate();
while isNotTerminated() do

foreach Pi,remote do

Pi,remote.evolveOneGeneration();
Pi,remote.evaluate();

end

if (g%mrate == 0) then

/*Migration and/or partitioning scheme */

Plocal.initialize();
foreach Pi,remote do Plocal.addPopulation(Pi,remote);
foreach Plocal.cluster(k) do Pi,remote = Plocal.cluster(k).getCluster(i);
if useConstraints then foreach Pi,remote do Pi,remote.addConstraints();

end

g = g +1;
end

Algorithm 1: General scheme of the clustering based parallelization scheme for
MOEA, with k number of processors used, mrate the migration rate, Pi,remote a
remote population and Plocal the local population.

case an individual is assigned to a different cluster centroid than the current
subpopulation belongs to, the individual is marked as invalid. This interpreta-
tion complies with the implementation of cone separation, but we also tested the
parallel MOEAs without zone constraints.

4.2 Experimental Results

We compare the new clustering based parallelization scheme with both objective
space based k-Means (kosMOEA) and search space based k-Means (kssMOEA)
on four different test function, see appendix, to three other approaches. First,
an island model MOEA implementation without migration (pMOEA). Secondly,
an island model MOEA with migration (iMOEA) where the subpopulations can
profit from each others achievements. And finally, the cone separation MOEA
(csMOEA). We further compare the pMOEA and the iMOEA to both the clus-
ter based and the cone separation MOEAs with zone constraints and without
zone constraint.
We compare the different parallel MOEA implementations on four test func-
tions, three of them given from literature (T1-T3) and one simplified portfolio
selection problem (T4) with five available asset, a cardinality constraint of 2 and
25 additional decision variable to make the problem as complex as the previ-
ous benchmark functions. T4 has similar properties as the previously discussed
portfolio selection problem but has only 4 local Pareto fronts.
To see how each implementation scales with increased number of processors, we
use up to six processors on each test function. To allow comparison we decrease
the size of the subpopulations Pi,remote from 600 to 100 with increased number
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Fig. 8. ‘Divide and conquer’ approaches
with zone constraints on T1.

Fig. 9. ‘Divide and conquer’ approaches
without zone constraints on T1.

Fig. 10. ‘Divide and conquer’ approaches
with zone constraints on T2.

Fig. 11. ‘Divide and conquer’ approaches
without zone constraints on T2.

of processors and use a real-valued NSGA-II with an archive size of Pi,remote/2,
details can be found in [17].
For comparison, we use the hyper-volume under the accumulated population
Plocal (S-metric) of each parallel MOEA implementation averaged over 25 multi-
runs for each problem instance and processor configuration. The S-metric is to
be minimized, and typically converges to nonzero values.

Unfortunately, with zone constraints the ’divide and conquer’ approaches hardly
outperform the worst case implementation of the pMOEA on the T1 and T2
benchmark functions , see Fig. 10 and 8. This is rather discouraging, but can be
explained by the structure of the T1-T3 benchmark function. A closer look at
the T1-T3 test functions reveals that the Pareto fronts are not only contiguous
in objective space, but also in search space. The Pareto-optimal solutions con-
sist of vectors where xi6=1 = 0. A single solution on the true Pareto front could
explore the whole Pareto front simply by mutating x1.
Therefore, ’divide and conquer’ cannot be applied successfully to these kind of
problems. Instead of isolating subpopulation to solve supposed subproblem a
holistic approach or heavy communication is necessary for a single good solution
to explore the whole Pareto front. And in fact single processor approach with
maximum population size performs best and the iMOEA with heavy communi-
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Fig. 12. ‘Divide and conquer’ approaches
with zone constraints on T3.

Fig. 13. ‘Divide and conquer’ approaches
without zone constraints on T3.

Fig. 14. ‘Divide and conquer’ approaches
with zone constraints on T4.

Fig. 15. ‘Divide and conquer’ approaches
without zone constraints on T4.

cation is second best. Alternatively, we decided to remove the zone constraints to
enable lateral exploration of the Pareto front. Indeed the kosMOEA and the kss-
MOEA perform significantly better without zone constraints, see Fig. 9 and 11.
The csMOEA does not perform as well, because the non deterministic clustering
algorithm causes additional lateral information exchange for the kssMOEA and
kosMOEA compared to the static scheme of the csMOEA.
Both the T3 and the T4 on the other hand have local segments of the Pareto

front. But the T3 is contiguous in search space. Again only without zone con-
straints the kssMOEA and the kosMOEA are able to equal the performance
of the iMOEA on the T3 function, see Fig. 12 and 13. It is interesting to note
that the kosMOEA slightly outperforms the kssMOEA without zone constraints.
This can be accounted to the fact that the local segments of the Pareto front of
the T3 benchmark function can only be separated in objective space and not in
search space.
The T4 function is of course more qualified for a ’divide and conquer’ approach
since the additional decision parameters are localized for each segment of the
Pareto front and the resulting search space is truly multi-modal, which is also
reflected in a higher noise rate in the results and the fact that multi processor
runs outperform the single processor reference. Again the kosMOEA and the
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kssMOEA perform significantly better without zone constraints and they seem
to perform better in case the number of processors exceeds the number of lo-
cal Pareto fronts, see Fig. 14 and 15. It is again interesting to note that on this
problem instance the kssMOEA slightly outperforms the kosMOEA, which again
corresponds to the fact that the local Pareto fronts are easier to distinguish in
search space on T4 in contrast to the T3 benchmark function.
Basically, this shows that standard benchmark functions are not suited for ’di-
vide and conquer’ approaches for parallelization, but for master slave model or
simple island models with heavy communication instead. We have shown that
’divide and conquer’ approaches require certain internal structures in the search
space to allow efficient subdivision into small subproblems, which can then be
solved independently.

5 Conclusions

We have shown that certain problems, which require sparse decision vectors ei-
ther caused by constraints or by the type of optimization problem, benefit from
a mixed representation combining a real-valued and binary vector. Such a hybrid
encoding allows EAs to search more efficiently for sparse decision vectors. We
have further shown that a similar effect can be achieved through repair mecha-
nisms together with Lamarckism. Unfortunately, this requires hard cardinality
constraints to allow repair mechanisms and the repair mechanisms may intro-
duce neutrality to the search space, which again may limit the efficiency of the
optimization process. We have shown that the hybrid encoding is able to over-
come such neutral search spaces to a certain extend and can be applied even on
problem instances where no explicit cardinality constraints are given.
Additionally, we have shown that ’divide and conquer’ approaches seem not be
suitable for arbitrary problem instances, but require a certain internal structure
in search space to allow a successful subdivision into small subproblems, which
can then be solved independently. We have given at least a proof of concept for
the clustering based parallelization scheme and have shown its efficiency on two
benchmark problems. But additional experiments are necessary to distinguish
between problem instances where ’divide and conquer’ approaches are infeasible
and problem instances where they can be advantageous.
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Appendix: Test Functions

The test functions T1-T3 are from [19] and have the basic structure of:

f1(x̄) = x1 (5)

f2(x̄) = g(x̄)h (f1(x̄), g(x̄))

with x̄ ∈ [0, 1]n and n = 30. They differ only in the definition of g(x), h(x).
Test Function T1 has a convex Pareto front:

g(x̄) = 1 +
9

n − 1

n
∑

i=2

xi (6)

h(f1, g) = 1 −
√

f1/g

Test Function T2 has a concave Pareto front:

g(x̄) = 1 +
9

n − 1

n
∑

i=2

xi (7)

h(f1, g) = 1 − (f1/g)2

Test Function T3 has a discontinuous Pareto front:

g(x̄) = 1 +
9

n − 1

n
∑

i=2

xi (8)

h(f1, g) = 2 −
√

f1/g − (f1/g)sin(10πfi)

Test Function T4 resembles the constrained portfolio selection problem min-
imizing risk (f1) and loss (f2) of N assets. We limit to N = 5 assets such that
the number of local Pareto fronts is well in the number of processors used. The
remaining n − N span the search space:

f1(x̄) =

N
∑

i=1

N
∑

j=1

xixjσij (9)

f2(x̄) =

N
∑

i=1

xi · µi +

n
∑

i=N+1

x2
i · xi mod N

with n = 30, N = 5, xi ∈ [0, 1],
∑N

i=1
xi = 1

and
∑N

i=1
|sign(xi)| = 2.

µi σij

0 1.0 0 0.1 0 0.3

1.0 0 0 0 0 0

0.2 0.1 0 0.7 0.3 -0.1

0.5 0 0 0.3 0.5 0

0.7 0.3 0 -0.1 0 0.2
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Fig. 16. Exemplary cardinality constrained Pareto fronts on the Hang Seng and the DAX data set.


