04491 — The Kiel Esterel Processor
The Kiel Esterel Processor — A Semi-Custom,
Configurable Reactive Processor

— Dagstuhl Seminar —

Xin Li', Reinhard von Hanxleden?

Real-Time and Embedded Systems Group
Institute of Computer Science and Applied Mathematics
Faculty of Engineering, Christian-Albrechts-Universitéit zu Kiel, Germany

! xli@informatik.uni-kiel.de
2 rvh@informatik.uni-kiel.de

Abstract. The synchronous language Esterel is an established language
for developing reactive systems. It gives an abstract, well-defined and ex-
ecutable description of the application, and can be synthesized into hard-
ware and software. Typically, an Esterel program is first translated into
other, lower-level languages (such as VHDL or C), and then compiled
further. However, there is also the alternative of executing Esterel-like
instructions directly. For example, in the REFLIX and RePIC projects,
Roop et al. have augmented traditional processors with custom hard-
ware to execute Esterel instructions. This patch strategy is a convenient
approach, but has some shortages.

We present the Kiel Esterel Processor (KEP), a semi-custom, config-
urable reactive processor for the direct execution of Esterel programs. It
consists of a reactive core and scalable peripheral elements. KEP sup-
ports standard Esterel statements directly, except (so far) for the con-
currency operator. Valued signals and counter functions in Esterel state-
ments are supported by KEP. Due to its control path and its cooperation
with elements, KEP obeys exact Esterel (preemption and priority) rules,
including for example abort/weak abort (nests).

Keywords. Esterel, synchronous languages, reactive programming, ASIPs

1 Introduction

1.1 Synthesis Options

The synchronous language Esterel has been developed for programming reac-
tive systems [4]. Since its inception in the beginning of the 1980’s, the Esterel
language has been used for designing reactive embedded systems, including air-
craft controllers, automobile dashboards, and RAM controllers. As a system-level

Dagstuhl Seminar Proceedings 04491
Synchronous Programming - SYNCHRON'04
http://drops.dagstuhl.de/opus/volltexte/2005/159

X. Li, R. v. Hanxleden

language, it gives an abstract, well-defined and executable description of the ap-
plication, and can be synthesized into low-level languages for further compiling
and implementing.

There are several methods to implement an Esterel model [2,4,3,5].

— Hardware Synthesis

Hardware implementations (Figure 1(a)), where an Esterel program is syn-
thesized into a hardware circuit presentation (e.g. VHDL or Verilog HDL),
lead to small footprints (low memory requirements) and cheap implemen-
tations. However, hardware implementations are not flexible, meaning that
even a tiny modification of the program will require a re-synthesis. Fur-
thermore, its resources usage increases rapidly when data path handling is
needed.

Software Synthesis

In a software implementation (Figure 1(b)), an Esterel program is first syn-
thesized into sequential, lower level language code (e.g. C or JAVA), and
then compiled to code that can be executed at a target CPU. This is a very
flexible solution, and has low costs for the data path and arithmetic op-
erations. However, classical processor architectures cannot handle reactive
control constructs, such as abortions, directly, and cannot concurrently ob-
serve multiple signals; therefore, handling these control constructs correctly,
including priority resolution, turns out to be fairly expensive on classical
software implementations. Moreover, the footprint (memory requirement)
can be too large for low cost microcontrollers.

Hardware/Software Co-design

A Co-design (Figure 1(c)) implementation partitions a model into hardware
and software components. The SW/HW interface is synthesized for internal
communication. It combines the advantages of hardware and software im-
plementations methods, but also inherits some shortages of the above. The
co-design approach has been explored for example by the POLIS project [1].
Patched Processor

In the Patched Processor implementation approach (Figure 1(d)), a tradi-
tional microcontroller core is combined with a custom hardware block that
extends the instruction set of the traditional microcontroller by certain new,
Esterel-like instructions. An example has been demonstrated by P. S. Roop
et al. [6,7,5,8]. An external block and a traditional microcontroller (FLIX or
PIC) are combined to create a patched processor (REFLIX or RePIC). The
external block captures some additional Esterel style instructions and gives
appropriate actions. It results in a smaller footprint and shorter response
times than a software implementation, and much more flexibility than hard-
ware implementation.

Although the patched processor implementation is a promising approach, it
does have some shortcomings. First, the additional block cost is relatively
high. The patch block’s FPGA resources usage is almost equal to that of
a full function microcontroller core (PIC16C84). Second, the function of
Esterel style instructions is incomplete. For example, the valued signal and

04491 — The Kiel Esterel Processor 3

the counter cannot be supported directly. Third, being limited by the existing
microcontroller’s architecture, it cannot implement fully reactive and priority
action according to the original Esterel semantics. For example, the abort
handling block in the patch provides an abort response mechanism which
differs with Esterel abort or weak abort. Finally, the patch is inflexible; in
many cases, the patched processor does not fit the function requirement of
different embedded applications.
— Esterel Processor

A final alternative is to design a processor for executing Esterel style instructions—
and only those instructions—directly. The Kiel Esterel Processor (KEP),
which is presented in this report, falls into this category. Unlike the Patched
Processor solution, KEP is a truly reactive processor, which has a reactive
kernel and adapted semi-custom (scalable) peripheral elements. It follows the
exact definition of the Esterel, processes valued signal and counter directly,
and reduces or extends the peripheral elements for making a processor series.

Figure 1 shows the differences of architecture of above methods. Table 1 gives
a further comparison of the architectures.

Hardware Software Co-design (POLIS) Patched Processor KEP
COTS Assembler COTS Assembler Extended Assembler Esterel Assembler
Custom
Hardware i T i T ¢ T l T
COTS- [¥ Custom PIC 1< eeension
COTS-puC Hard Core Esterel-uC
uC Iy/Hardwar
‘ Environment ‘ ‘ Environment ‘ Environment ‘ Environment ‘ ‘ Environment ‘
(a) (b) (c) (d) (e)

Fig. 1. The architecture comparison of implementation alternatives

Table 1. Comparison of Synthesis Approaches

Hardware Software Co-design Patched Processor KEP
Speed ++ - + + +
Flexibility - — ++ — + /- +

Esterel Compliance| —+-+ ++ +/- — +/-
Cost ++ - — - - +

Appl. Design Cycle| — — +4 +/= +4 ++

++ = best; — — = worst. E. g. Cost ++ means very low production costs.

4 X. Li, R. v. Hanxleden

2 KEP (Kiel Esterel Processor)

2.1 Overview

An overview of the KEP architecture is shown in Figure 2. There are two main
components.

1. The Reactive Core
— reacts to responses of peripherals elements;
— makes preemption decisions;
— decodes the instruction and emits control signals;
— configures peripherals elements.
2. The Peripheral Elements
— define of the corresponding instruction functions;
— are scalable (Semi-Custom), with configurable parameters;
— contain counters.

KEP (Kiel Esterel Processor)

~

'd (Input
SUSPEND
Element Signals

Reactive Core

(" ABORT
Element

7y
Controller

CAWAIT
— Element

Decoder

Reset —»|
7y

AWAIT
Element
Instruction Address yy
Fetch Multiplexer 2g
= ISR PRESENT
A Element
A

2
£ 2%
EMIT
OscClk o EE Output

Clock Signals
N = Y,)
Y

) Tick
Instruction Memory Iy
InstrClk

Fig. 2. The architecture overview of KEP

2.2 Instruction Set Architecture

The performance of KEP is predictable. All instructions can be executed in a
single instruction cycle, except for the ABORT instruction. For ABORT, element
(re-)configuration initially requires two cycles. However, our abort mechanism
avoids ABORT Element (re)configuration during program execution. For most
cases, it is just required after system resetting and executed once.

Trading off resource usage, speed, and performance, KEP employs a 24-bit
wide instruction word with a separate 14-bit wide inner data bus and a 5-bit
wide inner address bus. This choice extends the counter data range to 16383,
which is enough for most reasonable requirements.

04491 — The Kiel Esterel Processor 5

The KEP assembler language contains 15 instructions for representing 9 Es-
terel statements directly. Some other Esterel statements can be implemented by
standard Esterel syntax translation. Due to integrated counters in peripherals
elements, most of Esterel modules which do not contain variable data can be
implemented by those instructions directly. A major limitation of KEP as of
now is that as we execute Esterel-like instructions, it does not support concur-
rency directly, which stems from the sequential nature of execution on a single
processor. One approach to handle this problem is to extend KEP to a multi-
processor architecture for executing concurrent programs in parallel; see also
Section 4.2. Another approach is to sequentialize concurrent Esterel programs
into KEP-Assembler; see also Section 3.3.

Table 2 lists the complete instruction set.

Table 2. Overview of Instruction Set Architecture

Mnemonic, Operands

Description

Corresponding Esterel

Statement

ABORT n,S,endAddr (,startaddr)

Configure the Watcher in the
ABORT Element

abort...when n S

WABORT n,S,endAddr(,startaddr)

Configure the Watcher in the
ABORT Element

weak abort...when n S

AWAIT S

Configure the AWAIT Element

await S

AWAITN n,S

Configure the AWAIT Element

await n S

CAWAIT S, ,S,startaddr

Configure the CAWAIT Element

await case

CAWAITE S, ,S,startaddr

Configure the CAWAIT Element
for the last case in the list

await case

Emit the signal S and keep it

EMIT S during the current tick emit S
Emit signal S with value n and| .
EMITD S,n keeping it during the current tick emit §(n)
[HALT [Halt the system [halt |
INOTHING [Do nothing [nothing ‘

PRESENT S,elseAddr

Test signal S, go to address

present S then ...

elseAddr if S not present else ... end present
ISUSPEND S,endAddr lSuspend when signal S is presentlsuspend ... when S ‘
SUSTAIN S Sustain signal S sustain S
SUSTAIND S,n Sustain valued signal S sustain S(n)
IGOTO addr ‘going to address addr ‘ ‘
2.3 Interface Signals

The top-level interface signals appear in Figure 3.

6 X. Li, R. v. Hanxleden

> Reset InstrClk >
KEP i

> OscClk (Kiel Esterel Processor) Tick =

= Sin[nin-1:0] Sout[nout-1:0]

<= ROMAddI[7:0] Sdataouto[nrange-1:0] ™1

> ROMData[23:0] SDataOUtnvalued-'l[hmnge-‘IZO] -

Fig. 3. KEP Interface Signals

2.4 ABORT Element

The abort statement is one of the most important statements in Esterel. It
offers a preemptive abortion mechanism. An abortion statement kills its body
when a delay elapses. For strong abortion, performed by abort, the body does
not receive the control at abortion time. In other words, it ought to kill its body
immediately. For weak abortion, performed by weak abort, the body receives
the control for a last time at abortion time [3], i. e., it should receive control and
execute the remaining instantaneous statements, and then kills its body.

For comparison, the abortion mechanism of RePIC executes the current in-
struction and then responds to the highest (outer) abortion priority whose sen-
sitivity signal is present [5]. That means that the behavior of the RePIC abort
corresponds to either weak or strong abort, depending on the context, as illus-
trated by the examples in Figures 4 and 5.

module Aborti:

input A; Tick S

output B,C; | | | |

abort (1) ! ! ! !
sustain A (2) A

when S; B

emit B; (3)

end module

Fig. 4. Abort1: In this example, the RePIC behavior corresponds to a weak
abort

04491 — The Kiel Esterel Processor 7

A (Esterel)
B
module Abort2:
input A,B,C,D; Tick C
output E,F,G,H; % % %
weak abort (1)
abort (2)
await C; (3) G
emit E; (4) H
await D; (5)
emit F; (6)
when A; A (RePIC)
emit G; (7)
await D; (8) B
when Bj; Tick C
emit H; (9) | | | |
halt (10) ‘ ! ! !
H

end module

Fig. 5. Abort2: In this example, the RePIC behavior corresponds to a strong
abort

‘We here present a different method to handle abort priority and preemption.
Since the abort is active at the moment when its body is entered and it stays
active until the entire body has finished execution or the preemption condition
is satisfied, for the Abort2 module, the abortion A or B is enabled when the PC
is in its body, and disabled when the PC is out of its body. When abortion is
enabled, the sensitive signal is watched and the module can react to it (is active).
Otherwise, the signal is ignored.

We call this approach Inside/Outside Abort Range Watching (IOARW), and
implement this with dedicated Watcher modules. A Watcher contains two func-
tions. The first function watches the program counter (PC) and compares it with
the corresponding abortion’s start and end address, then decides whether this
abortion ought to be enabled or not. We name it Enable Watcher (EW). The
second function watches and counts down the relative signal, then decides if the
abortion ought to kill its body or not. We name it Trigger Watcher (TW).

Every Watcher contains 5 reconfigurable parameters, i. e. StartAddr, EndAddr,
SignalCoder, SignalCount, and AbortWeakFlag. The Watcher is configured by the
KEP Core and then runs automatically. StartAddr and EndAddr assign the watch-
ing range of the Watcher. SignalCoder indicates which signal ought to be watched.
If watched signal is valid on the Tick rising edge and Watcher is in the enabled
state, SignalCount should be decremented. The Watcher emits a TW event to
the environment when the counter value equals to zero. AbortWeakFlag, which
indicates the abortion type, and EndAddr registers can be accessed by the en-
vironment. Once the Watcher changes its state from disable to enable, which

8 X. Li, R. v. Hanxleden

means that the PC re-enters to the watching range, the SignalCount will reload
the counter value automatically. This strategy ensures that the initial presence
or absence of signal can be ignored in the starting instant, as required by the
(non-immediate) await statement.

ABORT Element
(blkABORT)

l Sin[n:0]
PC7:0]

Watcher Reactive e | ™o ‘ T
PC AbortWeakFlag Tick. o] Mux
>= [RbortweakFiag———————
ew Core
@ Watchert
innerData[13:0]

<
innerData[13:0] EndAddr . EndAddr nnerAdd40] AbortAddress{7:0]
innerAddr{4:0] WIABORT.

Sin[n:0]

DownCounts T
ownCounter
ignalCoder

[SignalCount

)

Tick L)

Fig. 6. Structure of the Watcher, and an ABORT Element with 2 Watchers

Due to the independence of every Watcher, a number of Watchers in an
ABORT Element can run in parallel. Each Watcher works independently, ac-
cording to the configured parameters. The distributed Watchers structure makes
the architecture of ABORT Element clear, concise and scalable.

Figure 6 shows the architecture of an ABORT Element which includes two
Watchers. After KEP resetting, the Index register takes the value of 0, and then
the initial program writes ABORT parameters into Watchers via the innerData bus
and the innerAddr bus of KEP. Considering the abort nest structure, we can
conclude that the higher priority abortion has wider address range which covers
over the lower one. Therefore, the first ABORT instruction will be assigned to
the highest priority WatcherQ. Then the Index will be increased by 1 and it will
point to the next Watcher unless the p parameter in the instruction is *1°. The
Watcher works immediately when its configuration processing is finished.

The PriorityCell checks the TW and AbortWeakFlag signals, and uses certain
rules to judge which Watcher’s output signals should be mapped to the Reactive
Core via MUXs that are controlled by the PriorityCell.

The architecture shown in Figure 6 can handle a two-level abort nest (either
weak or strong abortion). We use Abort2 to explain how the KEP deals with
different abortion types.

Figure 7 shows the mixed abort/weak abort nest example Abort2. At first,
the Reactive Core configures Watcher0 and Watcherl via two ABORT instructions.
Watcher0 is enabled when the PC is between [0] and [9], and it responds to signal
B. Watcherl is enabled when the PC is between [2] and [7], and it responds to
signal A. The Core executes the AWAIT C [4] instruction, and then stays here to
wait for a sensed signal to occur.

04491 — The Kiel Esterel Processor 9

%Esterel %KEP ASM
module Abort2: %Instruction Address
input A,B,C,D; INPUT A,B,C,D
output E,F,G,H; QUTPUT E,F,G,H
weak abort (¢D) WABORT 1,B,Al [0][1]
abort (2) ABORT 1,A,A0 [2][3]
await C; (3) AWAIT C [4]
emit E; (4) EMIT E [5]
await D; (5) - AWAIT D [6]
emit F; (86) EMIT F [7]
when A; AO:
emit G; (7) EMIT G [8]
await D; (8) AWAIT D [91]
when B; Al:
emit H; (9) EMIT H [10]
halt (10) HALT [11]
end module

Fig. 7. The program of example Abort2

The PC stays at instruction [4] until any of the signals A, B, or C occurs. If
A, B, and C occur simultaneously, both Watchers are enabled, so they are both
active. The AWO0 and AW1 are present at the same time. The AbortWeakFlag0 is
1" and AbortWeakFlagl is ’0’ to indicate different abortion types.

The PriorityCell responds to TW occurrences. In this case, strong abortion of
B has higher priority and gets preemption first. The PriorityCell maps Watcherl’s
outputs to that of the ABORT Element, so the ABORT Element’s TA is ’1’ to
denote there is an active abortion, the AbortAddress equals 8 (the next instruc-
tion address behind the body of abortion A), and the AbortWeakFlag is ’0’ for
indicating strong abortion type.

The AWAIT Element sets rdAWAIT to ’1’ to denote that AWAIT is terminated.
The Reactive Core checks the TA, AbortWeakFlag and rdAWAIT signals syn-
chronously. Since it is a strong abortion, the Core responds immediately and the
AbortAddress is mapped to the PC via the Address Mutiplexer. The KEP jumps
to [8].

Address [8] is out of Watcherl’s watching range, and then the Watcherl is
disabled immediately. WatcherQ is still in enabled state, so the WatcherQ’s outputs
are mapped to ABORT Element’s.

The Reactive Core checks the TA and AbortWeakFlag, the AbortWeakFlag
of the ABORT Element is '1’ because it comes from Watcher0. The Core will
not pay attention to the weak abortion event until all following instantaneous
instructions (e.g. EMIT and PRESENT) are finished. So the following concurrent
instruction EMIT G [8] is executed, the Core fetches the next instruction AWAIT
D [9].

10 X. Li, R. v. Hanxleden

AWATT is a sequencing instruction. The Reactive Core will not execute it, but
responds to the weak abortion. The KEP jumps to [10] (the next instruction
address behind the body of abortion B). Now both of Watchers are disabled. TA
is ’0’ to indicate no active abortion. KEP executes EMIT H [10] and HALT [11].

The above case illustrates how KEP deals with different abortion types. The
KEP’s abort (nest) execution trace and result are according to the Esterel se-
mantics.

3 Compilation

3.1 KEP Assembler Compiler

The compiler KEPcmp (KEP Assembler Compiler) compiles a KEP assembly
language file into executable codes. An important novelty of the KEPcmp is
ABORT Element initialization.

We use Abort2a shown in Figure 8 as an illustrating example.

%Esterel %KEP ASM
module Abort2a: INPUT A,B,C,D
input A,B,C,D; QUTPUT E,F,G,H
output E,F,G,H;
loop A3:
weak abort (1) WABORT 1,B,A1l (1)
abort (2) ABORT 1,A,A0 (2)
await C; (3) AWAIT C (3)
emit E; (4) EMIT E (4)
await D; (5) = AWAIT D (5)
emit F; (6) EMIT F (6)
when A; AO:
emit G; (7) EMIT G 7)
await D; (8) AWAIT D (8)
when B; Al:
emit H; (9) EMIT H (9)
end loop (10) GOTO A3 (10)
end module

Fig. 8. The program of example Abort2a

According to KEP’s ABORT implementation, the Watchers in the ABORT
Element need to be configured only once. So the compiler transforms the source
file to the following style:

At first, KEPcmp marks the start address of an abortion body, i.e. $0 and $1,
and then those parameters are combined with the original ABORT instructions.
The new combined ABORT instruction contains all parameters for configuring the

04491 — The Kiel Esterel Processor 11

%KEPcmp Temporary 1 %KEPcmp Temporary 2
INPUT A,B,C,D INPUT A,B,C,D
OUTPUT E,F,G,H OUTPUT E,F,G,H
A3: WABORT 1,B,A1,%$1 (1)
$1:WABORT 1,B,Al1,$1 (1) ABORT 1,A,A0,$0 (2)
$0: ABORT 1,A,A0,3%30 (2) A3: $1: $0:
AWAIT C (3) AWAIT C (3)
EMIT E (4) EMIT E (4)
AWAIT D (5) = AWAIT D (5)
EMIT F (6) EMIT F (6)
AO: AO:
EMIT G (7) EMIT G 7))
AWAIT D (8) AWAIT D (8)
Al Al
EMIT H (9) EMIT H (9)
GOTO A3 (10) GOTO A3 (10)

Fig. 9. The transformation of example Abort2a

Watchers. So the compiler moves them to the beginning of the module, out of
the loop body.

When KEP runs the first iteration of the loop in Abort2a (assume no abortion
preemption occurs at this time), 10 instructions need to be executed, and 12
instruction cycles are required at least. The execution trace is the same as that
of the traditional execution trace, e.g. RePIC’s method. Then it goes back to
AWAIT C (3). In the next iteration period, the ABORT instructions need not be
executed anymore. The execution period decreased. However, the KEPcmp also
supports the traditional method if desired.

3.2 Esterel Syntax Translation Rules

The Esterel language can be reduced to a set of kernel statements, from which
other statements can be derived. There are different ways to define this set of
kernel statements; for example, for pure Esterel (which excludes valued signals),
one set of kernel statements is nothing, emit, pause, present, suspend, ; (se-
quencing), loop, || (parallel), trap, exit, and signal [3]. A processor which
would offer instructions to implement each of these kernel statements would be
powerful enough to process any Esterel program, after translation of all derived
statements into the corresponding kernel statements (this translation is a rather
straightforward, syntactical process). Such an instruction set would be powerful
and compact—however, it would not necessarily be the most adequate for the
efficient execution of real programs.

Instead of implementing just the kernel statements, the design of the KEP
instruction set aimed to allow direct execution of the most frequent Esterel
instructions, aiming for maximal efficiency without excessive redundancy. The

12 X. Li, R. v. Hanxleden

KEP does not offer the concurrency operator (| |) (see also Section 3.3); however,
it does offer valued signals.

Figure 10 gives some examples of how to translate Esterel programs into
KEP assembler programs, where p and g are arbitrary code fragments.

emit A; EMIT A
await B; N AWAIT B
emit C(20); EMITD C,20
await 25 D; AWAITN 25,D
EMIT G
CAWAIT A,A0
- CAWAIT B,A1
emit G;
. CAWAITE C,A2
await 40:
case A do :
. EMIT D
emit D GOTO A3
case B do -
emit E; EMIT E
case C do GOTO A3
emit F; A2
end await; :
. EMIT F
emit G;
GOTO A3
A3:
EMIT G
loop AO:
p = b4
end loop GOTO AO
PRESENT A, A0
GOTO A1l
’ await immediate A ‘:> AQ:
AWAIT A
Al:

Fig. 10. Example translations from Esterel programs into KEP assembler

3.3 Sequentialization

The KEP does offer low-level parallelism for example by operating multiple
Watcher modules in parallel (which cannot be done, for example, by a tradi-
tional sequential processor). However, as already mentioned, the KEP overall
still operates sequentially, and therefore cannot support Esterel’s general con-
currency operator (|). One approach to overcome this limitation is to eliminate

04491 — The Kiel Esterel Processor 13

the concurrency operator by applying another source-level transformation which
would sequentialize the Esterel program before feeding it to the KEP.

In principle, sequentialization is a well-known procedure for synthesizing
Esterel programs into software; traditionally, however, this is not done at the
Esterel-level, but rather as part of the compilation process. Furthermore, we do
not have to eliminate all concurrency from a given Esterel-program; for example,
we may still watch multiple signals for an await case or for a nested abort con-
currently. In terms of automata, we do not need a completely flat automaton, we
still allow nesting; however, we do not allow concurrent sub-states (AND-states).

To illustrate, Figure 11 and 12 shows how the canonical ABRO module can
be sequentialized. The sequentialized ABRO _SEQ module can be translated
to KEP assembler program by using the syntax translation rules mentioned in
section 3.2. In this example, the sequentialization is rather straightforward and
does not lead to a dramatic increase in program size; in general, however, the
translation is less straightforward, and may lead to exponential code increase.
How practical this approach really is still needs to be investigated.

Q‘ e

g

J =
@3
3
g
2
s

——

' 10

Program_Terminat..

Program_Terminat..

Fig. 11. Sequentialization automation of the ABRO module

4 Conclusion

4.1 Comparison of KEP and RePIC

We created three KEP processors, which have different elements for targeting
different applications. KEPV0.1-A and KEPV0.1-B can deal with most of Esterel
modules which do not contain variable data, e.g. the RUNNER, the ATM, etc.
KEPV0.1-C allows a direct comparison with RePIC.

14 X. Li, R. v. Hanxleden

module ABRO_SEQ:
loop
module ABRO_PAR: abort
loop await
abort case A do
[await A await immediate B;
| = case B do
await B]; await immediate A;
emit O end await;
each R; emit O
end loop halt
when R;
end loop

Fig. 12. Sequentialization program of the ABRO module

Table 3 shows the basic differences between KEP and RePIC. Table 4 gives a
simple performance comparison. The KEP’s resource usage is just 20% - 30% of
that of RePIC (even just about half of the RePIC patch). The obtained speedup
is 1.4x or better. Considering some details of our approach, e. g. ABORT Element
configuring method, one can expect further performance improvements.

Table 3. The differences between KEP and RePIC

KEP \ RePIC
Traditional microcontroller +
patch block

Semi-custom (scalable) peripheral elements Fixed patch block
Supports approximate strong
abort (nest) type
Configurable abort nest levels Fixed 4 abort nest levels
Configurable await case branches Fixed 2 await case branches
16 input, 12 Output and 13
common [/0O

Reactive kernel

Supports real abort / weak abort (nest)

Up to 31 input signals and 31 output signals

Supports pure and valued signals Only supports pure signals
Supports counter (e.g. await 100 S,
abort...when 50 S) directly, the range is up to Does not support counter
16383 (14 bits)
Supports suspend (incompletely) Does not support suspend

4.2 Summary

For the direct Esterel program execution, existing projects (REFLIX or RePIC)
use a patch strategy, which adds a patch block on a traditional processor. This

04491 — The Kiel Esterel Processor 15

Table 4. Comparison of KEP series and RePIC

KEPV0.1-A KEPV0.1-B KEPV0.1-C RePIC
AWAIT CASE Number 2 2 2 2
ABORT Nest 2 5 4 4
Counter Value Range 1 100 1 1
Input 8 8 16 16
Output 7 7 12 12
Logic Cell Count 400 732 604 2068M
Max Osc Freq (MHz) 49.15 43.74 43.56 40.27
Instruction Freq®® (MHz)| 16.4 14.6 14.5 10.1

[1] 1082 Logic Cells for PIC.

[2] RePIC uses four clock cycles for composing an instruction cycle, but the KEP
Version 0.1 uses only three clock cycles. When they run on the same clock frequency,
the KEP’s instruction cycle period is just 75% of that of the RePIC’s.

is a convenient approach, but has some shortages. This report presents KEP
Version 0.1, a new semi-custom, configurable reactive processor for the direct
execution of Esterel programs. It consists of a reactive core and scalable periph-
eral elements, which operate concurrently to the reactive core. KEP supports
standard Esterel statements. Valued signals and counter functions in Esterel
statements can be executed by KEP directly. We created a Reactive Core as the
kernel of KEP. Due to its control path and its cooperation with elements, KEP
obeys exact Esterel (preemption and priority) rules, e.g. abort/weak abort
(nests). Furthermore, the KEP series offers various processors with different ele-
ments, and users can select the suitable one to avoid excess or lack of processor
capability.

As an initial prototype, the current KEP can be optimized further. Limita-
tions of the current version are:

— There is no | | statement.

— Logic and arithmetic expression are not supported.

— The SUSPEND cannot work well when it is in an abortion body. It has to be on
the top of the nest levels; i. e. a SUSPEND-ABORT nest works well, but an ABORT-
SUSPEND nest will screen the corresponding abortion sensitive signal when the
sensitive signals of the ABORT and the SUSPEND are present simultaneously.

4.3 Outlook

Possible improvements that we plan to investigate are:

— Proper handling of abort/suspend nests
— Extend the instruction word to 32-bit to
e The counter data range to 65535 (16-bit)

16 X. Li, R. v. Hanxleden

e The instruction memory address to 1024 (10-bit)
e Flexible Watcher reusing mechanism
e More signals in total, etc.
— A data handling layer for dealing with data path.
— New instructions, such as ADD, SUB, 7S, etc.
A reconfigurable Logic Element. For example, an AWAIT A OR B statement
can be implemented by an AWAIT A_B instruction and an OR gate in this
Element. The inputs of gate are signals A and B, the output is A_B. The
reconfigurable structure element can improve the performance of KEP.
— Compiling Esterel to KEP assembler.
Handling | |
e An extension of structure of KEP to fit multi-processor architectures, to
handle Esterel program with several parallel threads in the future.
e Sequentializing | |

References

1. Felice Balarin, Paolo Giusto, Attila Jurecska, Claudio Passerone, Ellen M. Sentovich,
Bassam Tabbara, Massimiliano Chiodo, Harry Hsieh, Luciono Lavagno, Alberto
Sangiovanni-Vincentelli, and Kei Suzuki. Hardware-Software Co-Design of Embed-
ded Systems, The POLIS Approach. Kluwer Academic Publishers, April 1997.

2. Gerard Berry. Esterel on hardware. Philosophical Transactions of the Royal Society
of London, 339:87-104, 1992.

3. Gerard Berry. The Esterel v5 Language Primer. Draft Book, 1999.

4. Gerard Berry and Georges Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Programming,
19(2):87-152, 1992.

5. C.M.Edmund Chow, Joyce S.Y.Tong, M.W.Sajeewa Dayaratne, Partha S Roop, and
Zoran Salcic. RePIC - A New Processor Architecture Supporting Direct Esterel
Execution. School of Engineering Report No. 612, University of Auckland, 2004.

6. P. S. Roop, Z. Salcic, M. Biglari-Abhari, and A. Bigdeli. A New Reactive Processor
with Architecture Support for Control Dominated Embedded Systems. In IFEE
International Conference on VLSI Design, pages 189-194. IEEE CS Press, January
2003.

7. P. S. Roop, Z. Salcic, and M. W. S. Dayaratne. Towards Direct Execution of Es-
terel Programs on Reactive Processors. In 4th ACM International Conference on
Embedded Software (EMSOFT 04), Pisa, Italy, September 2004.

8. Z. Salcic, P. S. Roop, M. Biglari-Abhari, and A. Bigdeli. REFLIX: A Processor
Core with Native Support for Control Dominated Embedded Applications. Elsevier
Journal of Microprocessors and Microsystems, 28:13—-25, 2004.

	04491 -- The Kiel Esterel Processor The Kiel Esterel Processor -- A Semi-Custom, Configurable Reactive Processor --- Dagstuhl Seminar ---
	Xin Li, Reinhard von Hanxleden Real-Time and Embedded Systems Group Institute of Computer Science and Applied Mathematics Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Germany

