
SHIM: A Language for Hardware/Software Integration

Stephen A. Edwards∗

Department of Computer Science, Columbia University
1214 Amsterdam Avenue, New York, New York, 10027

sedwards@cs.columbia.edu

Abstract

Virtually every system designed today is an amalgam
of hardware and software. Unfortunately, software and
circuits that communicate across the hardware/software
boundary are tedious and error-prone to create. This sug-
gests a more automatic way to synthesize them.

This paper presents the SHIM language, which combines
imperative C-like semantics for software and RTL-like se-
mantics for hardware to allow a unified description of hard-
ware/software systems. Hardware processes and software
functions communicate through shared variables, hardware
for which is automatically synthesized by the SHIM com-
piler, which generates C and synthesizable VHDL.

I demonstrate the effectiveness of the language by re-
implementing an I2C bus controller. The SHIM source is half
the size of an equivalent manual implementation, slightly
faster, and has a smaller memory footprint. Partial and
complete hardware implementations in SHIM are also pre-
sented, showing that SHIM is succinct and effective.

1 Introduction

As integrated circuit technology advances relentlessly, the
size and complexity of a typical design continues to spiral
upward. As always, managing complexity is the designer’s
greatest challenge. The design must be right the first time
and be completed faster than before. While validation meth-
ods such as simulation and formal verification work well to
discover mistakes, moving to higher levels of abstraction,
such as from the gate level to the register transfer level, is
more effective because it helps designers to avoid mistakes
in the first place. In this paper, I describe a language that
raises the abstraction level for hardware/software systems.

My intention with SHIM (Software/Hardware Integration
Medium), the language I propose here, is to provide seam-
less communication between hardware and software mod-
ules. It arose in part from observing beginning design stu-
dents tackle combined hardware/software systems: they un-
derstood C well, and could learn VHDL, but had difficulty

∗Edwards is supported by an NSF CAREER award, a grant from Intel
corporation, an award from the SRC, and by New York State’s NYSTAR
program.

making the two worlds communicate.

Rather than propose a completely new semantics for
SHIM, I chose to integrate two well-known, well-established
semantics: C-like imperative semantics for the software por-
tion of the design and register-transfer level semantics for
the hardware. The syntax of SHIM most closely mimics C,
which I chose both for its familiarity (C, C++, Java, and C#
programmers all know it well) and its succinctness.

The SHIM compiler takes a single specification—a col-
lection of software functions and hardware processes—and
generates both C and synthesizable VHDL source. No at-
tempt is made to do automatic partitioning between the two
domains: it is the user’s responsibility to mark everything as
hardware, software, or shared. This is partially to simplify
the compiler, but the more serious issue is the very different
semantics of the two domains. When I began this project,
I wanted to make switching functionality between the two
domains as easy as marking a function differently, but the
semantics of RTL and software are just too different: how
many clock cycles should a piece of software code take, and
how is concurrency implemented in software? Hardware-
like software and software-like hardware languages (e.g.,
Esterel [2] and Handel-C [4]) have been proposed, but all
deviate significantly from software and RTL semantics and
none are widely accepted.

Aside from minor improvements in RTL syntax (SHIM’s
RTL can be half as verbose as the equivalent VHDL), SHIM’s
major contribution is the automatic synthesis of commu-
nication between the software and hardware components
based on a shared memory model. While algorithmically
simple, such synthesis simplifies the designer’s task, avoids
errors, and improves code portability.

Figure 1a shows a simple SHIM program that represents a
hardware timer. It manages the shared variable counter,
whose value is stored in the hardware but can also be read
and written by the two software functions reset_timer
and get_time. From this description, the compiler pro-
duces a C header file (Figure 1b) that describes the external
software interface for the module, a C source file containing
code implementing reset_timer and get_time (Fig-
ure 1c), and VHDL for a peripheral that attaches to a proces-

Dagstuhl Seminar Proceedings 04491
Synchronous Programming - SYNCHRON'04
http://drops.dagstuhl.de/opus/volltexte/2005/158



module timer {
shared uint:32 counter;

hw void count() {
counter = counter + 1;

}

out void reset_timer() {
counter = 0;

}

out uint get_time() {
return counter;

}
}

(a)

#ifndef _TIMER_H
#define _TIMER_H
extern void reset_timer(void);
extern unsigned int

get_time(void);
#endif /* _TIMER_H */

(b)

#include "timer.h"
#include "xio.h"
#define IO_BASE 0xfeff0200
#define counter (IO_BASE + 0x0)

void reset_timer() {
XIo_Out32(counter, 0);

}
unsigned int get_time() {

return XIo_In32(counter);
}

(c)

signal counter : UNSIGNED(31 downto 0);

count : process(Clk)
begin

if Clk’event and Clk = ’1’ then
counter <= counter + 1;
if cs1 = ’1’ and RNW = ’0’ then

if offset = 0 then
counter <= DBus;

end if; end if; end if;
end process count;

read_shared_variables : process(Clk)
begin

if Clk’event and Clk = ’1’ then
if cs1 = ’1’ and RNW = ’1’ then

DBus_out <= read_data;
else DBus_out <= "0"; end if;
if offset = 0 then

read_data <= counter;
end if; end if;

end process read_shared_variables;

(d)

Figure 1: (a) A simple SHIM program: a hardware timer. (b) The C header file generated by the SHIM compiler. (c) Generated
C source. (d) A fragment of generated VHDL. These two processes implement the SHIM count process and the ability to read
the value of count from software. In the first process, count is incremented or read from the bus if chip select and write are
true. The second process places the value of count on the bus if chip select and read are true.

sor bus and implements the count process and circuitry
that allows the shared variable to be read and written from
the C program (Figure 1d).

This example illustrates how SHIM makes it easier to
write hardware/software systems: the SHIM source is only
fifteen lines, but the SHIM compiler generates twenty lines
of C and nearly 100 lines of VHDL from it, code a designer
would have otherwise had to write manually. The fractional
improvement is high for such a small example because most
of the code is related to the bus interface, but large examples
remain smaller and easier to code.

As its name suggests, SHIM is designed for creating
“glue” that connects hardware and software. It specifically
does not try to be a general-purpose software language or a
full hardware description language. Instead, it provides fa-
cilities for connecting subsystems written in hardware and
software and external interfaces: externally-visible func-
tions and variables in software, ports in hardware.

SHIM can also be thought of as a language for simul-
taneously writing peripherals and their device drivers. As
such, it is applicable to systems where hardware can be
customized, such as ASICs with processor cores; field-
programmable gate arrays, especially those with processors
such as the Virtex II Pro; and more programmable SoCs
that consist of multiple processor cores, hard peripherals,
and a substantial amount of programmable logic. This latter
class of chip, a platform with a mix of programmable hard-
ware and software, seems a likely architecture of the future

since the cost of designing complete chips is skyrocketing;
it seems more likely that standard programmable platforms
will grow more popular. When the hardware is provided and
immutable, the NDL language [8] would be better-suited.

SHIM currently generates code (hardware and software)
for the Xilinx Microblaze soft processor core driving IBM’s
CoreConnect On-Chip Peripheral Bus (OPB). I chose this
configuration because we have target boards from XESS and
a development environment from Xilinx, but there is noth-
ing OPB-specific about the SHIM language. The synthesis
code is about 1/6th of the compiler and could be easily re-
targeted to a different processor and bus.

2 Related Work

Unlike other hardware/software codesign systems, SHIM

uses imperative C semantics for software and RTL for hard-
ware. Polis [1] describes its systems with communicat-
ing extended finite-state machines. COSMOS (Jerraya et
al. [11]), COSYMA (Ernst et al. [9]), and CoWare (Bolsens
et al. [3]) all use concurrently-running processes communi-
cating through remote procedure calls (RPC). FIFO-based
communication among concurrently-running processes is
another choice (see, e.g., Gupta and De Micheli [10]).

Although such higher-level semantics enable automatic
hardware/software partitioning (a focus of earlier work),
they raise efficiency issues. While RPC is natural in soft-
ware, it seems overly sequential for hardware. Further-
more, some techniques employ high-level hardware synthe-

2



sis, which industry has largely rejected due to efficiency
concerns. COSYMA describes a hardware/software system
using a C-like imperative language, partitions it, and passes
certain processes to high-level synthesis.

Most other work proposes synthesizing communication
mechanisms far more complicated than shared memory. Jer-
raya et al. [5] propose synthesizing wrappers. CoWare lay-
ers protocols. It is unclear whether these approaches are
general enough and produce efficient hardware.

SHIM synthesizes bus-based communication, but is not
wedded to it. Chou et al. [6, 7] target microcontrollers com-
municating through a limited number of I/O pins.

Other languages, such as Mérillon et al.’s Devil [13]
(generates C macros for communicating with peripher-
als), Thibault et al.’s GAL [14] (generates graphics adapter
drivers), and Conway et al.’s NDL [8] (synthesizes Unix de-
vice drivers), focus only on synthesizing software and as-
sume the hardware is given.

Lavagno and Sentovich’s ECL [12], which combines
Esterel-like synchrony [2] with imperative C, partially in-
spired SHIM. Like SHIM, their compiler uses simple rules
to split a program into the two domains, but they interleave
Esterel and C at the statement (instead of function) level and
they do not target hardware/software systems.

3 The SHIM Language

SHIM was designed to be simple. A SHIM program is a mod-
ule containing global variables and functions. Each variable
is either unmarked, marked hw, or marked shared indi-
cating it is to be visible in software only, hardware only, or
both. The translation of hardware- and software-only vari-
ables is straightforward; the state of a shared variable is held
in hardware and the compiler synthesizes circuitry that al-
lows it to be read and written from software. Each variable
can also be marked in or out, indicating its value comes
from outside the module or is visible outside (variables are
only module-visible by default).

Functions may either be unmarked (indicating soft-
ware) or marked hw. The translation of a software
function is nearly one-to-one. A hardware function be-
comes a concurrently-running synchronous hardware pro-
cess clocked by the bus to which the synthesized periph-
eral is attached. Currently, all hardware functions take no
arguments, do not return a value, and may not be explicitly
called (they are implicitly called once per clock cycle).

SHIM supports bit vectors, arrays of bit vectors, and
string literals. Bit vectors can be manipulated as integers
and are either signed (int) or unsigned (uint). The width
of each bit vector may be specified or may be omitted (it de-
faults to a standard value). Array dimensions must be given.

The body of a SHIM function contains the familiar set of
C statements, if, switch, for, while, and return;
expressions; and local variable declarations. Expressions

follow the usual C syntax with a few extensions: applying
the array index operator to a bit vector returns a bit, e.g.,
a[1] is the second least-significant bit of vector a. Loop-
ing statements are not allowed in hardware processes.

Software functions have the usual sequential semantics;
there is a single program counter; bit vectors are call-by-
value, and arrays are call-by-reference.

Hardware processes have RTL semantics. Every hardware
process is effectively invoked once per clock cycle. Each
shared or hardware-only variable may be written by a sin-
gle process only, a syntactic constraint common in RTL, but
may be read by multiple processes. Outputs are latched,
meaning that if a process writes a variable, the new value
can be seen by other processes only in the next cycle, but
the same process can see the new value in the same cycle.

When software-only variables have an initial expression,
the value is assigned once when the variable enters scope
(e.g., when the program starts for global variables, and
when control enters the enclosing block for local variables)
and stored. Software-only variables markedconstmust be
given an initial value that can be determined at compile-time
and may not be written.

Hardware-only variables may also be assigned to an ex-
pression, but their semantics differ: hardware variables as-
signed to an expression always take the value of that ex-
pression (i.e., are effectively continuous assignments) and
may not be assigned in other processes. Such variables gen-
erate combinational logic and conceptually execute after all
the processes have executed for the cycle and updated their
outputs. That is, they can be used to communicate among
processes, but only across clock-cycle boundaries.

4 Compiling SHIM

The SHIM compiler comprises some some 3000 lines of
OCAML code. The largest single module (about 500 lines)
performs the interface synthesis. Much of it comes from ex-
plicit construction of SHIM code for the bus controller.

The compiler’s structure is typical: an automatically-
generated scanner and parser generates an abstract syntax
tree, which is sent through a static semantic analyzer that
resolves names and types and dismantles certain constructs
to produce an AST-like intermediate representation.

The interface generator takes the interface-agnostic IR

from the dismantler, enumerates the shared variables (a sim-
ple walk through the symbol table), and assigns each an I/O
address. It transforms the body of each software function by
changing reads and writes of shared variables to the appro-
priate I/O function call.

Interface synthesis for hardware is more complicated. At
the end of each process, the compiler adds code that reads
from the bus each shared variable written in that process.
This generates at most one read of each shared variable
since each such variable may be written by at most one

3



hardware process (software functions have no such restric-
tion). Furthermore, placing the read at the end of the process
means a write from the software domain takes precedence
over a write from hardware. I chose these semantics because
hardware writes every cycle are a common idiom (e.g., the
count variable in Figure 1). Users who dislike software
taking precedence over hardware can use separate shared
variables for each communication direction.

Two additional hardware processes are synthesized: one
reads all the unwritten shared variables from the bus (e.g.,
those shared variables that are only written from software,
never from hardware). The other copies each shared vari-
able to the bus when requested (i.e., when software gener-
ates a read cycle to an I/O address).

Finally, the interface synthesis procedure adds interface
ports for all the bus signals and processes that decode the
address bus and speak the bus protocol. After this, the IR

contains all the necessary interface code.
Once the interface synthesis procedure runs, C source, C

header, or VHDL source is generated. Syntax-directed trans-
lators transform the IR into simple ASTs for C or VHDL,
which are then pretty-printed. Using another intermediate
representation guarantees syntactically-correct output.

5 An Example: An I2C Bus Controller

To test SHIM, I re-implemented a simple hardware/software
interface with it. In an embedded systems class, we use
XSB–300E boards from XESS Corporation that contain,
among other things, a Xilinx Spartan IIE FPGA and a
Philips SAA7114H video decoder. An I2C bus connecting
the two can write to the 7114’s many configuration registers.
The I2C bus is a low-speed two-wire clocked bus designed
for exactly such an application, and is very lenient about
timing. The bus has no maximum delays between transi-
tions so it can be controlled completely from software.

One of my students (Marcio Buss) implemented a sim-
ple all-software I2C bus controller to program the 7114.
Its only task is to send a series of commands to write over
eighty configuration registers. Marcio spent a few days writ-
ing its 259 lines of C and 133 lines of VHDL. The VHDL in-
terfaces with the On-chip Peripheral Bus and provides two
shared variables that control the two I2C bus pins. The C
program handles the bus protocol.

Table 1 shows how the handwritten implementation of
the I2C bus controller compares to equivalent designs writ-
ten in SHIM. The software version implements the proto-
col in software; the hardware does little more than control
the pair of tristate drivers called for by the bus interface.
The three other versions of the I2C controller do more in
hardware: the first implements the bit-level protocol in hard-
ware (the bytes are still sequenced by software), the second
moves the complete receive functionality to hardware, and
the third places both send and receive functionality in hard-

Example SHIM C VHDL
I2C Software (by hand) 259 133
I2C Software 171 175 136
I2C Bit-level 283 173 337
I2C Byte-level Receive 299 163 358
I2C Byte-level Send/Receive 323 116 344
Timer 15 20 98

Table 1: Lines of code for various examples. The first line is
a reference implementation of an I2C bus controller written
without the aid of SHIM. The next four lines list SHIM im-
plementations with the same functionality with an increas-
ing fraction of the system in hardware. The final line lists
statistics for the simple example in Figure 1. For all but the
first line, the SHIM column represents the number of lines
written by the designer; the C and VHDL columns are lines
of code generated by the SHIM compiler.

ware (bytes are still sequenced in software).
The first two lines of this table are most telling: Marcio

wrote 259 + 133 = 392 lines of C and VHDL to implement
this controller, while I was able to achieve the same func-
tionality in 171 lines of SHIM, a reduction of over 55%.

Figure 2 shows a fragment of the all-software SHIM im-
plementation of the I2C controller. Controls for the two I2C
wires, SDA and SCL, are shared one-bit variables, and the
send function simply toggles them appropriately.

I then implemented more of this controller in hardware
using SHIM, the sizes of which I report in the next three
lines of the table. By design, changing the implementation
of a function from software to hardware is not as simple
as marking it as hw (SHIM hardware uses RTL semantics,
which are very different from C’s). The main difference is
that sequencing must be coded as a state machine using, say,
a switch statement (see Figure 3). This is the main source of
the additional 152 lines of SHIM.

Figure 3 is a hardware fragment similar to the software
of Figure 2. It toggles the clock and data lines to send a
single byte of data. Most of the code is now devoted to
sequencing since traditional RTL, and by design SHIM, re-
quires all state machines’ next-state functions to be explicit.
Additional complexity comes from synchronizing with soft-
ware, done here with a four-phase handshake. The con-
troller raises ready in the IDLE state to indicate it is ready
to accept a command. The software then writes a command
such as SEND into the command variable, which steps the
state machine through a state sequence ending with IDLE0.
In this state, the controller waits until it receives IDLE from
the software, which sends it back to the IDLE state. The
send function at the bottom of Figure 3 performs the soft-
ware half of this handshake.

The SHIM version of a controller can be faster than its
handwritten equivalent. In the handwritten version of the

4



shared out bool SCL; // I2C clock
shared out bool SDA; // I2C data out
shared out bool SDA_oe; // Output enable for data
shared bool SDA_data; // I2C data in

void send(uint:8 byte) {
SDA_oe = 0; delay();
for (int i = 7 ; i >= 0 ; i = i - 1) {

SDA = (byte & 0x80) >> 7; delay();
SCL = 1; byte = byte << 1; delay();
SCL = 0; delay();

}
SDA_oe = 1; delay();
SCL = 1; delay();
bool acknowledge_received = SDA_data;
if (!acknowledge_received)

xio.print("Acknowledge not received\r\n");
delay();
SCL = 0; delay();

}

Figure 2: A fragment of the SHIM code in the all-software
version of the I2C protocol that sends a single byte to a
slave and looks for an acknowledgement. Each output bit
is placed on the data wire and the clock is toggled, then the
data wire is set to read, the clock is toggled, and the ac-
knowledge bit from the slave is read.

I2C controller, which was not written for efficiency, Mar-
cio chose to pack the four control bits for the SDA and
SCL lines into a single I/O location. While this simplifies
address decoding hardware, it requires a read-modify-write
operation to change a single bit from software. The SHIM-
generated code is more efficient since it can modify each
control bit individually.

The size of the SHIM-generated C code can also be su-
perior to handwritten code. The object file for the all-
software version of the I2C controller generated by SHIM

is only 2106 bytes. By contrast, the handwritten C is over
twice the size (4370 bytes). The difference is due to addi-
tional function calls and read-modify-write operations.

6 Conclusions

I have presented the SHIM language and its compiler.
SHIM fuses two widely-accepted computational models—
single-threaded imperative software and register-transfer-
level hardware—to allow hardware/software systems to be
written in a unified language. Declaring a SHIM variable
shared allows it to be read and written from both hardware
and software; the SHIM compiler synthesizes this interface.

I demonstrated the effectiveness of SHIM on an
example—an I2C bus controller—and showed that it can re-
duce by half the number of lines necessary to describe such
a system. The savings comes in part from a more succinct
syntax than that of VHDL, but is mostly due to the automatic
synthesis of a bus interface.

shared uint:8 sreg; // Send/receive shift register
shared uint:5 state; // Controller state
shared bool ready; // true => controller idling
shared uint:3 command; // Command for the controller
shared const uint:3 IDLE = 0; // Commands
shared const uint:3 SEND = 2;

hw void controller() {
const uint:5 IDLE = 0; const uint:5 SEND1 = 5;
const uint:5 SEND2 = 6; const uint:5 IDLE0 = 24;
uint:3 bit_counter;

if (reset) state = IDLE;
if (i2c_clock) {
ready = 0;
switch (state) {
case IDLE:

ready = 1;
switch (command) {
case START: state = START1; break;
case SEND: state = SEND1; break;
case RECEIVE: state = RECV1; break;
case STOP: state = STOP1; break;
default: state = IDLE; break;
}
break;

case SEND1:
SDA_oe = 0; bit_counter = 0; state = SEND2;
break;

case SEND2:
SDA = sreg[7]; state = SEND3; break;

case SEND3:
SCL = 1; sreg = sreg << 1;
bit_counter = bit_counter - 1; state = SEND4;
break;

case SEND4:
SCL = 0; if (bit_counter == 0) state = SEND5;
else state = SEND2; break;

// Receive Acknowledge
case SEND5:

SDA_oe = 1; state = SEND6; break;
case SEND6:

SCL = 1; state = SEND7; break;
case SEND7:

acknowledge_received = SDA_in; state = SEND8;
case SEND8:

SCL = 0; state = IDLE0; break;
case IDLE0:

if (command == IDLE_BIT) state = IDLE;
else state = IDLE0; break;

}
}

}

void send(uint:8 byte) {
sreg = byte;
command = SEND_BIT; while (ready) ;
command = IDLE_BIT; while (!ready) ;

}

Figure 3: A fragment of the all-hardware implementation
of the I2C bus controller in SHIM. This shows part of the
main hardware state machine responsible for toggling the
I2C clock and data lines to send a byte (cf. Figure 2) and the
software function that invokes it with a handshake.

5



I believe SHIM is successful in its aim to fuse two com-
putational models but it raises the question of whether these
two models are the best choices. A particularly glaring is-
sue is that SHIM models are not easy to simulate. This is
due to the models themselves: the two domains run asyn-
chronously and while the hardware is timed, the software
effectively is not, meaning that the behavior of the system
may be nondeterministic or at least very difficult to predict
without careful modeling of software timing, such as by us-
ing an instruction-set simulator. The timer example in Fig-
ure 1 is perhaps the simplest example illustrating this prob-
lem: the hardware effectively counts the number of clock
cycles between calls of reset_timer and get_time,
which is a complicated function of the processor and C
compiler used to implement the system. Of course, such a
performance timer is often desired for analyzing software,
but more frequently the behavior of hardware/software sys-
tems is meant to be timing independent.

My feeling is that the shared-variable model of hard-
ware/software communication, while the de facto stan-
dard, is too flexible and more complicated, but timing-
independent, protocols are almost always implemented on
top of it. For example, a peripheral usually provides status
registers and interrupts that inform the software when it is
ready for the next command, and expects that software will
obey its protocol. In implementing the I2C bus controller
described in Section 5, I implemented a four-phase hand-
shake protocol to insure that the software waited for the
hardware to complete its task before starting the next. Al-
though this works and is robust in practice, it can be error-
prone and is certainly more verbose than it needs to be.

Part of the problem is that the hardware/software bound-
ary represents true parallelism and concurrency. Peripher-
als run truly independently from their processors (in most
cases, that is the point of a peripheral), and so are truly
concurrent systems posing all the classical problems such
as races and deadlocks. However, since hardware/software
systems are neither completely hardware nor software, us-
ing classical software techniques such as semaphores and
critical regions or the standard hardware technique of a
global clock seems inappropriate.

So I leave this question for future work: what is an appro-
priate general, timing-independent model of computation
for hardware/software systems? Single-threaded imperative
software and RTL hardware with shared variables, such as
in SHIM, is reasonably general, but is too low-level, eas-
ily nondeterministic, and error-prone. There must be some-
thing higher-level that avoids tedious manual protocol im-
plementation and ensures correctness.

References

[1] Felice Balarin, Paolo Giusto, Attila Jurecska, Claudio
Passerone, Ellen Sentovich, Bassam Tabbara, Massim-
iliano Chiodo, Harry Hsieh, Luciano Lavagno, Alberto

Sangiovanni-Vincentelli, and Kei Suzuki. Hardware-
Software Co-Design of Embedded Systems: The POLIS Ap-
proach. Kluwer, Boston, Massachusetts, 1997.

[2] Gérard Berry and Georges Gonthier. The Esterel syn-
chronous programming language: Design, semantics, imple-
mentation. Science of Computer Programming, 19(2):87–
152, November 1992.

[3] Ivo Bolsens, Hugo J. De Man, Bill Lin, Karl Van
Rompaey, Steven Vercauteren, and Diederik Verkest. Hard-
ware/software co-design of digital telecommunication sys-
tems. Proceedings of the IEEE, 85(3):391–418, March 1997.

[4] Celoxica, http://www.celoxica.com. Handel-C Language
Reference Manual, 2003. RM-1003-4.0.

[5] W. Cesário, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nico-
lescu, Y. Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava.
Component-based design approach for multicore SoCs. In
Proceedings of the 39th Design Automation Conference,
pages 789–794, New Orleans, Louisiana, June 2002.

[6] Pai Chou, Ross B. Ortega, and Gaetano Borriello. Syn-
thesis of the hardware/software interface in microcontroller-
based systems. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer Aided Design (ICCAD),
pages 488–495, San Jose, California, November 1992.

[7] Pai Chou, Ross B. Ortega, and Gaetano Borriello. Interface
co-synthesis techniques for embedded systems. In Proceed-
ings of the IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD), pages 280–287, San Jose, Cal-
ifornia, November 1995.

[8] Christopher L. Conway and Stephen A. Edwards. NDL: a
domain-specific language for device drivers. In Proceedings
of Languages, Compilers, and Tools for Embedded Systems
(LCTES), page FIXME, Washington, DC, June 2004.

[9] Rolf Ernst, Jörg Henkel, Thomas Benner, Wei Ye, Ulrich
Holtmann, Dirk Herrmann, and Michael Trawny. The
COSYMA environment for hardware/software cosynthesis
of small embedded systems. Microprocessors and Microsys-
tems, 20(3):159–166, May 1996.

[10] Rajesh K. Gupta and Giovanni De Micheli. Hardware-
software cosynthesis for digital systems. IEEE Design &
Test of Computers, 10(3):29–41, October 1993.

[11] Tarek Ben Ismail, Mohamed Abid, and Ahmed Jerraya.
COSMOS: A codesign approach for communicating sys-
tems. In Proceedings of the 3rd International Workshop
on Hardware/software Co-Design, pages 17–24, Grenoble,
France, September 1994.

[12] Luciano Lavagno and Ellen Sentovich. ECL: A specification
environment for system-level design. In Proceedings of the
36th Design Automation Conference, pages 511–516, New
Orleans, Louisiana, June 1999.

[13] Fabrice Mérillon, Laurent Réveillère, Charles Consel, Re-
naud Marlet, and Gilles Muller. Devil: An IDL for hard-
ware programming. In Proceeedings of the 4th Symposium
on Operating Systems Design and Implementation (OSDI),
pages 17–30, San Diego, California, October 2000.

[14] Scott A. Thibault, Renaud Marlet, and Charles Consel.
Domain-specific languages: from design to implementation
application to video device drivers generation. IEEE Trans-
actions on Software Engineering, 25(3):363–377, May 1999.

6


