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Abstract

We present a new adaptive algorithm for convex quadratic multi-
criteria optimization. The algorithm is able to adaptively refine the
approximation to the set of efficient points by way of a warm-start
interior-point scalarization approach. Numerical results show that
this technique is faster than a standard method used for this problem.

1 Introduction

Multicriteria optimization problems are a class of difficult optimization prob-
lems in which several different objective functions have to be taken care of
at the same time. It will usually be the case that no single point will min-
imize all of the several objective functions given at once. Therefore, we are
in search for so-called efficient points, i. e. feasible points for which there
does not exist a different feasible point with the same or smaller objective
function values such that there is a strict decrease in at least one objective
function value. Since two different efficient points will usually be not only
quite different from each other in terms of objective function values, but also
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incomparable with each other, we have to gain as much information as pos-
sible about the solution set of a given problem, preferably by constructing a
well-defined approximation to it. This is the subject of this paper.

Applications of multicriteria optimization can be found in various areas,
e. g. in engineering design [8, 7, 25], space exploration [29], antenna design [24,
23], management science [9, 2, 18, 27, 31, 1], environmental analysis [26,
10, 11], cancer treatment planning [21], bilevel programming [14] location
science [3], statistics [4], etc.

The rest of this paper is as follows. In Section 2, we consider the prob-
lem of solving one single-criteria convex-quadratic optimization problem by
an interior-point method, namely by an infeasible point method. Section 3,
containing the main theoretical results of this paper, considers perturbed
optimization problems and a strategy to compute a warm-start point, i. e.
a point feasible for the new, perturbed problem, computed out of a point
feasible for the unperturbed problem. Armed with this technique, we are
ready to tackle our main problem. After explaining in short what multicri-
teria optimization is and where the main difficulties lie (Section 5), we come
to the main part of the paper, Section 6. There, we describe a new efficient
adaptive interior-point technique for solving convex quadratic multicriteria
problems. Numerical results are presented and discussed, too.

2 The Interior-Point Algorithm

2.1 The Problem

Let there be given a primal quadratic optimization problem (PQP) of the
form

min 1
2
xTQx + cTx

s. t. Ax = b,
x ≥ 0,

(1)

with c ∈ IRn, b ∈ IRm, A ∈ IRm×n and a symmetric matrix Q ∈ IRn×n. The
vector x ∈ IRn represents the primal variables.

A dual problem (DQP) to (PQP) is

max −1
2
xTQx + bTλ

s. t. −Qx + ATλ+ s = c,
s ≥ 0,

(2)
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with the dual variables s ∈ IRn and λ ∈ IRm. The set of primal-dual feasible
3-tupel w = (x, λ, s) is given by

Ω := {w = (x, λ, s) ∈ IRn×IRm×IRn | Ax = b, −Qx+ATλ+s = c, (x, s) ≥ 0}.

For a primal-dual feasible point w ∈ Ω, the difference between the primal
and the dual objective function values is given by

sTx = cTx− xTQx + bTλ = sTx ≥ 0

and is called duality gap. Denote by

Ω0 := {w = (x, λ, s) ∈ Ω | (x, s) > 0}

the set of strictly feasible points.
In the rest of the paper, we make the following three assumptions.

1. The set of primal-dual feasible points is nonempty: Ω 6= ∅.

2. The constraint matrix A has full row rank.

3. The matrix Q is positive semidefinite.

Clearly, under these assumptions, a primal-dual point w = (x, λ, s) is
optimal for (PQP) as well as (DQP) (i. e. x is optimal for (PQP) and (λ, s)
is optimal for (DQP)) if the KKT-conditions hold:

F (x, λ, s) :=



−Qx + ATλ+ s− c

Ax− b
SXe


 = 0, (x, s) ≥ 0. (3)

Here, as usual, e := (1, 1, ..., 1)T ∈ IRn, S := diag(s) ∈ IRn×n and X :=
diag(x) ∈ IRn×n.

2.2 The Algorithm

We now perturb the right hand side of the system of equations F (x, λ, s) = 0
in the usual way by considering a parameter τ > 0 and the perturbed system

Fτ (x, λ, s) :=



−Qx + ATλ+ s− c

Ax− b
SXe− τe


 =




0
0
0


 , (x, s) > 0. (4)
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A Newton step for the nonlinear system of equations Fτ (x, λ, s) = 0
amounts in solving the linear system



−Q AT I
A 0 0
S 0 X







∆x
∆λ
∆s


 =




−rc
−rb

−(SXe− σµe)


 . (5)

Here, we have used the abbreviations rb := Ax− b and rc := −Qx + ATλ +
s−c. (Note that for these abbreviations, rb as well as rc depend on (x, λ, s).)
Moreover, we used τ = σµ with the duality measure

µ =
xT s

n
(6)

and the centering parameter σ ∈] 0, 1[. This parameter weights the competing
aims of convergence of µ to zero and closeness to the central path. Denote
by ∆w = (∆x,∆λ,∆s) the solution of the linear system (5).

Basically, we want to execute Newton steps for Fτ with the parameter
τ > 0 converging to 0. For prespecified parameters γ ∈ ] 0, 1 [ and β ≥ 1
and a starting point (x0, λ0, s0) defining residuals r0

b and r0
c and a duality

measure µ0, all iterates of the algorithm presented below will lie in the set

N−∞(γ, β) :=

{
(x, λ, s)

∣∣∣∣∣ ‖(rb, rc)‖2 ≤
‖(rb0, rc0)‖2

µ0
βµ, (x, s) > 0,

xisi ≥ γµ ∀ i = 1, 2, . . . , n

}
,

(7)

Here, the inequality xisi ≥ γµ serves the purpose of hindering some products
xisi to converge faster to zero than other ones. Moreover, due to β ≥ 1, we
have (x0, λ0, s0) ∈ N−∞(γ, β).

In order to stay inside the setN−∞(γ, β) with all iterates we will introduce
a step length α > 0. (Indeed, full Newton steps for Fτ might lead outside of
the set.) We will choose α in such a way that with wk+1 = wk + α∆w we
still have wk+1 ∈ N−∞(γ, β). For this, define

(x(α), λ(α), s(α)) := (x, λ, s) + α(∆x,∆λ,∆s)

as well as
µ(α) := x(α)T s(α)/n.

Now we are ready to describe the primal-dual infeasible-point long-step al-
gorithm for quadratic problems, see Table 1, p. 5.
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Algorithm QIP

(S0) Choose ε > 0, β ≥ 1, γ ∈] 0, 1 [, σmin and σmax with 0 < σmin < σmax < 1/2
and (x0, λ0, s0) ∈ N−∞(γ, β). Set k := 0.

(S1) If

µk :=
(xk)T sk

n
≤ ε, (8)

then stop.

(S2) Choose σk ∈]σmin, σmax] and compute rkc , rkb as well as rkxs by

rkc = −Qxk + ATλk + sk − c
rkb = Axk − b
rkxs = SkXke− σkµke.

(9)

Compute (∆xk,∆λk,∆sk) by solving



−Q AT I
A 0 0
Sk 0 Xk







∆xk

∆λk

∆sk


 =



−rkc
−rkb
−rkxs


 . (10)

Choose αk as the largest α ∈ [ 0, 1 ] such that

(xk(α), λk(α), sk(α)) ∈ N−∞(γ, β) (11)

as well as the Armijo condition

µk(α) ≤ (1− 0.01α)µk (12)

holds.

(S4) Define
(xk+1, λk+1, sk+1) := (xk(αk), λ

k(αk), s
k(αk))

as well as k := k + 1. Go to S2.

Table 1: Algorithm QIP for solving a convex-quadratic optimization problem
subject to linear equality and inequality constraints in standard form.
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Remark 1 In case of rb = 0 as well as rc = 0, i. e. if the starting point
fulfills already the primal-dual equality constraints, we have a feasible point
algorithm. In this case, all iterates generated are strictly feasible. Such an
algorithm for the problem considered here is discussed in [13]. However,
finding such a starting point turns out to be rather difficult. Indeed, there
exist problems with Ω 6= ∅ but Ω0 = ∅. In the algorithm above, we do not
need such a feasible starting point, just a point with (x, s) > 0. We will argue
below that the iterates constructed in the algorithm converge to an optimal
primal-dual solution, although all iterates can be infeasible. To achieve this,
we have to prove that the residuals rb and rc converge as fast to zero as the
duality measure µ.

With respect to convergence, we just note that we can use the conver-
gence proof of Wright [32, p. 110ff] for algorithm IPF (stated there for linear
optimization problems) almost verbatim. The only difference of any interest
is that for the pair (x, s) defined in Lemma 6.3 of [32] the equality xT s = 0
does not hold. Instead, we have xT s ≥ 0. This, however, is sufficient for
the rest of the reasoning to work. We summarize the main results in the
following two theorems.

Theorem 1 (Convergence) Let {(xk, λk, sk)} be a sequence constructed by
Algorithm QIP. Then,

1. the sequence {µk} of duality measures converges Q-linearly to zero, and

2. the sequence {‖(rkb , rkc )‖2} of residuals converges Q-linearly to zero.

Theorem 2 (Complexity) Let ε > 0 be given. Suppose that for the start-
ing point (x0, λ0, s0) we have that

(x0, λ0, s0) = ζ(e, 0, e) and ζ ≥ ‖(x∗, s∗)‖∞

holds for a solution (x∗, λ∗, s∗) of (PQP) and (DQP). Moreover, let constants
C, κ > 0 be chosen such that

ζ2 ≤ C

εκ
.

Then, there exists an index K with

K = O(n2| log ε |),
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such that for the iterates (xk, λk, sk) constructed by algorithm QIP we have
that

µk ≤ ε for all k ≥ K

holds.

3 Warm-start Points

Let there be given the primal and the dual problem (PQP) and (DQP) from
Subsection 2.1. Both problems, (PQP) as well as (DQP), can be described
in a unique way by the 4-tuple

d := (A, b, Q, c). (13)

We define the norm of such a data instance d by the maximum of the 2-norm
of the components,

‖d‖2 := max{‖A‖2, ‖b‖2, ‖Q‖2, ‖c‖2}. (14)

(Of course, the matrix norms are matrix norms induced by the Euclidean
norms in the corresponding vector spaces.)

Let us now consider the data instance d = (A, b, Q, c) as well as the
perturbed instance d̃ := d + ∆d with the perturbation ∆d = (0, 0,∆Q,∆c).
(We will see later, in Section 5, that we are in exactly such a situation if we
want to solve a multicriteria optimization problem). If we solve the problem
described by d with algorithm QIP, all iterates will lie in N−∞(γ, β). If we
want to solve the problem represented by d + ∆d with algorithm QIP, too,
we have to use a similar set for the corresponding sequence of iterates.

Remark 2 To differentiate between variables and parameters for the orig-
inal problem with data instance d from variables and parameters for the
perturbed problem with data instance d̃ := d+ ∆d, we will use a tilde (̃ ) on
all variables and parameters for the latter to signify the perturbation of the
data.

Now let w = (x, λ, s) be a prima-dual strictly feasible point of the original
problem. We want to construct a warm-start point

w̃ := w + ∆w = (x+ ∆x, λ + ∆λ, s+ ∆s)
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of the pertubed problem. This warm start point should have the same residu-
als (r̃b, r̃c) as those given by w, i. e. (rb, rc), the residuals of w for the original
problem. For the problem instance d + ∆d, and the residuals (r̃b, r̃c), we
consider the sets

Ω̃ := {(x, λ, s) | Ax− b = r̃b, −(Q + ∆Q)x + ATλ+ s− (c+ ∆c) = r̃c,

(x, s) ≥ 0},
Ω̃0 := {(x, λ, s) ∈ Ω̃ | (x, s) > 0}

as well as

Ñ−∞(γ, β) :=

{
(x, λ, s) ∈ Ω̃0

∣∣∣∣∣ ‖(r̃b, r̃c)‖2 ≤
‖(r0

b , r
0
c)‖2

µ0
βµ̃,

xisi ≥ γµ̃, i = 1, 2, . . . , n

}
.

(15)

Note that the residuals r0
b and r0

c and the duality gap µ0 stem from the
starting point of the original problem represented by d. Now we are in search
of a corrector step ∆w = (∆x,∆λ,∆s) such that the warm start point w̃
defined by w̃ = w + ∆w is in the set Ñ−∞(γ, β).

With the assumptions from above, we can now make the following obser-
vations.

Due to r̃b = rb, we have

r̃b = Ax̃− b = A(x + ∆x)− b = Ax− b︸ ︷︷ ︸
= rb

+A∆x

⇔ A∆x = 0. (16)

Moreover, with r̃c = rc, it follows that

r̃c = −(Q + ∆Q)x̃ + AT λ̃+ s̃− (c+ ∆c)

= −(Q + ∆Q)(x + ∆x) + AT (λ+ ∆λ) + (s+ ∆s)− (c+ ∆c)

= −Qx + ATλ+ s− c︸ ︷︷ ︸
= rc

−(Q + ∆Q)∆x + AT∆λ + ∆s−∆c−∆Qx

⇔ −(Q + ∆Q)∆x + AT∆λ+ ∆s = ∆c + ∆Qx (17)

In addition, we want that the duality gap of w̃ is at most as large as w. This
can be achieved by

S∆x+X∆s = 0. (18)
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We will show in the proof of Theorem 3 (p. 10) that this is indeed sufficient
for x̃T s̃ ≤ xT s.

Taking (16), (17), and (18) together, we see that we need to consider the
following system of linear equations:



−Q̃ AT I
A 0 0
S 0 X







∆x
∆λ
∆s


 =




∆c+ ∆Qx
0
0


 . (19)

Here,
Q̃ := Q+ ∆Q.

Solving (19) for ∆w = (∆x,∆λ,∆s), we get

∆λ = (AM−1AT )−1AM−1(∆c+ ∆Qx), (20)

∆s = D−2M−1(∆c+ ∆Qx− AT∆λ), (21)

∆x = −D2∆s. (22)

Here, we have used the abbreviations

D2 := S−1X

and
M := Q̃+D−2.

Note, however, that in order for the inclusion

w̃ ∈ Ñ−∞(γ, β) (23)

to hold, we need strict positivity of all components of x̃ as well as s̃. Unfortu-
nately, this is not necessarily true for w̃ = w+∆w. Using a step length α 6= 1
like in algorithm QIP does not help, either, since only full steps can assure
that the residuals stay the same. We are therefore in search for sufficient
conditions for (23). This is the subject of the next section.

4 Warmstart Criteria

We follow the strategy outlined before in Nunez & Freund [30], Yildirim &
Wright [33], and Fliege & Heseler [13].

9



4.1 Necessary and Sufficient Conditions

A necessary and sufficient condition for strict positivity of x̃ and s̃ can be
found by taking a closer look at (22). Indeed, written in the actual compo-
nents, we get

si∆xi + xi∆si = 0, i = 1, 2, ..., n.

Using (x, s) > 0, this is equivalent to

∆xi
xi

+
∆si
si

= 0, i = 1, 2, ..., n. (24)

Therefore, x̃ and s̃ are strictly positive componentwise if and only if

∆xi
xi

< −1 and
∆si
si

< −1, i = 1, 2, ..., n. (25)

Combining (24) and (25) we arrive at

∣∣∣∣
∆xi
xi

∣∣∣∣ =

∣∣∣∣
∆si
si

∣∣∣∣ < 1, i = 1, 2, ..., n

i. e. ∥∥∥X−1∆x
∥∥∥
∞

=
∥∥∥S−1∆s

∥∥∥
∞
< 1. (26)

This, now, is a criteria that a feasible warm-start point has to fulfill.

4.2 Sufficient Conditions

Unfortunately, before we can check (26), we have to compute ∆λ as well as
∆s. While we will present in what follows an algorithm which does exactly
this, it might be argued that this is slightly inefficient: in such a scheme,
we first compute a warm-start point, then we check for feasibility. The next
theorem is a step further on in our search for simple sufficient conditions for
feasibility of a warm-start point.

Theorem 3 Let d be a problem instance, w be a point for this instance with
(x, s) > 0 and residuals (rb, rc) 6= 0. Let a perturbation ∆d = (0, 0,∆Q,∆c)
be given, let ∆w = (∆x,∆λ,∆s) be a solution to (19) and set w̃ = (x̃, λ̃, s̃) =
w + ∆w. With

T := I − AT (AM−1AT )−1AM−1,
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suppose that ∥∥∥∥∥

[
∆c

∆Qx

]∥∥∥∥∥
∞
<

1

‖X−1M−1[T, T ]‖∞
, (27)

holds. Then,
w̃ ∈ Ω̃0

as well as
x̃T s̃ ≤ xT s (28)

follow.

Proof: (Cmp. Yildirim & Wright [34], Proposition 5.1, p. 797f.) Using (20)
and (21) we arrive at the following chain of equalities and inequalities.

∥∥∥S−1∆s
∥∥∥
∞

=
∥∥∥S−1D−2M−1[∆c+ ∆Qx− AT∆λ]

∥∥∥
∞

=
∥∥∥X−1M−1

[
∆c+ ∆Qx− AT

(
(AM−1AT )−1AM−1(∆c+ ∆Qx)

)]∥∥∥
∞

=
∥∥∥X−1M−1

[(
∆c− AT (AM−1AT )−1AM−1∆c

)

+
(
∆Qx − AT (AM−1AT )−1AM−1∆Qx

)]∥∥∥
∞

≤
∥∥∥X−1M−1

(
I − AT (AM−1AT )−1AM−1

)
[I, I]

∥∥∥
∞

∥∥∥∥∥

[
∆c

∆Qx

]∥∥∥∥∥
∞

=
∥∥∥X−1M−1 (T, T )

∥∥∥
∞

∥∥∥∥∥

[
∆c

∆Qx

]∥∥∥∥∥
∞
.

Therefore, as long as
∥∥∥∥∥

[
∆c

∆Qx

]∥∥∥∥∥
∞
<
∥∥∥X−1M−1 (T, T )

∥∥∥
−1

∞
(29)

holds, we have ‖S−1∆s‖∞ < 1 and therefore w̃ ∈ Ω̃0.
It remains to show (28). We have

xT∆s+ sT∆x = 0.

Due to (24), we know that ∆xi and ∆si have different signs for all i =
1, 2, . . . , n. This results in (∆x)T∆s ≤ 0, which in turn leads to

x̃T s̃ = (x+ ∆x)T (s+ ∆s) = xT s+ xT∆s+ sT∆x + (∆x)T∆s ≤ xT s.
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2

Of course, we need that the warm-start point generated by (19) is not
only strictly feasible, but also in Ñ−∞(γ, β) for some γ ∈ ] 0, 1 [ and a β ≥ 1.
More precisely, we need that

x̃is̃i ≥ γµ̃ i = 1, 2, . . . , n

and

‖(r̃b, r̃c)‖2 ≤ ‖(r0
b , r

0
c)‖2

βµ̃

µ0

holds. Before taking a closer look at these inequalities, we consider the
following lemma.

Lemma 4 Under the assumptions of Theorem 3, define

θ := 1−
∥∥∥S−1∆s

∥∥∥
∞
. (30)

Then,
µ̃ ≥ θµ. (31)

Proof: Due to (26) and (30), we have θ > 0. Moreover, (30) can be written
as

x̃i := xi + ∆xi ≥ θxi and s̃i := si + ∆si ≥ θsi, i = 1, 2, . . . , n.

According to the proof of Theorem 3, we have that

∆xi∆si ≤ 0 forall i = 1, 2, . . . , n.

On the one hand, assuming ∆xi ≥ 0 leads immediately to x̃i ≥ xi. With (30),
we get

x̃is̃i ≥ xis̃i ≥ θxisi.

On the other hand, assuming ∆si ≥ 0 we get in an analogous way

x̃is̃i ≥ x̃isi ≥ θxisi.

Taking both cases together, we arrive at

µ̃ ≥ θµ.

2
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Corollary 5 Let all assumptions of Theorem 3 hold and let a θ ∈ ] 0, 1 [ be
given with

θ ≤ 1−
∥∥∥S−1∆s

∥∥∥
∞
. (32)

Suppose now that
∥∥∥∥∥

[
∆c

∆Qx

]∥∥∥∥∥
∞
≤ 1− θ
‖X−1M−1(T, T )‖∞

holds. Then,
w̃ ∈ Ω̃0

as well as µ̃ ≤ µ. Moreover, if for some parameters γ0 ∈ ] 0, 1 [ and β0 ≥ 1
we have w ∈ N−∞(γ0, β0), then

w̃ ∈ Ñ−∞(θγ0, β0/θ).

Proof: The descent of the duality gap as well as w̃ ∈ Ω̃0 follows with
Theorem 3. Now let w ∈ N−∞(γ0, β0). Using (32) and (28), we get

x̃is̃i ≥ θxisi ≥ θγµ ≥ θγµ̃

Moreover, due to (31), we have

‖(r̃b, r̃c)‖2 = ‖(rb, rc)‖2 ≤ ‖(r0
b , r

0
c)‖2

βµ

µ0
≤ ‖(r0

b , r
0
c)‖2

β0

θ
µ̃

µ0
.

As a consequence, w̃ ∈ Ñ−∞(θγ0, β0/θ). 2

Up to now, we have just found criteria which make it possible to check
if, starting with a prespecified perturbation, a given point (i. e. an iterate)
can be used to construct a warm-start point. For the complexity analysis
still to follow (see Subsection 4.3), we want to couple the size of a possible
perturbation with the duality gap of a given point. We prepare the road with
some concepts and some preliminary results.

The set of data instances for which there exists a strictly feasible point is
denoted by

L = {(A, b, Q, c) | ∃ x, λ, s : (x, s) > 0, Ax = b,−Qx + ATλ+ s = c}.
Let the complement of L be denoted by LC. The set LC contains all those
data instances for which either (PQP) or (DQP) or both do not have a strictly
feasible point. Denote the boundary between L and LC by

B := cl(L) ∩ cl(LC).

13



Due to (0, 0, 0, 0) ∈ B we have B 6= ∅. A data instance d ∈ B is called
ill-posed : an arbitrary small perturbation ∆d can result in d + ∆d ∈ L or
d+ ∆d ∈ LC. The distance to ill-posedness is defined by

ρ(d) := inf{‖∆d‖2 | d+ ∆d ∈ B}.

At last, the condition number of a data instance d is defined by

C(d) :=
‖d‖2

ρ(d)

(resp. C(d) =∞ in case of ρ(d) = 0).

Remark 3 Since for ∆d = −d we have d+ ∆d ∈ B, we always have ρ(d) ≤
‖d‖2 and C(d) ≥ 1.

A sufficient condition for the infeasibility of a convex-quadratic problem
is given in the following lemma. There, as usual, all inequalities between
vectors are to be understood componentwise.

Lemma 6 Let there be given matrices Q ∈ IRn×n and A ∈ IRm×n as well as
a vector c ∈ IRn.Then, the systems

ATλ < c +Qx (33)

and
Ax = 0,
x ≥ 0,

cTx + xTQx ≤ 0,
x 6= 0

(34)

can not be solved simultaneously by vectors x ∈ IRn and λ ∈ IRm.

Proof: Suppose that both systems can be solved. Then (33) is equivalent
to

c > ATλ−Qx.
Substituting this in the third block of (34), we get

0 ≥ cTx+ xTQx > λT Ax︸︷︷︸
= 0

−xTQTx+ xTQx = 0,

which is a contradiction. Therefore, the conclusion holds. 2
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Lemma 7 Let there be given a data instance d = (A, b, Q, c) ∈ L and a
point w = (x, λ, s) with residuals (rb, rc). Define the data instance d̂ by
d̂ := (A, b+ rb, Q, c+ rc). Then, it follows that

‖x‖2 ≤
max

{
‖b̂‖2, |ĉTx + xTQx|, ‖P‖2

}

ρ(d̂)
(35)

holds for all positive semidefinite matrices P ∈ IRn×n,

Proof: We will modify the idea of Nunez & Freund [30, p. 11f]. Let there
be given the data instance d and the point w = (x, λ, s) with x 6= 0. The
residuals are given by rb = Ax− b and rc = −Qx + ATλ+ s− c . Define

b̂ := b + rb and ĉ := c+ rc.

Then, w is strictly feasible for the data instance d̂ = (A, b̂, Q, ĉ). Now consider
the perturbation ∆d = (∆A, 0,∆Q,∆c) defined by

∆A := −b̂xT 1

‖x‖2
2

,

∆c :=
−|ĉTx+ xTQx|

‖x‖2
2

x,

∆Q := − 1

‖x‖2
P

for some positive semidefinite matrix P . Then,

(A+ ∆A)x = Ax− b̂ x
Tx

‖x‖2
2

= Ax− b̂ = 0

and

(ĉ+ ∆c)Tx+ xT (Q+ ∆Q)x

= ĉTx+ ∆cTx+ xTQx + xT∆Qx

= ĉTx+ xTQx− |ĉTx + xTQx| − 1

‖x‖2
xTQ∗x

≤ 0.

Using Lemma 6, we see that there does not exist a λ with

(A+ ∆A)Tλ < ĉ+ ∆c+ (Q + ∆Q)x

15



and the dual problem to the data instance d̂+ ∆d is infeasible. Therefore,

ρ(d̂) ≤ ‖∆d‖2 = max{‖∆A‖2, ‖∆c‖2, ‖∆Q‖2}

=
max{‖b̂‖2, |ĉTx + xTQx|, ‖P‖2}

‖x‖2

,

and the conclusion follows with

‖x‖2 ≤
max{‖b̂‖2, |ĉTx + xTQx|, ‖P‖2}

ρ(d̂)
. (36)

2

Corollary 8 Let there be given a data instance d = (A, b, Q, c) ∈ L and
a point w = (x, λ, s) with residuals (rb, rc). Define the data instance d̂ by
d̂ := (A, b+ rb, Q, c+ rc). Then, it follows that

‖x‖2 ≤ C(d̂) +
|ĉTx + xTQx|

ρ(d̂)
.

Proof: Use P = 0 in the last lemma. Then ∆Q = 0. With (36) it follows
that

‖x‖2 ≤
‖b̂‖2 + |ĉTx+ xTQx|

ρ(d̂)

≤ ‖d̂‖2

ρ(d̂)
+
|ĉTx+ xTQx|

ρ(d̂)

= C(d̂) +
|ĉTx+ xTQx|

ρ(d̂)
.

2

Corollary 9 Let there be given a data instance d = (A, b, Q, c) ∈ L and a
point w = (x, λ, s) strictly feasible for d. Then,

‖x‖2 ≤
max

{
‖b‖2, |cTx+ xTQx|

}

ρ(d)
≤ C(d) +

|cTx + xTQx|
ρ(d)

.

Now we are almost ready to couple the size of a given perturbation with
a given duality gap. We just need one more technical result.
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Lemma 10 Let there be given symmetric and positive definite matrices Mj ∈
IRn×n (j = 1, . . . , p). For α ∈ IRp, α ≥ 0, define M(α) :=

∑p
j=1 αjMj. If A

has full row rank, then

χ(A) := sup
α≥0:

M(α) p. d.

‖(A(M(α))−1AT )−1A(M(α))−1‖∞ <∞

holds. Here, ”p. d.” stands for positive definite.

Proof: This follows directly with inequality (5.6) from the proof of Corol-
lary 5.2 in Forsgren and Sporre [15]. Note that this Corollary 5.2 is based
directly on Theorem 5.1 in the same paper. 2

To use the result above, we assume in what follows that we have given
a data instance d = (A, b, Q, c) and a perturbation of the primal objective
function, i. e. a data perturbation of the form ∆d = (0, 0,∆Q,∆c). Further-
more, let us assume that we have given symmetric positive definite matrices
Q1, Q2, . . . , Qp and a vector α ∈ IRp, α ≥ 0 such that

Q + ∆Q =
p∑

i=1

αiQi.

We will see in Section 5 that these additional assumptions fit perfectly into
the framework of multicriteria optimization.

Theorem 11 Let there be given a data instance d = (A, b, Q, c) ∈ L and a
perturbation ∆d = (0, 0,∆Q,∆c). Let w = (x, λ, s) be a point with (x, s) > 0
and residuals (rb, rc) (with respect to d). Define the data instance d̂ by d̂ :=
(A, b+ rb, Q, c+ rc). Let A have full row rank and define

ψ(A) := 1 + ‖AT‖∞χ(A).

Suppose that w ∈ N∞(γ, β) for some β, γ > 0. Then,

1

‖X−1M−1(T, T )‖∞
≥ γµ

2n1/2

(
C(d̂) + |ĉT x+xTQx|

ρ(d̂)

)
ψ(A)

. (37)

Proof: The proof follows exactly the lines of a similar result in Fliege &
Heseler [13, p. 14f] and is therefore omitted here. 2

We are now ready to state the main result, connecting the size of the
duality gap with the size of a perturbation and vice versa.
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Define
‖∆d‖∞ := max{‖∆c‖∞, ‖∆Q‖∞} (38)

as well as

ξ := 1 +
|ĉTx+ xTQx|
‖d̃‖2

≥ 1.

Then,

‖x‖2 ≤ ξC(d̂) = C(d̂) + C(d̂)
|ĉTx + xTQx|
‖d̂‖2

= C(d̂) +
|ĉTx+ xTQx|

ρ(d̂)
. (39)

Theorem 12 Let there be given parameters γ and γ0 with 0 < γ < γ0 < 1
and define θ := γ/γ0. Define ξ as above. Let w and w̃ as well as β be as in
Corollary 5. If

µ ≥ 2‖∆d‖∞
γ0(1− θ)ξn

1/2C(d̂)

(
C(d̂) +

|ĉTx + xTQx|
ρ(d̂)

)
ψ(A).

holds, then w̃ ∈ Ñ−∞(γ, β).

Proof: See Fliege & Heseler [13, p. 15f]. 2

4.3 Complexity

Let there be given a problem in form of a data instance d as well as a
primal-dual starting point (x0, λ0, s0), possibly infeasible for d. Denote, as
usual, the residuals by (r0

b , r
0
c) and let µ0 be the duality measure at the

starting point. Moreover, let ε > 0 be given. Suppose furthermore that we
have already solved that problem with algorithm QIP by computing iterates
wk = (xk, λk, sk), k = 1, 2, 3, . . .. Our complexity analysis has shown that

µk ≤ ‖d‖2ε

holds for

k ≥ K = O
(
n2 log

µ0

‖d‖2ε

)
.

Now suppose that we perturb our problem d to d+∆d and construct a warm-
start point by our warm-start strategy out of the iterate wj. This warm-start
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point is then used by algorithm QIP to solve the perturbed problem. Clearly,
after

k ≥ Kwarm = O
(
n2 log

µj
‖d+ ∆d‖2ε

)

iterations we have that
µ̃k ≤ ‖d+ ∆d‖2ε

holds. Here, µ̃k are the duality measures for the perturbed problem, as
computed by algorithm QIP. Furthermore, if ‖∆d‖2 ≤ ‖d‖2/2 holds, we can
use the estimate

1

‖d+ ∆d‖2
≤ 1

‖d‖2 − ‖∆d‖2
≤ 2

‖d‖2

to conclude

Kwarm = O
(
n2 log

µj
‖d‖2ε

)
.

5 An Application: Multicriteria Optimization

In this section, we give a short introduction to multicriteria optimization.
We follow roughly the chain of arguments presented in [13] and repeat the
main points for the sake of completeness here.

5.1 The Problem

Let there be given p > 1 convex quadratic objective functions of the form

fi(x) =
1

2
xTQix + cTi x, i = 1, . . . , p, (40)

with positive semidefinite matrices Qi ∈ IRn×n and vectors ci ∈ IRn for all i.
Moreover, let

G := {x ∈ IRn | Ax = b , x ≥ 0} (41)

be the set of feasible points. We are interested in minimizing simultaneously
the functions

f1, . . . , fp : G −→ IR (42)

on the set G in a sense specified as follows. The element y∗ ∈ f(G) is called
efficient, if and only if there is no other y ∈ f(G) with

yi ≤ y∗i ∀ i ∈ {1, 2, . . . , p}
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and
yk < y∗k for at least one k ∈ {1, 2, . . . , p}.

The set of all efficient points of the set f(G) is called the efficient set,
E(f(G)). Now, define the function f : G −→ IRp by f = (f1, . . . , fp)

T . With
the definition of efficiency as above, it becomes clear that in multicriteria op-
timization we are in search for the whole set E(f(G)) and, obviously, for the
corresponding set of optimal decision variables f−1(E(f(G))). For typical
examples for this type of problem we refer to, e. g., [13]. Note that two effi-
cient points f(x(1)), f(x(2)) ∈ E(f(G)) (x(1), x(2) ∈ G) with f(x(1)) 6= f(x(2))
are incomparable to each other with respect to the order defined above.
Therefore, just one efficient point can not capture the possible optimal al-
ternatives we face when solving a multicriteria optimization problem. This
clearly shows that human decision makers need information about the whole
set E(f(G)).

5.2 Scalarization

It is well-known that we can find a point close to E(f(G)) of the problem
specified by (42) by solving the single-objective optimization problem

min ωTf(x)

s. t. x ∈ G, (43)

with ω an arbitrary weight vector from the set

Z :=

{
ω ∈ IRp

∣∣∣∣∣

p∑

i=1

ωi = 1, ωi > 0 ∀ i ∈ {1, 2, . . . , p}
}
. (44)

This approach is often called scalarization. (For a discussion of this and other
scalarization techniques see e. g. [17, 22, 20, 12].) Indeed, defining the set of
properly efficient points P by

P (f(G)) :=
{
f(x∗)

∣∣∣∣ ω ∈ Z, x∗ ∈ G, f(x∗) = min
x∈G

ωTf(x)
}
,

it can be shown [16, 28] that

P (f(G)) ⊆ E(f(G)) ⊆ cl(P (f(G))) (45)

20



holds. Here, cl(·) is the closure operator. In fact, this result holds for arbi-
trary functions f : G −→ IRp as long as f(G) + IRp+ is closed and convex.
Since we can not distinguish numerically between a set and its closure, we
can therefore replace E by P in all applications involving convex functions.
Turning our attention to (42), (41), and (40), we see that we have to consider
several scalar problems of the form

min
1

2
xTQx + cTx

s. t. Ax = b, (46)

x ≥ 0,

where Q =
∑p
i=1 ωiQi, c =

∑p
i=1 ωici, and ω = (z1, . . . , ωp)

T ∈ Z is a given
parameter or weight vector.

As a consequence of the discussion above, we are able to approximate
the set E(f(G)) as well as f−1(E(f(G))) by solving optimization problems
of the form (46). These ersatz problems are defined by choosing different
weights ω, see (43).

The basic idea is now as follows. Our aim is to compute a discrete ap-
proximation of the set of efficient points. We have to solve a standard scalar
optimization problem for each efficient point we want to compute. The differ-
ent optimization problems we have to consider can be viewed as perturbations
of each other, with vectors of weights ω ∈ Z serving as parameters defining
the perturbations. We propose to use an adaptive discretization technique
for the set of weights Z. Basically, we want to use more parameters in those
regions of the parameter space where weight vectors which are close together
result in efficient points whose images in the image space IRp are far apart
from each other. But in contrast to [13], where efficient points were calcu-
lated first and then a new weight was chosen adaptively by using information
about the last optimal function values computed, we will now introduce more
parameters (i. e. more scalar problems) during the solution process of other
scalar problems, before these other problems are completely solved.

Furthermore, to save work when computing the new efficient points (i. e.
when solving the new optimization problems), we propose to use a warm-
start strategy. With such a strategy, points from the iteration history of
scalar problems already solved are used as starting points for the optimization
problems currently under consideration.
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6 The EffTree-Algorithm

6.1 The Basic Idea

When solving a multicriteria optimization problem, we have to solve many
standard scalar problems, each of them a perturbation of each other one.
Of course, we can solve one scalarized problem first, use one of the iterates
computed to generate a warm-start point for the next scalarized problem
considered, etc. This is basically the idea outlined in Fliege & Heseler [13].
However, in the algorithm presented below we want to do warm-starts as
early as possible, thereby considering many scalarized problems simultane-
ously. In this way, we will be able to generate an approximation of the set
of efficient points even if none of the scalar problems considered is solved up
to a prespecified accuracy, yet. (I. e. even if all duality gaps of all scalar
problems considered are still rather large.)

Figure 1 (p. 23) illustrates the idea for bicriteria problems. The basic
idea for bicriteria problems is explained below.

Suppose we start with a prespecified scalarization parameter ω, defin-
ing a problem with data instance denoted by dω. Choose a starting point
(x0, λ0, s0)ω for algorithm QIP. In Figure 1, the image of this point under
two real-valued objective functions is shown in the upper right hand cor-
ner. Executing one step with algorithm QIP results in the point (x1, λ1, s1)ω.
Next, we choose two new scalarization parameters ωl and ωr and define the
corresponding data instances dωl and dωr . These two data instances can be
seen as perturbations of dω simply by noting dωl = dω + (dωl − dω) resp.
dωr = dω + (dωr − dω). Accordingly, we can try to construct warm-start
points based on the information given by (x1, λ1, s1)ω. One additional step
from each of these warm-start points with algorithm QIP leads to (x2, λ2, s2)ωl
and (x2, λ2, s2)ωr , see Figure 1. Moreover, one additional step with algorithm
QIP for the problem with parameter ω from (x1, λ1, s1)ω leads to the point
(x2, λ2, s2)ω. This scheme can now be applied recursively for each of the three
points (x2, λ2, s2)ωl, (x

2, λ2, s2)ωl, (x
2, λ2, s2)ωr , until the images of neighbor-

ing iterates are closer to each other than a prespecified distance. A precise
statement of the algorithm can be found in the next subsection.
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f1

f2

(x2, λ2, s2)ωr

(x1, λ1, s1)ω

(x0, λ0, s0)ω

(x2, λ2, s2)ω

k-th approximation of efficient set

(x2, λ2, s2)ωl

(xk, λk, sk)ω̃

0

0

Figure 1: Approximation of the image of the set of efficient points by early
warm-starts. An explanation is given in Section 6.1.

6.2 The Algorithm EffTree

Let us introduce two scalar values ε, δ > 0 as measures of accuracy of an
approximation to the the set of solutions of our given bicriteria problem.
Both measures of accuracy will be used on points in the image space of the
problem. For this problem, we want to calculate a number of points in the
image space (as well as their preimages in the decision space) which are
”close” to the image of the set of efficient points in the sense that each point
is an ε-solution to a scalar problem. (Or, even more precisely, the dual gap of
each scalar problem considered should be at most ε.) Moreover, for bicriteria
problems, the distance between two image points should be at most δ.

Each scalar problem considered is defined by a scalarization vector ω.
We denote by dω the corresponding data instance, by (xk, λk, sk)ω the kth
iterate of our algorithm for this data instance, and by rkb,ω, r

k
c,ω the corre-

spondig residuals. For a given weight vector ω and the corresponding data
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instance dω, a perturbation ∆ω of this weight vector induces the data in-
stance dω+∆ω. The corresponding perturbations of the objective function
has the form

∆Q := ∆ω(Q1 −Q2) and ∆c := ∆ω(c1 − c2) .

To simplify notation, we will identify the data instance dω with the weight
vector ω.

To measure distances between points in the image space, we will make
use of the function

ϕk : [ 0, 1 ] −→ IR2

ω 7−→ f(xkω) ,

where xkω is the primal variable of an iterate (xk, λk, sk)ω.
Throughout the algorithm, we use the Euclidean norm to measure dis-

tances between image points in the IR2. In what follows, the set W will
contain all those data instances (i. e. weights) which have already been con-
sidered up to now. This set depends on the iteration index k, which will be
suppressed in what follows for ease of notation. The set Ŵ will contain those
data instances which have already been checked as possible data instances to
generate warm-start points. The data instances neighboring to a given one,
say ω ∈ W, will be denoted by

ωl := max {ωl ∈ W ∪ {0; 1} | ωl < ω} ,
ωr := min {ωr ∈ W ∪ {0; 1} | ωr > ω} .

Moreover, we will make use of the notation Wω := {ωl, ωr} ⊆ W.
After the generation of a warm-start point, algorithm QIP will be called

to compute ik ordinary interior-point steps. Only after that is k increased
(and ik is updated to ik+1). As a consequence, the iteration counter k of
algorithm EffTree is not equal to the current iteration depth of a point
(xk, λk, sk)ω, i. e. it is not the case that one has arrived at (xk, λk, sk)ω after
solving k linear systems of equalities by making either a warm-start step or
by making a single step with algorithm QIP. Instead, the total number of
steps done by algorithm QIP to arrive at (xk, λk, sk)ω is given by

∑k
j=0 ik. In

actual examples, we will use a rather simple sequence of ik’s. Indeed, we will
simply choose i0 fixed as well as ik constant for k > 0. More details on this
can be found in Section 7.

Table 2 (p. 25) gives an overview of the parameters and variables used in
the algorithm. Note that usually only εµ, εinfeas, and δ have to be specified
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by a user. We are now able to state the algorithm more formally, and this is
done in Table 3, p. 26.

εµ max. allowed dual gap
εinfeas max. allowed infeasibility

δ max. dist. between points in images space
k outer iteration counter
ik number if inner iterations in step k
ω parameter (weight vector) for the data instance dω

∆ω perturbation of ω
∆ωmult backtracking parameter for computing ∆ω
W set of all data instances considered
Wω set of all data instances neighboring ω
βω parameter for the set N−∞(γ, β) used for problem ω
γω parameter for the set N−∞(γ, β) used for problem ω
θ multiplicator for βω and γω
σω centering parameter used for problem ω
ζ parameter for starting point
e = (1, . . . , 1)T ∈ IRn

Table 2: Variables and Parameters used in Algorithm EffTree

The algorithm stops as soon as we have calculated weights 0 = ω1 <
ω2 < · · · < ωN = 1 and corresponding primal-dual points (xωi , λωi, sωi)
(i = 0, . . . , N) with duality measure less than ε and infeasibility less than ε,
such that in the image space IR2 of our bicriteria problem, two consec-
utive solutions xωi , xωi+1

have a distance from each other of less than δ
(i = 0, . . . , N − 1).

As it can be seen, one of the crucial parts of EffTree is the subroutine
for computing warm-start points, CompWarmStart (cmp. Step S2 of EffTree).
This routine is depicted in Table 4, p. 27. Note that the system of linear
equations (47) in subroutine CompWarmStart corresponds to the system (19)
from Section 3.

We still have to proof that the algorithm is well defined and works cor-
rectly. This is done as follows. First, observe that the set W always contains
a finite number of data instances (weight vectors). Therefore, step S3 is well
defined. After each execution of one loop step of the while loop in step S2, an
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Algorithm EffTree

(S0) // Initialization //

Choose εµ, εinfeas, δ > 0, ωinit ∈ [ 0, 1 ], ik ∈ IN (k = 0, 1, 2, . . .),
ζ > 0, βinit ≥ 1, γinit ∈]0, 1[, σinit ∈] 0, 1/2 [.

Set k := 0, (x0, λ0, s0)ωinit
:= ζ(e, 0, e), W := {ωinit}.

(S1) // Iterations //

For all ω ∈ W:
. Compute (xk+1, λk+1, sk+1)ω by executing ik iterations with algo-

rithm QIP, using the parameters βω, γω, and σω, starting from the point
(xk, λk, sk)ω

end (for all)
(S2) // Compute warm-start points //

Set Ŵ := ∅.
While W \ Ŵ 6= ∅:

Choose ω ∈ W \ Ŵ,
ωl := max {ωl ∈ W ∪ {0, 1} |ωl < ω},
ωr := min {ωr ∈ W ∪ {0, 1} |ωr > ω},
for all ω̂ ∈ Wω := {ωl, ωr}:
if ‖ϕk(ω)− ϕk(ω̂)‖2 > δ
. Call routine CompWarmStart to calculate ω̃, γω̃, βω̃ as well as

(xk+1, λk+1, sk+1)ω̃.
. Set W :=W ∪ {ω̃}, Ŵ := Ŵ ∪ {ω̃}.

end (if)
end (for all)
Set Ŵ := Ŵ ∪ {ω}.

end (while)

(S3) // Check stopping criterion //

if max{µω | ω ∈ W} < εµ ∧ max{‖rkb,ω‖2, ‖rkc,ω‖2 | ω ∈ W} < εinfeas

∧ max{‖ϕk+1(ω)− ϕk+1(ω̂)‖2 | ω ∈ W, ω̂ ∈ Wω} < δ:
. STOP.

else:
. set k := k + 1, GOTO (S1). 3

Table 3: Algorithm EffTree for approximating the solution set of a bicriteria
convex quadratic optimization problem subject to standard linear equality
and inequality constraints.
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Subroutine CompWarmStart

(S0) Choose ∆ωmult ∈ ] 0, 1 [, θ ∈ ] 0, 1 [, set ∆ω := ω̂ − ω and found := false.
(S1) While not found and ∆ω > ε:

Solve


−(Q+ ∆Q) AT I

A 0 0
Skω 0 Xk

ω







∆x
∆λ
∆s


 =




∆c+ ∆Qx
0
0


 (47)

and define

(xk+1, λk+1, sk+1)ω̃ := (xk, λk, sk)ω + (∆x,∆λ,∆s).

If ‖Sk∆s‖∞ < 1:
. define ω̃ := ω + ∆ω, γω̃ := θγω, and βω̃ := βω/θ

if (xk+1, λk+1, sk+1)ω̃ ∈ Ñ−∞(γω̃, βω̃)
. found := true
end (if)

else
. ∆ω := ∆ωmult∆ω
end (if)

(S4) if not found

set ω̃ := ω + |ω − ω̂|/2 and compute (xk+1, λk+1, sk+1)ω̃ by
making a cold-start :
use the starting point (x0, λ0, s0)ω̃ := ζ(e, 0, e) as well as the
parameters γinit, βinit, σinit to execute

∑k
j=0 ij iterations with

algorithm QIP.
end (if)

Table 4: Subroutine CompWarmStart, used in Step (S2) of Algorithm EffTree.
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element ω ∈ W \ Ŵ is put into Ŵ . Moreover, additional problems ω̃ gener-
ated by a warm-start are put intoW as well as Ŵ. Therefore, the while-loop
finishes after at most |W| loops. Moreover, warm-start points generated
by (47) in Step S2 do not increase the duality gap (cmp. Section 3). There-
fore, although in each step of the main loop of the algorithm, more problems
might be are added to the set W, the maximum duality gap is decreased by
performing at least ik steps of algorithm QIP for each of the problems consid-
ered. As a consequence, max{µω | ω ∈ W} −→ 0 for k −→ ∞ and the first
part of the stopping criterion is fulfilled after finitely many steps. (Actually,
the maximum of the duality gaps converges Q-linearly to 0, see Theorem 1.)
The second stopping criterion is fulfilled after finitely many steps as long as
the optimal value function

ω 7→ inf

{ p∑

i=1

ωic
T
i x +

1

2
xT

p∑

i=1

ωiQix

∣∣∣∣∣ Ax = b, x ≥ 0

}

is continuous. This holds, e. g., as soon as all Qi are positive definite.

Remark 4 If a user does not want to choose δ > 0 a priori, he/she might be
able to specify the number of points to be used in the approximation of the
set of efficient points, instead. If such a number M is given, an appropriate
albeit rough initialization for δ would be

δ :=

√
2‖ϕ(0)− ϕ(1)‖2

M
. (48)

Necessary for this initialization are, of course, optimal function values of the
two ”extremal” problems with objective functions f1 and f2. These can be
easily calculated by algorithm QIP.

Algorithm EffTree has been implemented in Matlab Version 6.5 Re-
lease 13. It now forms the core of EfflinGUI, a complete decision support
system for multicriteria optimization problems, see Figure 2 (p. 29) and 3
(p. 30).

7 Numerical Results

7.1 Data & Parameters

The algorithm was tested on various problems from power plant optimiza-
tion. Details on this problems can be found in [13]. Overall, 1440 different
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Figure 2: The start screen of EfflinGUI, a decision support system for solving
multicriteria optimization problems, based on the algorithm presented in this
paper.
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Figure 3: With EfflinGUI it is possible to display the data structure as well
as the various approximations of the efficient set found while solving the
multicriteria problem.
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bicriteria optimization problems (one for each minute of a day) are specified
in our test suite.

In what follows, we used the set of parameters

εµ = εinfeas =
√
eps ωinit = 0.5

M = 1000 ζ = 400
∆ωmult = 0.8 βinit = 1.2

i0 = 5 γinit = 10−4

ik = 1 σinit = 10−1.

and δ was defined for each problem according to (48). Here, eps is the
machine precision of the hardware platform. The centering parameter σk
was updated using the well-known rule

σk :=

(
µk
µk−1

)3

,

cmp. [6].
All tests have been made on an Intel Pentium 4, 2.66GHz and 1024MB

using Linux SuSE 9.0Pro as the operating system.

7.2 Results

Several experiments, documented in full by Heermann [19], showed that the
combination of parameters (i0, ik) = (5, 1) seems to be the most promising.
The total performance of the algorithm is relatively stable with respect to
∆ωmult. We found that, as long as ∆ωmult ∈ [ 0.5, 0.9 ], the warm-start search
performs rather robust.

Table 5 (p. 32) shows the iteration log of algorithm QIP with respect to
the most important values for a typical single-criteria problem encountered
during our test. More precisely, the single-criteria problem considered is the
multicriteria problem no. 890 with weighting parameters ω1 = 1/2 = 1−ω1 =
ω2. On this problem, the algorithm stops after 25 iterations. As it can be
seen, the maximal duality gap converges superlinearly to 0.

Figure 4 (p. 34) shows the results achieved on the multicriteria problems
considered. On average, 1388 points per problem were generated and on
average 176.94 seconds were used to solve one multicriteria problem to the
accuracy specified above, which means that on average 0.1275 seconds were
needed to solve one scalarized problem. This compares favorably with the
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k µk ‖rkb ‖2 ‖rkc‖2

0 1.600000e+05 7.407255e+03 5.971372e+03

1 8.579048e+04 3.719395e+03 2.998397e+03

2 4.129213e+04 1.514895e+03 1.221235e+03

3 2.016191e+04 6.170106e+02 4.974042e+02

4 8.265110e+03 1.816479e+02 1.464358e+02

5 2.273101e+03 2.906367e+01 2.342973e+01

6 4.783928e+02 4.650187e+00 3.748756e+00

7 1.475387e+02 1.369015e+00 1.103634e+00

8 4.675247e+01 4.030380e-01 3.249098e-01

9 1.490842e+01 1.186544e-01 9.565345e-02

10 2.862102e+00 1.898470e-02 1.530455e-02

11 5.231097e-01 3.037550e-03 2.448730e-03

12 9.540502e-02 4.860103e-04 3.918021e-04

13 1.662533e-02 7.776913e-05 6.269642e-05

14 2.768100e-03 1.244372e-05 1.003240e-05

15 4.530403e-04 1.990987e-06 1.610700e-06

16 7.387028e-05 3.258166e-07 2.620483e-07

17 1.204321e-05 5.099140e-08 4.109352e-08

18 1.961090e-06 1.372712e-08 1.008087e-08

19 3.274416e-07 7.795232e-09 2.087891e-09

20 5.109085e-08 4.216811e-09 1.416855e-09

21 1.078810e-08 2.864808e-09 1.406613e-09

Table 5: Duality gap and primal and dual infeasibility during the course of
algorithm QIP for the single-criteria problem constructed out of the bicriteria
problem # 890 by choosing ω1 = 1/2.
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standard strategy of using just the same starting point over and over again,
until the prespecified accuracy is met. With this strategy, on average 327
seconds were needed to solve one multicriteria optimization problem. More-
over, only in four cases out of 1440 was a cold start necessary at all. In three
of them, just one cold-start needed to be made, in the remaining case, two
of them were necessary.

The average number of iteration steps executed in algorithm QIP (called
within EffTree) per computed efficient point was 9.12, while the minimum
resp. maximum number of iterations was 5.71 resp. 11.27. Note that these
numbers do not include the warm-start steps made, which tend to decrease
the duality gap even more.

7.3 The Perturbation Size during the Algorithm

To measure the size of the maximal possible perturbation allowed during
the course of the algorithm, we conducted the following experiment. For
fixed values of ∆ωmult, we executed i0 steps of algorithm QIP from the
usual starting point (ζ = 400) and with the usual initial weight parameter
(ωinit = 0.5). After that, subroutine CompWarmStart was used to calculate
a feasible ∆ωmult > 0 as well as a corresponding ∆ωmult < 0. The results
of these experiments for a sample of 200 optimization problems can be seen
in Figure 5, (p. 35) . Clearly, the steep decline of the maximal perturba-
tion computed for the case ∆ωmult = 0.1 is an artifact of the rather small
backtracking parameter. Note that for a value of ∆ωmult = 0.9, the values
of |∆ω| computed do not seem to converge to zero. According to this nu-
merical evidence, Theorem 12 indeed states a sufficient condition, but not a
necessary one. Taking a closer look again at Theorem 12, we see that the
theorem can, for a fixed optimization problem, be interpreted roughly as ”if
µ ≥ C‖∆d‖∞ = C̃|∆ω|, then w + ∆w is feasible”. However, µ converges to
0 and based on this result, we should choose ∆ω converging to 0, too. But
our numerical evidence shows that this is not necessary.
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Figure 4: Run time and number of efficient points for the 1440 bicriteria
problems considered. These problems are indexed according to the time of
the day. Note that the problems at around 6:00 a.m. are infeasible.

34



0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

i0

|∆ω|

◦ ∆ω < 0

× ∆ω > 0

∆ωmult = 0.1

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

i0

|∆ω|

◦ ∆ω < 0

× ∆ω > 0

∆ωmult = 0.9

Figure 5: Maximal perturbation size during the execution of QIP.
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