
Synchronous Programming—SYNCHRON ’04

Dagstuhl Seminar

Executive Summary∗

Stephen A. Edwards

Columbia University, US

Nicholas Halbwachs

VERIMAG–IMAG, FR

Reinhard von Hanxleden

Universität Kiel, DE

Thomas Stauner

BMW Car IT, DE

November 28–December 3, 2004

This seminar was the 11th in a series of semi-annual workshops on the Syn-
chronous Languages (Esterel, Lustre, and Signal). These languages were in-
vented in the early 1980’s to make the programming of reactive systems easier.
Benveniste et al. [3] presents a recent survey of the field.

1 The Seminar

The goal of the seminar was to bring together researchers and practitioners
of synchronous programming, and furthermore to reach out to relevant related
areas and industrial users. With a record participation in this year’s SYN-
CHRON workshop and a broad range of topics discussed, the aims seem to
have been well-met. The program of the seminar was composed of around
thirty presentations, all of which included extensive technical discussions. The
fields covered included synchronous semantics, modeling languages, verification,
heterogeneous and distributed systems, hardware/software integration, reactive
processing, timing analyses, application experience reports, and industrial re-
quirements.

Particularly successful this year were presentations from the automotive in-
dustry. Stefan-Alexander Schneider and Thomas Stauner both discussed issues
with real-time software development at BMW. Matthias Hoffmann represented
DaimlerChrysler.

∗Alain Girault wrote the first draft of this summary.

1

Dagstuhl Seminar Proceedings 04491
Synchronous Programming - SYNCHRON'04
http://drops.dagstuhl.de/opus/volltexte/2005/195

2 Reactive Systems

Any automatic control software is classified as a reactive system [9]. Indeed,
such software must react continuously to their environment. They differ from
interactive systems (e.g., operating systems) because their reaction speed is
imposed by the environment—because the environment cannot wait. Examples
of such software include nuclear power plant controllers, aircraft flight systems,
automotive controls, and so forth.

The essential characteristics of reactive systems are

• Criticality: They are highly critical (e.g., time-critical), just like the sys-
tems they control are critical.

• Parallelism: At least the parallelism between the system and its environ-
ment must be taken into account during the specification. Moreover, it
is often convenient for the designer to conceive of the system as a set of
parallel components cooperating in order to achieve the desired behaviour.

• Determinism: A deterministic system determines a sequence of output
signals from a sequence of input signals in an unique way. This prop-
erty makes its design, analysis, and debugging much easier. For critical
systems, this choice is obvious.

3 The Classical Approach

Classical programming tools are not well-suited to reactive systems program-
ming. Automata-based systems lack high-level parallel programming primitives
while asynchronous languages do not respect the intrinsic determinism of reac-
tive systems. Asynchronous language inherit from the field of operating systems
and time sharing. In particular, asynchronous parallelism amounts to interleav-
ing. The construct a||b (run a in parallel with b) is either implemented as a;b
(execute a then b) or as b;a, thus introducing an unwanted non-determinism.
This is the case of well-known languages like Occam and Ada, which use the
rendezvous-based mechanism inspired by CSP. It is also the case of SDL which
uses waiting queues inspired by Petri Nets.

4 Synchronous Abstraction

Synchronous languages are instead based on the simultaneity principle: The
construct a||b is implemented as the unit ab, leaving to the compiler any choice
of detailed scheduling. Another way of viewing a synchronous program consists
of saying that all the parallel processes evolve simultaneously, sharing a common
discrete time scale. This is known as the logical time abstraction: all processes
compute one discrete time step simultaneously. This is the approach taken by
the synchronous language Esterel [5].

2

Another approach is to view a synchronous program as a dynamic system,
specified as a system of dynamic equations. The job of the synchronous compiler
consists, then, of solving this system of equations. This is the approach taken
by the synchronous languages Lustre [6, 7] and Signal [10].

5 Advantages of the Synchronous Approach

There are numerous advantages to the synchronous approach. The main one
is that the temporal semantics is simplified, thanks to the aforementioned log-
ical time abstraction. This leads to clear temporal constructs and easier time
reasoning. Just like ML and Pascal are high-level sequential programming lan-
guages in the sense that they are typed and structured, synchronous languages
are high-level parallel languages in the sense that they are temporally typed and
structured. Programming with ML reduces functional bugs; programming with
synchronous languages reduces temporal bugs.

Another key advantage is the reduction of the state-space explosion problem
from the discrete logical time abstraction. Synchronous systems evolves in a se-
quence of discrete steps, and nothing occurs between two successive steps (this is
as opposed to models with interleaving concurrent semantics, such as concurrent
Java). This makes program debugging, testing, and validating easier. In par-
ticular, formal verification of synchronous programs is possible with techniques
like model checking. Another consequence is that synchronous language com-
pilers are able to generate automatically embeddable code with performances
that can be measured precisely. Hence the reaction time of the software can be
known at compile time and can be compared with the desired sampling period.
Control engineers can specify and tune their automatic control algorithm with
synchronous languages and then rely on the compiler to generate automatically
embeddable code, therefore avoiding the tedious and error-prone task of actually
implementing the code corresponding to their algorithm.

6 Synchronous Languages

Historically, the first synchronous language is Esterel [4, 5], developped at the
Centre de Mathématiques Appliquées (CMA) of École des Mines de Paris, in
Sophia-Antipolis, France, and later joined by people from INRIA. It is an imper-
ative language that was originally inspired by CCS and SCCS. Esterel introduces
constructs like preemption and communication by synchronous broadcast. It is
devoted to the programming of discrete event systems. Esterel Technologies
now markets an industrial version of the Esterel compiler. There exists several
other synchronous languages. This is just a selection, presented in chronological
order:

• Lustre [6] is a data-flow declarative functional language also inspired by
Lucid. The Scade tool, initially developed by Verilog and Aerospatiale is
based on Lustre. Scade is now marketed by Esterel Technologies.

3

• Signal [10] is also a data-flow declarative language, but it is relational
instead of functional like Lustre. In this sense, it is more general than
Lustre. Polychrony is the public domain Signal compiler, while Sildex is
the commercial tool developed by TNI-Valiosys.

• Argos [11] is a purely synchronous version of the well known Statecharts
formalism [8], which yields a number of advantages. In particular, Argos
has a compositional semantics. SyncCharts [1] and Mode Automata are
both inspired from Argos.

• Polis [2] is a graphical tool for implementing Codesign Finite State Ma-
chines (CFSM). The model of computation behind CFSMs is a set of
synchronous FSMs communicating asynchronously; It is therefore known
as Globally Asynchronous Locally Synchronous (GALS). The Cierto VCC
tool developed by Cadence is based on Polis.

• SL, the Synchronous Language, is a variant of Esterel where hypotheses
about signal presence or absence are not allowed. Whether a given sig-
nal is present or absent can only be decided at the end of a synchronous
instant, hence reaction to a signal is delayed until the next instant. The
main advantage is that causality problems are avoided. SL was the start-
ing point of many other synchronous languages such as Sugar Cubes and
Junior.

While Esterel, Argos, and SL are more suited to discrete event systems,
Lustre, Signal and Polis are very close to the specification formalisms used by
automatic control engineers: block diagrams, differential equations, data flow
networks, automata, and so on.

7 Industrial Impact

Synchronous languages have recently seen a tremendous interest from leading
companies developing automatic control software for critical applications, such
as Schneider, Dassault, Aerospatiale, Snecma, Cadence, Texas, and Thomson.
For instance, Lustre is used to develop the control software for nuclear plants
and Airbus planes. Esterel is used to develop DSP chips for mobile phones,
to design and verify DVD chips, and to program the flight control software
of Rafale fighters. And Signal is used to develop digital controllers for airplane
engines. The key advantage pointed by these companies is that the synchronous
approach has a rigorous mathematical semantics which allows the programmers
to develop critical software faster and better.

8 Summary

In summary, synchronous programming is an interesting approach for design-
ing and programming automatic control software. Synchronous languages have

4

a well-founded mathematical semantics that allow ideal temporal constructs
as well as formal verification of the programs and automatic code generation.
We believe they are ideally suited to programming automatic control software
because they are close to the classic specification formalisms used by control
engineers, and also because they offer code generation tools that avoid the te-
dious and error-prone task of implementing the control algorithm after having
specified it. These nice features have been confirmed by their recent successes
in the automatic control industry.

Participants

This year’s participation in the SYNCHRON workshop was the highest ever,
which we attribute largely to the excellent Dagstuhl facilities.

Joaquin Aguado , Universität Bamberg
Albert Benveniste, IRISA/INRIA Rennes
Gérard Berry, Esterel Technologies - Villeneuve
Reinhard Budde, Fraunhofer Inst. - St. Augustin
Zbigniew Chamski, Philips Research - Eindhoven
Jean-Louis Colaco, Esterel Technologies - Toulouse
Gwenáél Delaval, INRIA Rhône-Alpes
Stephen A. Edwards, Columbia University
Harald Fecher, Universität Kiel
Abdoulaye Gamatié, Université de Rennes
Peter Gammie, Chalmers UT - Göteborg
Alain Girault, INRIA Rhône-Alpes
Gregor Goessler, INRIA Rhône-Alpes
Claude Helmstetter, VERIMAG - IMPG
Matthias Hoffmann, DaimlerChrysler Research - Berlin
Leszek Holenderski, Philips Research - Eindhoven
Ralf Huuck, National ICT Australia - Eveleigh
Erwan Jahier, VERIMAG - IMPG
Bertrand Jeannet, IRISA/INRIA Rennes
Chiheb Kossentini, VERIMAG - IMPG
Marcel Kyas, Universität Kiel
Ouassila Labbani, Université de Lille
Xin Li, Universität Kiel
Jan Lukoschus, Universität Kiel
Gerald Lüttgen, University of York
Louis Mandel, Université Paris VI
Florence Maraninchi, VERIMAG - IMPG
Christophe Mauras, Université de Nantes
Michael Mendler, Universität Bamberg
Jan Mikac, VERIMAG - IMPG
Matthieu Moy, VERIMAG - IMPG

5

Barry Norton, University of Sheffield
Gordon Pace, University of Malta
Mihaly Petreczky, CWI - Amsterdam
Dumitru Potop-Butucaru, Université de Rennes
Marc Pouzet, Université Paris VI
Steffen H. Prochnow, Universität Kiel
Pascal Raymond, VERIMAG - IMPG
Martin Richard, Ecole des Mines de Nantes
Jan Romberg, TU München
Eric Rutten, INRIA Rhône-Alpes
Norman R. Scaife, VERIMAG - IMPG
Klaus Schneider, TU Kaiserslautern
Stefan-Alexander Schneider, BMW AG - München
Satnam Singh, Microsoft - Seattle
Cristian Soviani, Columbia University
Thomas Stauner, BMW Car IT
Walid Taha, Rice University
Jean-Pierre Talpin, INRIA Rennes
Olivier Tardieu, INRIA - Sophia Antipolis
Stephan Thesing, Universität Saarbrücken
Christine Vella, University of Malta
David White, University of York
Reinhard Wilhelm, Universität Saarbrücken
Willem-Paul de Roever, Universität Kiel
Robert de Simone, INRIA - Sophia Antipolis
Reinhard v. Hanxleden, Universität Kiel
Jan H. van Schuppen, CWI - Amsterdam

References

[1] Charles André. Representation and analysis of reactive behaviors: A syn-
chronous approach. In Proceedings of Computational Engineering in Sys-
tems Applications (CESA), pages 19–29, Lille, France, July 1996.

[2] Felice Balarin, Paolo Giusto, Attila Jurecska, Claudio Passerone, Ellen
Sentovich, Bassam Tabbara, Massimiliano Chiodo, Harry Hsieh, Luciano
Lavagno, Alberto Sangiovanni-Vincentelli, and Kei Suzuki. Hardware-
Software Co-Design of Embedded Systems: The POLIS Approach. Kluwer,
Boston, Massachusetts, 1997.

[3] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91(1):64–83, January 2003.

[4] Gérard Berry and L. Cosserat. The ESTEREL synchronous program-
ming language and its mathematical semantics. In S. D. Brooks, A. W.

6

Roscoe, and G. Winskel, editors, Seminar on Concurrency, pages 389–448.
Springer-Verlag, Heidelberg, Germany, 1984.

[5] Gérard Berry and Georges Gonthier. The Esterel synchronous program-
ming language: Design, semantics, implementation. Science of Computer
Programming, 19(2):87–152, November 1992.

[6] Paul Caspi, Daniel Pilaud, Nicholas Halbwachs, and J. A. Plaice. LUS-
TRE: A declarative language for programming synchronous systems. In
ACM Symposium on Principles of Programming Languages (POPL), Mu-
nich, January 1987. Association for Computing Machinery.

[7] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data flow programming language LUSTRE. Proceedings of the
IEEE, 79(9):1305–1320, September 1991.

[8] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, June 1987.

[9] David Harel and Amir Pnueli. On the Development of Reactive Systems,
volume 13 of NATO ASI Series. Series F, Computer and Systems Sciences,
pages 477–498. Springer-Verlag, 1985.

[10] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire.
Programming real-time applications with SIGNAL. Proceedings of the
IEEE, 79(9):1321–1336, September 1991.

[11] F. Maraninchi. The Argos language: Graphical representation of automata
and description of reactive systems. In Proceedings of the IEEE Workshop
on Visual Languages, Kobe, Japan, October 1991.

7

