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Abstract

A current limitation in reactive systems design is the lack of database
support in tools such as Esterel Studio. This report proposes a way of inte-
grating databases and Esterel by providing an Application Programming
Interface (API) for relational database use inside Esterel.

As databases and Esterel programs are often executed on different ma-
chines, result sets from database queries may be processed either locally
and according to the synchrony hypothesis, or remotely along several re-
active cycles. These different scenarios are reflected in the development of
two APIs detailed in this report. Their utility is demonstrated by means
of a case study modelling a warehouse storage system as might be used by
a direct order company. The system employs a robot whose task it is to
collect items from a customer’s order and assemble them in one place. In
addition to customer and order data, the underlying database stores spa-
tial data detailing the position of items in the warehouse. Both robot and
warehouse are implemented using the Lego Mindstorms robotics system.

1 Introduction

One of the current limitations in reactive systems programming is the lack of
database support available within synchronous languages, such as Esterel [3,
4] and Lustre [7], and their development environments, Esterel Studio and
SCADE [9], respectively. As is, a system designer needs to modify auto–
generated code by hand in order to interface to databases, which is both a
difficult and error–prone business. This is a problem very much relevant in in-
dustry since some reactive systems programmed in synchronous languages would
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benefit from an easy model of database interaction. For example, synchronous
languages are often used to build the flight software for aeroplanes. Adding
database interaction would enable mapping data to be retrieved and processed
directly by the reactive kernel implementing the flight software, so that maps
of the currently overflown area could be displayed to pilots in real time.

This report addresses that limitation by providing an Application Program-
ming Interface (API) for using relational databases within the Esterel program-
ming language. We choose MySQL [14] as the database and, since reactive
kernels are produced as C programs by the academic Esterel compiler [2, 8], the
APIs are implemented using the MySQL C interface [15]. MySQL is selected
here simply for its convenience, since it is widely used in academia. However,
our work can as easily be applied to other relational databases. To the best
of our knowledge, no articles on database integration within Esterel have been
published before in the academic literature. Indeed, other reactive systems de-
sign tools seem to be very limited in this respect as well, including Mathworks’
Simulink/Stateflow [5] and iLogix’ Statemate [11].

Because database transactions are relatively complex when compared to re-
sponses of reactive kernels, databases and reactive programs must be considered
as running asynchronously to each other. This is true regardless of whether they
reside on the same machine or on different machines. In the former case, how-
ever, result sets to database queries may reasonably be assumed to be processed
within a single synchronous step of the reactive kernel. In the latter case, result
sets are necessarily processed asynchronously to the reactive kernel. For these
reasons, an API for each situation is provided: a Local Result Set API and a
Remote Result Set API. The realisation of both relies on Esterel’s formidable
support for extending the language via external data types and external func-
tions and procedures. While the local result set API makes heavy use of external
functions and procedures, the remote result set API only employs valued sig-
nals. This is because external functions and procedures are expected to be
instantaneous in Esterel.

We demonstrate the utility of our APIs by means of a case study involving
a warehouse storage system. The idea behind this is that of a direct order com-
pany, i.e., orders must be picked from items stored in a warehouse. Accordingly,
a robot is built and programmed to pick up and drop off items, therefore making
it possible for a complete order to be collected and stored. The orders, as well
as information about the items, are provided by a database running remotely to
the robot on a PC. Part of the information stored on an item is its position in
the warehouse, thereby providing mapping data for the robot. The case study
is implemented using Lego Mindstorms robotics kits [1, 13], which provides a
small programmable brick, called RCX, that houses a microcomputer capable
of running an Esterel reactive kernel. Sensors and actuators connected to the
RCX, such as touch, light and rotation sensors and motors, respectively, permit
interaction with the RCX’s environment. The RCX also has a built–in infrared
port, which we use to communicate with the warehouse database on the PC.

The remainder of this report is structured as follows. The next section de-
scribes both our APIs, emphasising the general model of interaction between
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Esterel reactive kernels and databases. Our case study is presented in Sec. 3
which provides an example of the usage of the Local Result Set API. Sec. 4 con-
tains our conclusions and suggestions for future work. Details of the realisation
of our APIs and the case study can be found in a technical report [18].

2 Database APIs for Esterel

Due to the variety of computing architectures in which an Esterel reactive kernel
together with a database may be used, two different APIs for enabling database
access within Esterel are devised. The APIs exploit the built–in extensibility
of the Esterel language and provide dedicated signals, external data types and
external functions and procedures for use inside Esterel.

Both APIs allow local and remote databases to be queried. They consider
databases as part of the system environment and as running asynchronously
to the reactive kernel. This is because database transactions are typically more
complex to process than ordinary reactions. The APIs differ in the storage loca-
tion considered for the result set returned by a query. Result sets are database
tables presented as sets of rows, from which the reactive kernel extracts desired
information according to its needs. The Local Result Set API views the re-
sult set as being local to the reactive kernel, whence operations on the result
set can conceptually be considered to take zero time, satisfying the synchrony
hypothesis [10]. This API can thus make heavy use of user–defined external
functions and procedures, which are required to be instantaneous in the Esterel
language [3]. The remote result set API allows the result set to be stored re-
motely to the reactive kernel. As a consequence, this API cannot profit from
the elegance and simplicity of employing external functions and procedures, but
must solely rely on signals for processing result sets.

2.1 Local Result Set API

The most logical way to view the interaction between a reactive kernel pro-
grammed in Esterel and a database is to regard the database simply as an
extension of the reactive kernel’s environment. For this reason all interactions
with the database from within Esterel are modelled using input and output sig-
nals, as these are Esterel’s facilities for communicating with the environment.
Therefore, to perform an operation on the database, a dedicated output signal
is emitted, parameterised in a string that formulates a query in SQL syntax.
The database’s response is awaited via a dedicated input signal whose param-
eter carries an identifier pointing to the result set. During the time between
the emitted query and the results returning, the database is queried and the
whole result set is transferred back to the site that also runs the reactive kernel.
Note that multiple databases can simply be supported by declaring a dedicated
output and input signal for each database.

Once a database has been queried and a result set returned, data can be
extracted from the result set using dedicated operations implemented using
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Esterel’s external function and external procedure facility. Note that this is
possible since both the result set and the reactive kernel reside at the same site,
which implies that accesses of the result set by the kernel may be considered as
instantaneous. If the query’s SQL command is one that does not return results,
such as the command for the deletion of data items, then the only operation
provided is one to check the number of affected rows. If the SQL command
did return a result set however, the set may be accessed by successively reading
the result set row–by–row, extracting the specific data items from each row and
coercing them into native Esterel types. Once all rows have been processed, an
operation shall be called to free the memory occupied by the result set.

Table 1: Services offered by the Local Result Set API

type MYSQL_RES_ptr;

type MYSQL_ROW;

procedure appstr() (string, string);

procedure appint() (string, integer);

procedure appbol() (string, boolean);

procedure appflt() (string, float);

procedure appdou() (string, double);

output <Signal name for emitting query> : string;

input <Signal name for returning results> : MYSQL_RES_ptr;

function check_result(MYSQL_RES_ptr) : boolean;

function get_next_row(MYSQL_RES_ptr) : MYSQL_ROW;

function num_rows(MYSQL_RES_ptr) : integer;

function getint(MYSQL_ROW, integer) : integer;

function getbol(MYSQL_ROW, integer) : boolean;

function getdou(MYSQL_ROW, integer) : double;

function getflt(MYSQL_ROW, integer) : float;

function getstr(MYSQL_ROW, integer) : string;

function num_affected_rows(MYSQL_RES_ptr) : integer;

procedure clear_results() (MYSQL_RES_ptr);

Esterel’s interaction with a remote database and its local processing of the
result sets thus leads to the API displayed in Table 1. In the remainder of this
section we explain the API’s services in more detail.

We begin with the formation of a query string containing SQL commands.
Since Esterel does not provide any facilities for building strings, the string must
be generated using a series of append operations. The API offers an append
operation for each of Esterel’s native data types and implements these operations
using Esterel’s external procedure call function. For example, the following
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generates a query which uses an integer variable order_id:

var query_string : string in

query_string := "select * from orders where order_id = ";

call appint() (query_str, order_id);

end var

As mentioned before, the database is interacted with via an output query sig-
nal and an input result signal. For each database used, they should be declared
as such:

output item_db_query : string;

input item_db_results : MYSQL_RES_ptr;

Each pair of signal names can be chosen by the user. The mapping between
chosen signal names and the actual databases is defined elsewhere (cf. Sec. 2.3).
The data returned on a result signal is simply an identifier of the external type
MYSQL_RES_ptr defined in our API’s implementation. Note that the identifier
value should never be copied since this would not result in a full copy being
performed. Our framework effectively allows only one result set per database
connection; however, if more result sets are required simultaneously within some
Esterel application, additional connections to the same database may be de-
clared.

To ensure that the results are received correctly from the database, the
results signal should be awaited immediately following the emission of the query:

emit item_db_query("select * from item");

await item_db_results;

If two queries are issued simultaneously, then the result signals must be awaited
in parallel or using immediate await statements.

In order to check the success of the SQL command, the boolean function
check_result should be called and passed the identifier of the result set, i.e.,
the value of the input result signal. If it returns true, the query succeeded and
the operations described below may be used to access the data inside the result
set. If it returns false, the data in the result set is not valid.

For working with a result set that contains data — as opposed to an empty
one returned by, e.g., an SQL insert statement — rows must be declared inside
Esterel. Rows are declared to be of external type MYSQL_ROW which is defined
in our API’s implementation. The lifetime of any data loaded into a row from
a result set lasts only as long as the result set itself, i.e., up to the time the
clear_results operation is called. We recommend that rows are only declared
locally and that their scope finishes before the call to clear_results occurs.

The functions provided to operate on the result set and rows will now be
described. Most of the operations mirror the equivalent MySQL function from
the MySQL C API [15]. This interface was chosen for two reasons: the MySQL
C functions are widely and well known and, at a later date, additional functions
can easily be included, if desired. Function get_next_row is required to load

5



data into a row from a result set. It is passed a result set identifier and, each
time it is called, it will return the next row in the result set. Generally, the
program will need to know how many rows there are in the result set and,
therefore, how many times to call get_next_row. This is accomplished by a
call to function num_rows which, when passed a result set identifier, returns the
number of rows in the result set. Once a row has been loaded from a result set,
data can be extracted using a get<type> function which is provided for each
of the native Esterel data types. In addition to a row, an integer is also passed
indicating the index of the column from where the data is to be retrieved. The
following is a simple example of data extraction using our API:

var row_holder : MYSQL_ROW,

item_name : string,

item_location : integer in

row_holder := get_next_row(?item_db_results);

item_name := getstr(row_holder, 1);

item_location := getint(row_holder, 2);

end var;

In this case, the results are identified with the valued signal item_db_results,
and the item’s name and location are in the second and third column of the
row, respectively. Note that indexing is as in the C programming language and
thus starts with index 0.

One function that remains to be described for accessing the result set is
num_affected_rows. This is used when the result set contains no data but a
user wants to know how many rows were affected by the SQL command. As
such, num_affected_rows can be employed to test the success of an SQL query,
e.g., to check whether a delete query has had the desired effect.

The final operation provided by the API, which has already been referred to
above, clears the memory occupied by the result set:

procedure clear_results()(MYSQL_RES_ptr);

call clear_results()(?item_db_results);

It is essential here that there are no rows loaded from the result set after it is
cleared, since the data within these rows is cleared with the result set as well.

2.2 Remote Result Set API

The Remote Result Set API should be used in situations where it is not feasible
to transfer the entire result set to the system running the reactive kernel, i.e.,
when both the database and the result set must be viewed as part of the en-
vironment. Since remote communication must be taken into account, the API
is quite different to that of the Local Result Set API. This is because external
functions and procedures can only be used in Esterel if their operations may be
considered as instantaneous [3]. Consequently, one must either employ Esterel’s
task concept or must solely rely on signals. In both cases and as a consequence
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of operations on the result set not being instantaneous, the Esterel kernel must
be informed of when an operation is complete. This is accomplished by awaiting
an “acknowledge” signal after every operation. In the remainder we focus on
the solution via signals rather than tasks, as the authors were unfamiliar with
Esterel’s intricate task concept at the time the research was carried out.

An important aim of the Remote Result Set API is to minimise the amount
of data that must be transfered. To achieve this, rows are not handled by the
reactive kernel but are moved database–side instead. As a consequence, rows
are part of the environment, like the result set. To prevent the complexity of
handling multiple rows in the kernel, each database is limited to only one row.
This is a reasonable restriction since systems that use this API are unlikely to
be performing complex database manipulations that require multiple rows. If
multiple row access should indeed be necessary, additional connections can be
specified to achieve that. This work–around can also be employed to support
multiple databases, similar to what is suggested for the Local Result Set API.

Table 2: Services offered by the Remote Result Set API

input <db_id>_ackstr : string;

input <db_id>_ackint : integer;

input <db_id>_ackbol : boolean;

input <db_id>_ackflt : float;

input <db_id>_ackdou : double;

procedure appstr() (string, string);

procedure appint() (string, integer);

procedure appbol() (string, boolean);

procedure appflt() (string, float);

procedure appdou() (string, double);

output <db_id>_query_out : string; after emission, await <db_id>_ackbol

output <db_id>_fetch_next_row; after emission, await <db_id>_ackbol

output <db_id>_num_rows; after emission, await <db_id>_ackint

output <db_id>_num_affected_rows; after emission, await <db_id>_ackint

output <db_id>_clear_results; after emission, await <db_id>_ackbol

output <db_id>_getint : integer; after emission, await <db_id>_ackint

output <db_id>_getbol : integer; after emission, await <db_id>_ackbol

output <db_id>_getflt : integer; after emission, await <db_id>_ackflt

output <db_id>_getdou : integer; after emission, await <db_id>_ackdou

output <db_id>_getstr : integer; after emission, await <db_id>_ackstr

Our API for remote result set access is displayed in Table 2. The remain-
der of this section explains the API’s services in more detail. Similar to the
naming of the query and result signals in the Local Result Set API, each sig-
nal signal_name is prefixed with a textual database identifier db_id, which
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we denote by <db_id>_signal_name. Moreover, the offered string generation
functions are identical to those in the Local Result Set API.

The main difference to the Local Result Set API is the way in which the
results to a query are accessed. There is now one result set and one row per
database defined, and since each signal is prefixed by a unique string, there
is no need for a result set identifier to be returned. The only data returned
after issuing a query is the success of that query. Therefore, after a query has
been issued, the boolean acknowledge input signal for that database must be
immediately awaited:

emit item_db_query("select * from item");

await <db_id>_ackbol;

Its carried value is the same as the one returned by the check_result operation
in the Local Result Set API.

The value of the <db_id>_ackbol input signal should then be tested to
determine whether the query has succeeded or not. If the query has suc-
ceeded and the result set is not empty, then the first row can be loaded by
emitting the <db id>_fetch_next_row signal. It is again necessary to await
<db_id>_ackbol after this to determine when the operation has completed.
True is returned if there exists a valid row to load, and false if there are no more
rows available.

Now that a row has been loaded, the signals for accessing it may be used.
Similar to the Local Result Set API, there is a <db_id>_get<type> signal for
each of the Esterel native types. In the following example, it is shown how to
extract an integer from the first column of the row:

emit <db_id>_getint(0);

await <db_id>_ackint;

order_id := ?<db_id>_ackint;

All the operations contained in the Local Result Set API are also available
in the Remote Result Set API, but implemented as signals instead of external
functions. However, in order to cope with the additional remote nature of
result sets and thus rows, it is necessary to await an acknowledge signal after
each operation.

2.3 Implementation of the APIs

Both APIs are implemented in a combination of Perl and C. The implemen-
tations heavily rely on the MySQL C API [15] and are, for most parts, rather
straightforward. The complete source code for both APIs is included in [18].

The involvement of the Perl scripting language [17] in the realisation of the
APIs may be surprising at first. The reason is our desire to support multiple
databases with user–declared signal names for emitting SQL queries and await-
ing result sets. As reactive systems typically interact with an arbitrary but fixed
number of databases, it is unnecessary to provide API services for dynamically
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Figure 1: Aerial photograph of our warehouse system.

binding signal names to databases; even a static binding should not be defined
within an Esterel program at all, as it is not part of reactive behaviour. In-
stead, we opt to provide such a binding as a parameter to our Perl script for
each API, which appropriately combines the C–code generated by the academic
Esterel compiler [8] for some reactive program with C–code implementing the
APIs services used in the program.

Since database connections are generally permanent throughout the time a
reactive system is running, our APIs provide no explicit facilities for connecting
and disconnecting from a database. Instead, connection and disconnection is
handled implicitly by the APIs. However, if explicit connect and disconnect
services would be required from within an Esterel program, the APIs could be
extended by defining and implementing according dedicated signals.

3 Case Study

In this section we present a case study demonstrating the utility of our APIs:
an automated warehouse storage system modelling a direct order company,
where items from orders are picked, stored and finally removed from the ware-
house. This requires producing a warehouse containing various items and a
robot capable of moving the items within the warehouse, for which we use Lego
Mindstorms’ robotics kits [13] (cf. Fig. 1). Lego Mindstorms provides both a
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construction tool with sensors and actuators and a microcontroller, called the
RCX, which is capable of running a reactive kernel programmed in Esterel. The
database behind our warehouse model is that of a standard order system but
which also includes mapping data about the location of the items. As this case
study is meant to exemplify the use of our database APIs, only the part of the
solution employing the APIs is focused on below.

3.1 Lego Mindstorms, the RCX and BrickOS

Lego Mindstorms is a platform for building computer–controlled robots within
the Lego system [13]. At the heart of Lego Mindstorms is the RCX. This “brick”
is a small battery–powered computer system capable of controlling up to three
actuators and reading up to three sensors. In Lego, actuators are normally
motors, and sensors can be light, rotation or touch sensors. Each RCX also pro-
vides an infrared transmitter and receiver used for both downloading programs
from a PC and for inter–RCX communication. The infrared download device
used on the PC can also participate in communications with RCXs.

The RCX provides great flexibility though its re–programmable firmware.
BrickOS [6], formerly known as LegOS, is an open source replacement firmware
for the RCX. It boasts a number of features that make it considerably more
complex than the standard Lego firmware. Foremost, it allows programs written
in the C programming language to be executed on the RCX. Obviously this is
especially important for this project since the Esterel compiler [8] generates
C code as a target language.

BrickOS also provides infrared communication through the Lego Network
Protocol (LNP) [6]. This protocol has two layers, an integrity layer and an
addressing layer. The integrity layer guarantees that, if a message is received,
it will be the same message that was sent — similar to the Internet protocol
UDP. However, it differs from UDP in that it implements a broadcast mode,
i.e., any RCXs in the receiving area will pick up the message. To provide unicast
messages, an addressing layer is placed on top of the network protocol stack. In
our Lego Mindstorms’ setting, each RCX has a unique identifier which serves
as its address and is specified when the BrickOS firmware is downloaded.

3.2 Hardware

The hardware requirements of our warehouse storage system are high in Lego
Mindstorms’ terms, requiring more sensors and actuators than one RCX can
control. Therefore, it is necessary to use two RCXs, one to control the movement
of the robot and the second to control the forklift, hereafter referred to as the
Movement RCX and Forklift RCX, respectively. Again, communication between
the two RCXs is handled using the infrared link provided on each RCX. Because
the Forklift RCX does not need to communicate with the PC, the infrared
download tower is set up to allow the following communication to take place:
host computer to Movement RCX and Movement RCX to Forklift RCX, as
shown in Fig. 6 below.
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Figure 2: Track section.

Figure 3: Track enabling straight robot movement.

3.2.1 Movement Subsystem and Track Description

Since the robot is required to pick up and place items in the warehouse with high
precision and since the movement of the robot greatly influences its precision, it
is necessary to make the movement subsystem as accurate as possible. Our so-
lution to this challenge involves a combination of a drive system that guarantees
straight line motion and facilities for the robot to detect an error in its direction
and correct it. The underlying drive that moves the robot is implemented as a
dual differential drive. This provides mechanically guaranteed straight motion
and precise control of each wheel’s speed. Each section of track that the robot
moves on has two widely separated thin white lines over which two light sensors
rest (cf. Fig. 2, outer light sensors). By using thin widely spaced tracks, the
number of positions the robot can be in and that the light sensors still register
as straight are limited, and therefore accuracy is enhanced. Any error in the
starting direction will be detected by the light sensors moving over a non–white
coloured part of the track. The areas inside the track and outside the track are
different colours, so the error’s direction can be inferred and corrected for by
slightly slowing one wheel (cf. Fig. 3). This is the kind of precise wheel control
that the dual differential drive excels at.
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Figure 4: Track intersection.

Distance travelled by the robot is determined using a third light sensor which
rests over the middle of the track. Thin white lines in the middle of the track,
perpendicular to the direction of travel, are counted by this sensor, therefore
enabling the robot to determine what distance it has travelled. Rather than
placing the white lines a regular distance apart, they are placed beside objects
that the robot might need to perform an operation at, such as to turn or to pick
up an item. This enables the robot to stop at precisely the correct place and
prevents error in the measured distance from accumulating.

At corners where sections of track intersect, the white lines used for distance
measuring are replaced by the movement lines of the perpendicular track (cf.
Fig. 4). The movement lines of the perpendicular track are designed to be
identical in width to the distance measuring lines, thus providing a system that
works over a track intersection.

At intersections, the same movement lines help the robot to perform precise
90 degree turns. After beginning the turn, the condition of both light sensors
over a white part of the track is awaited. This indicates that the robot has
turned 90 degrees. Again, because the lines are widely spaced, at the end of a
turn the robot will be very close to straight for the next section of track.
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Figure 5: Forklift and palates.

3.2.2 Forklift Subsystem and Item Storage Design

To manipulate the warehouse items, a forklift design was chosen. To be com-
patible with the forklift design, all items must be placed on palates that are the
right size for the forklift. Placing the items on palates also allows items to be
stacked. We assume that all items of the same type, i.e., the same product, will
be stored in one stack (cf. Fig. 5).

The forklift subsystem differs slightly from a normal forklift: instead of
moving the whole robot forward to get the lift under a palate, the forklift arm
is simply extended. This means that the forklift is situated on one side of the
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Figure 6: Diagram showing the inter–layer signals. (A normal line indicates
internal communication and a dashed line communication over infrared link.)

robot rather than the front. The raising of the forklift and the extending of the
arm are both controlled by motors and feedback is provided by two rotation
sensors. Also, because the forklift subsystem is physically built on top of the
movement subsystem, it is not possible to retrieve items from ground height.
Therefore, all items are raised on top of a shelf system.

3.3 Software

The software for the warehouse system is structured in three layers: database
access layer, route interpretation layer and hardware layer. Each device used in
the system, the two RCXs and the PC, executes a reactive kernel programmed in
Esterel. The database layer runs on the PC and is responsible for accessing the
warehouse’s database and for generating routes for the robot to execute. The
second layer runs on the Movement RCX and interprets the route sent from the
PC. The third layer is responsible for interacting with the Lego hardware and
performs operations such as move the robot and pick up the item. This layer
is present on the Movement RCX and the Forklift RCX. The signals used for
communicating between the various layers are shown in Fig. 6.
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3.3.1 Database

Our warehouse’s database models a simple ordering system. Since the main
emphasis within this case study is on retrieving spatial data, the aspects of
the database concerning ordering information are kept as simple as possible:
a customer may make many orders, each order is identified by an order id
and must contain one or more order lines, and each order line must contain
exactly one item. Stored separately is a table describing the drop–off bins in
the warehouse. A drop–off bin is used by the robot to place parts of an order
before it is complete. When the order is complete, the items the bin contains
are removed from it, and the bin is then ready for another order. For each bin,
its location is stored, as is the order id of the order in the bin when it is in use.

3.3.2 Database Access Layer

The database access layer uses our Local Result Set API. It maintains two
connections to the same database since, at one point in the program, it is
necessary to manipulate the database while retaining the result set of an earlier
operation. The input and output signals for the main connection to the database
are called orders_query_out and orders_results, respectively, and for the
additional connection stock_results and stock_query_out, respectively, since
those are only used to update stock levels:

output orders_query_out : string;

input orders_results : MYSQL_RES_ptr;

output stock_query_out : string;

input stock_results : MYSQL_RES_ptr;

Since the database access layer’s only function is to wait for an order that
needs to be picked and then to instruct the robot how to pick it, the main
module is constructed as a loop. Inside the loop is a trap statement which
handles all the ways in which the database and the system can fail. Therefore,
all failure modes are dealt with in one place, and the error handling process is
simplified.

The operation of the database access layer is roughly as follows (cf. Fig. 7).
First, an order is retrieved from the database. One of the lines of this order
is then extracted and the item details are stored locally. The robot is then
sent to retrieve all items, one by one, and to deliver them in an available drop
off bin using a pre–generated route. After each item has been collected, it is
necessary to update the stock level of the item’s type. However, at this point
the database result set still contains uncollected order lines which are required
for later in the program’s execution. Therefore, the second database connection
is used to perform the update without overwriting the result set containing the
order’s details.

Since the operation of the database access layer is quite simple and most
database operations are effectively the same, only the database operation that

15



Figure 7: Flowchart describing the database access layer’s behaviour.

retrieves waiting orders will be given here. The complete Esterel program can
be found in [18]. The operation starts by emitting the query on output signal
orders_query_out and then awaits the results:
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emit orders_query_out("select order_id, customer.customer_id,

name, address from customer, orders where

customer.customer_id = orders.customer_id and

orders.status = ’AWAITING_PICKING’ order by order_id");

await orders_results;

The returned results are then checked for validity using our API function
check_result. If the query has succeeded, then num_rows is called on the re-
sult set to see if any rows were returned. If rows have been returned, then
there are orders waiting and, consequently, the first row is loaded into the local
variable row. The details of the row are then retrieved using the get<type> func-
tions and emitted on the corresponding local signals: order_id, customer_id,
customer_name and customer_address. Now the result set is no longer needed,
and the clear_results procedure is called. The following Esterel code captures
this algorithm:

if (check_result(?orders_results)) then

if (num_rows(?orders_results) > 0) then

var row : MYSQL_ROW in

row := get_next_row(?orders_results);

emit order_id(getint(row,0));

emit customer_id(getint(row,1));

emit customer_name(getstr(row,2));

emit customer_address(getstr(row,3));

end var;

call clear_results()(?orders_results);

else ...

There are two ways in which this operation for retrieving orders can fail:
firstly, if the query fails and, secondly, if there are no waiting orders. Each
is catered for by an exit statement which corresponds to the trap mentioned
above:

if (check_result(?orders_results)) then

if (num_rows(?orders_results) > 0) then

%Code snipped

else

call clear_results()(?orders_results);

exit no_waiting_orders;

end if;

else

exit bad_query;

end if;

In each case, the program flow jumps to the end of the loop and emits an
appropriate error message before pausing and then repeating the main loop.
Note that function clear_results must be called after it has been determined
that there are no waiting orders, freeing the memory occupied by the result set.
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The generation of the pick–up and drop–off routes is the only non–database
related function of the database access layer. To generate the route, first the
item’s height is computed and passed to a function called generate_route_to_

pickup_item() along with the item’s x and y coordinates. The function gen-
erates a string consisting of op codes that represent the operations the robot
must perform to pick up that item and to return to the communication point
in the warehouse. The string is sent to the robot via a signal, and then an-
other signal indicating the completion of executing the route is awaited. After
the pick–up route is complete, a drop–off route is computed by calling function
generate_route_to_drop_item() and passing it the order’s drop–off bin loca-
tion. The route is emitted and the completion awaited on the same signals used
by the pick–up operation. Again, details can be found in [18].

By using external functions to generate the route, the warehouse can be
redesigned in any way consistent with the item locations stored in the database,
and only the two route generating functions will have to be rewritten.

3.3.3 Route Interpretation Layer

To interpret a route string of op codes, a number of external C functions are
provided that extract parts of the string. First, function get_num_ops() is
called to determine how many separate operations the route string contains.
A loop is then repeated this number of times. On each iteration, a function
get_op() is invoked to extract the type of operation and get_param() to ex-
tract the parameters to the operation. Once the operation type has been deter-
mined, an emission is made on the appropriate signal with the value obtained
from get_param(). When the robot has completed the operation, either the
movement_op_complete or forklift_op_complete signal is emitted, inform-
ing the route interpretation layer that the robot is ready for the next oper-
ation. When all operations have been performed in this manner, the signal
route_complete is emitted which lets the database access layer know that the
robot has finished its route.

3.3.4 Hardware Layer

The Movement RCX is required to run both the route interpretation layer and
part of the hardware layer. To accomplish this, both layers are run in par-
allel and local signals are used to communicate between them. To communi-
cate with the hardware layer running on the Forklift RCX, the output signals
pickup_item and drop_item and the input signals forklift_op_complete are
used (cf. Fig. 6). These combined with the signals of the hardware layer running
on the Movement RCX, i.e., signals move_forward, turn_left, turn_right and
movement_op_complete, give the complete range of commands provided by the
hardware layer. A full listing of all the layers’ implementations in Esterel is
contained in [18].
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4 Conclusions

This report presented two APIs for interfacing the synchronous programming
language Esterel to the relational database MySQL. The Local Result Set API
assumes the result set to a database query to be stored locally to a reactive
Esterel kernel and largely relies on the external function concept of Esterel.
The Remote Result Set API considers the result set to be stored remotely and
is realised via signals.

Both database APIs worked well in testing. In particular, the Local Result
Set API is heavily used in our case study and, although none of the database op-
erations are particularly complex, they are representative of the kind of database
operations performed by reactive systems. In contrast to the elegance exhib-
ited by the Local Result Set API, the Remote Result Set API appears to be
slightly convoluted. This is due to modelling all database operations as signals,
which became necessary since remoteness implies that one cannot expect in-
stantaneous responses and, hence, cannot use external functions. It remains to
be explored whether an implementation based on Esterel’s task concept would
be more elegant.

It should be emphasised that the introduction of a database using either
API in an Esterel reactive system does not undermine Esterel’s synchrony hy-
pothesis. However, since the response times for returning query results or for
accessing remote result sets cannot be guaranteed, the system can end up wait-
ing for a signal that may never arrive. If the database is one that can provide
guaranteed response times, such as a real–time database [12], the problem is
elevated. Otherwise, the problem must be solved via timeouts in system design.
In our case study, all database operations are performed at non–time–critical
points, whence any unexpected delay from the database simply results in the
system pausing, not malfunctioning.

Future Work

Future work is proposed to proceed along three directions. Firstly, some re-
strictions on the usage of our Local Result Set API may be removed, thereby
making the API safer for use. In particular, our implementation implies that
row variables become undefined once the result set is cleared. In a similar vein,
checks could be implemented in our APIs to detect whether they are used in
any way other than that intended.

Secondly, although MySQL is a popular database, our APIs would be ap-
plicable to others if they supported the Open Database Connectivity (ODBC)
API [16]. This would allow any database to be used with no increase in com-
plexity to our present approach.

Thirdly, database APIs for Lustre/SCADE are envisioned along similar lines
than ours for Esterel/Esterel Studio.
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