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ABSTRACT
Simultaneous, separate ascending auctions are ubiquitous, even when
agents have preferences over combinations of goods, from which
arises theexposure problem. Little is known about strategies that
perform well when the exposure problem is important. We present
a new family of bidding strategies for this situation, in which agents
form and utilize various amounts of information from predictions
of the distribution of final prices.

The predictor strategies we define differ in their choice of method
for generating the initial (pre-auction) prediction. We explore sev-
eral methods, but focus onself-confirmingpredictions. An agent’s
prediction of characteristics of the distribution of closing prices is
self-confirming if, when all agents follow the same predictor bid-
ding strategy, the final price distributions that actually result are
consistent with the utilized characteristics of the prediction.

We extensively analyze an auction environment with five goods,
and five agents who each can choose from 53 different bidding
strategies (resulting in over 4.2 million distinct strategy combina-
tions). We find that the self-confirming distribution predictor is a
highly stable, pure-strategy Nash equilibrium. We have been un-
able to find any other Nash strategies in this environment.

In limited experiments in other environments the self-confirming
distribution predictor consistently performs well, but is not gener-
ally a pure-strategy Nash equilibrium.

1. SIMULTANEOUS ASCENDING AUCTIONS
A simultaneous ascending auction(SAA) (Cramton, 2005) allo-

cates a set ofM related goods amongN agents via separate En-
glish auctions for each good. Each auction may undergo multiple
rounds of bidding. At any given time, thebid priceon goodm is
βm, defined to be the highest non-repudiable bidbm received thus
far, or zero if there have been no bids. To be admissible, a bid must
meet the bid price plus a bid increment (which we take to be one
w.l.o.g.),bm ≥ βm + 1. If an auction receives multiple admissible
bids in a given round, it admits the highest (breaking ties arbitrar-
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ily). An auction isquiescentwhen a round passes with no new
admissible bids.

The separate auctions proceed concurrently. When all are simul-
taneously quiescent, the auctions close and allocate their respective
goods per the last admitted bids. Because no good is committed
until all are, an agent’s bidding strategy in one auction cannot be
contingent on the outcome for another. Thus, an agent desiring a
bundle of goods inherently runs the risk—if it bids at all—that it
will purchase some but not all goods in the bundle. This is known
as theexposure problem, and arises whenever agents have comple-
mentarities among goods allocated through separate markets. The
exposure problem is the pivotal strategic issue in SAAs.

One approach to dealing with the exposure problem is to design
mechanisms that take the complementarities directly into account.
Much recent literature considerscombinatorial auctions(Cramton
et al., 2005; de Vries and Vohra, 2003), in which agents explicitly
construct bids over bundles, and the auction mechanism determines
optimal packages based on these bids. Although such mechanisms
may provide an effective solution in many cases, there are often sig-
nificant barriers to their application. Most significantly, combina-
torial auctions require the existence of a competent authority to co-
ordinate the allocation of interdependent resources, and incur costs
and delays associated with such coordination. It is a simple fact that
today we see many markets operating separately, despite apparent
strong complementarities for their respective goods. Whereas au-
tomation will very likely increase the prevalence of combinatorial
markets, trading in separate dependent markets will remain funda-
mental.

Another approach to the exposure problem in an SAA is to de-
sign bidder strategies that perform well despite exposure risk. This
is the approach we follow. The strategies we analyze share some
common features. In each, an agent in a given auction round de-
termines on which bundle to bid by calculating which would give
the highest expected surplus according to some notion of expected
prices or their distribution. Then the agent makes minimally incre-
mental bids on the goods in the desired bundle that it is not already
winning.

Formally, letvj(X) denote the value to agentj of obtaining the
set of goodsX. Given that it obtainsX at pricesp, the agent’s
surplus is its value less the amount paid,σ(X, p) ≡ vj(X) −∑

m∈X pm. Then, each strategy we analyze is defined in terms
of how the agent evaluatesσ(X, p) to select its currently preferred
bundleX∗. Given that decision, in each strategy agentj bidsbm

j =
βm + 1 for them ∈ X∗ that it is not already winning.

One widely-studied bidding strategy for SAAs isstraightforward
bidding(SB).1 This strategy is quite simple, involving no anticipa-

1We adopt the terminology introduced by Milgrom (2000). The
same strategy concept is also referred to as “myopic best response”,
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tion of other agents’ strategies. A straightforward bidder first cal-
culatesperceived prices. When agentj is winning the set of goods
X−1 in the previous bidding round, we define the current perceived
prices to bêpm = βm for m ∈ X−1, andp̂m = βm +1 otherwise.
Then, under SB, agentj selects the best bundle to maximize its sur-
plus eavluated at the perceived prices,X∗ = arg maxX σ(X, p̂),
and then bidsbm

j = p̂m for the goodsm ∈ X∗ that it is not already
winning.

Several results are known about the SB strategy. Agentj’s value
function exhibitssingle-unit preferenceiff for all X, vj(X) =
maxm∈X vj({m}). If to the contrary,j’s value for some bundle
strictly exceeds that of its most valuable included singleton, we say
the agent exhibitsbundle preference. For an agent with single-unit
preferences, SB is ano regretpolicy (Hart and Mas-Colell, 2000),
as the agent would not wish to change its bid even after observing
what the other agents did (Bikhchandani and Mamer, 1997).

When all agents have single-unit preference, and value every
good equally, the situation is equivalent to a problem in which all
buyers have an inelastic demand for a single unit of a homogeneous
commodity. For this problem, Peters and Severinov (2001) showed
that straightforward bidding is a perfect Bayesian equilibrium. Up
to a discretization error, the allocations from SAAs are efficient
when agents follow straightforward bidding. It can also be shown
(Bertsekas, 1992; Wellman et al., 2001) that the final price vector
will differ from the minimum unique equilibrium price by at most
κ ≡ min(M, N). The value of the allocation, defined to be the
sum of the bidder surpluses, will differ from the optimal by at most
κ(1 + κ).

Unfortunately, the very nice properties for straightforward bid-
ding with single-unit value do not carry over to bundle-preference
problems. Indeed, the resulting price vector can differ from the
minimum equilibrium price vector, and the allocation value can dif-
fer from the optimal, by arbitrarily large amounts (Wellman et al.,
2001). More to the point, it is quite easy to construct examples
where SB’s obliviousness to the exposure problem causes the agent
to incur significant losses in cases where these may have been antic-
ipated and avoided. However, whereas the case against SB is quite
clear, auction theory (Krishna, 2002) to date has relatively little to
say about how oneshouldbid in simultaneous markets with com-
plementarities. In fact, determining an optimal strategy even when
it is known that other agents are playing SB turns out to be an un-
solved and surprisingly difficult problem, sensitive to the smallest
details of preference distributions (Reeves et al., 2005).

Our gap in knowledge about SAA strategy is especially strik-
ing given the ubiquity of simultaneous auctions in economically
significant settings. Indeed, markets for interdependent goods op-
erating simultaneously and independently represents the normal or
default state of affairs. Even for some markets that are expressly
designed, most famously the US FCC spectrum auctions starting
in the mid-1990s (McAfee and McMillan, 1996), a variant of the
SAA is deliberately adopted, despite awareness of strategic compli-
cations (Milgrom, 2000). Simulation studies of scenarios based on
the FCC auctions have shed light on some strategic issues (Csirik
et al., 2001), as have accounts of some of the strategists involved
(Cramton, 1995; Weber, 1997), but the general game is still too
complex to admit definitive strategic recommendations.

2. BACKGROUND RESEARCH
Over the past several years, we have explored several SAA strate-

gies in a market for scheduling resources (MacKie-Mason et al.,

or “myopically optimal”, or even “myoptimal” (Kephart et al.,
1998).

2004; Reeves et al., 2005). In the scheduling game, agents need
to complete a job requiring a specified duration of resource, by ac-
quiring the resource over individual time slots. The value for com-
pleting a job depends on when it is finished. Complementarities
arise whenever jobs require more than a single time slot. The time
slots are sold in simultaneous ascending auctions.

We have developed elsewhere an empirical methodology for ex-
ploring bidding strategies, which we describe and employ below
(Section 5). In this approach, we develop a parametric descrip-
tion of a class of strategies, and explore the resulting strategy space
through extensive simulation and analysis. In the prior work, we
considered two extensions of SB designed to mitigate the expo-
sure problem. First, we modified SB to approximately account
for sunk costs, recognizing that goods an agent is already winning
impose no incremental costs if other agents do not submit addi-
tional bids (Reeves et al., 2005). We implemented this strategy via
a “sunk awareness” parameter ranging over [0,1], with zero treating
all winning bids as sunk costs and one corresponding to unmodified
SB. We then solved for settings of this parameter such that agents
playing pure or mixed forms of this strategy are in Nash equilib-
rium. The equilibrium settings of this parameter are sensitive to the
distribution of agent preferences (the value functions over subsets
of goods), and we identified qualitatively distinct equilibria corre-
sponding to different preference distributions.

For the second family of strategies we considered, agents select
bundles based on predicted closing prices for each good (MacKie-
Mason et al., 2004). We found that this approach is quite effec-
tive compared to the strategies based on a sunk-awareness param-
eter, including SB. Performance, of course, depends on the spe-
cific price prediction employed by the agent, as well as the distri-
bution of agent preferences. Since prices from past transactions
are observable, however, it is often plausible to estimate predic-
tors directly from experience (real or simulated). Therefore, we
defined strategies based on variousmethodsfor predicting, rather
than based on particular numerical predictions. The set of predic-
tion method strategies that survived in equilibrium in our exper-
iments was relatively robust—compared to strategies based on a
sunk-awareness parameter—to changes in the agent preferences.
However, our analysis did not support conclusive statements about
the general strategic stability of any particular strategy.

In this paper we build on our prior studies in several ways.

1. We extend the prediction-based strategies to employproba-
bility distributionsrather than simple point predictions.

2. We extend a notion of self-confirming prediction to the case
of probability distributions, i.e.,self-confirming (SC) price
distributions, and present an iterative simulation-based algo-
rithm to calculate these.

3. We conduct an extensive empirical game-theoretic analysis
including the new SC distribution-based strategy, as well as
a broad range of previously identified strategies. We extend
our methodology to embrace large strategy sets without re-
quiring exhaustive examination of the full combinatorial set
of strategy profiles. Our key result is that playing the SC
distribution-based strategy constitutes a pure-strategy, sym-
metric Nash equilibrium in the empirical game.

4. We examine the success of SC distribution-based bidding,
and argue that—though not always optimal—it performs very
well overall and is likely to be difficult to improve upon for
general classes of SAAs.
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3. PROBABILISTIC PRICE PREDICTIONS
For agents with bundle preference, the exposure problem mani-

fests in SAAs as a direct tradeoff. Bidding on a needed good in-
creases the prospects for completing a bundle, but also increases
the expected loss in case the full set of required goods cannot be
acquired. A rational bidding policy, therefore, would account for
these expected costs and benefits, choosing to bid when the benefits
prevail, and cutting losses in the alternative.

3.1 Bidding with Price Prediction
Consider theM = N = 3 example presented in Table 1. Agents 2

and 3 have single-unit preferences. Agent 1 has bundle preference,
and indeed needs all three goods to obtain any value.

Name v({1}) v({2}) v({3}) v({1, 2, 3})
Agent 1 0 0 0 15
Agent 2 8 6 4 8
Agent 3 10 8 6 10

Table 1: An example of agent preferences.

If all three agents bid straightforwardly (SB), a possible outcome
is that agent 3 wins the first good at 8, agent 2 wins the second at
5, and agent 1 wins the third at 3. Here, agent 1 is caught by the
exposure problem, stuck with a useless good and a surplus of−3.2

As we noted in Section 2, adding sunk-cost awareness to a bidding
strategy can reduce exposure losses. However, as this example il-
lustrates, not all exposure losses arise from improper handling of
sunk costs. Suppose the first agent recognizes that its payment for
good 3 is a sunk cost, and thus bids again on goods 1 and 2. If it
could purchase all three at bids of{9, 6, 1} its net loss would be
reduced to−1. However, the other agents would continue bidding,
and agent 1’s ultimate loss would be greater than−3, so this “sunk
aware” strategy would make it worse off.3

It may be too much to expect any bidding strategy defined purely
as a function from price quotes to bids to behave robustly. The ef-
fectiveness of a particular strategy will in general be highly depen-
dent on the characteristics of other agents in the environment. Of-
ten, however, a trading agent may have at least some beliefs about
the distribution of other agent preferences. Thus, we turn to strate-
gies that employ preference distribution beliefs to guide bidding
behavior, rather than relying only on current price information as
in the SB strategy.

One natural use for preference distribution beliefs is to form
price predictionsfor the goods in an SAA. In the example above,
suppose agent 1 could predict with certainty before the auctions
start that the prices would total at least 16. Then it could conclude
that bidding is futile, not participate, and avoid the exposure prob-
lem altogether. Of course, agents will not in general make perfect
predictions. However, we find that even modestly informed predic-
tions can significantly improve performance.

3.2 Point Price Prediction
We now define a strategy employingpoint estimates of final

prices. The agent uses the point estimates to choose the bundle
2Depending on the sequence of bidding (when asynchronous), and
the outcome of random tie-breaking (when synchronous) several
different outcomes are possible, with agents following SB. All of
them, however, leave agent 1 exposed, with negative surplus.
3For example, one possible outcome is that agent 1 wins all three
goods at a total price of 23 (e.g., 10, 8, and 5—just sufficient to
induce agent 3 to drop out). This represents a surplus of−8, worse
than its baseline SB outcome of−3.

on which to bid in a given round, in contrast to SB which uses cur-
rent perceived prices to select the preferred bundle for bidding. We
first define the point estimates, and then how they are updated by
this strategy when new information becomes available.

Let Ω be the set of information available to an agent that is
relevant to predicting the prices of theM goods. PartitionΩ as
(Ω0; B), where B is information obtained during the course of the
SAA (viz., the t × M history of bid prices, as of thetth round),
andΩ0 is information available to the agent prior to the auction.
Let π(Ω0, B) be a vector of predicted prices. Before the auction
begins the price predictors areπ(Ω0, φ), whereφ is the empty set
of auction bid information available pre-auction.

We next define how an agent following this strategy updates its
predictions. In general, higher quotes should should cause agents
to revise their predictions upwards. In particular, since the auction
is ascending, once the current bid price for goodm reachesβm,
there is zero probability that the final pricepm < βm. Indeed, as
a simplification, we define the strategy so that the only information
used from the history of bid prices is that the predicted price can
be no lower than the current bid price. In particular, to retain the
myopia of the SB strategy, we define the current price prediction
for goodm to be the maximum of the initial prediction and the
current perceived prices as defined for SB:4

πm(Ω0, B) ≡ max(πm(Ω0, φ), p̂m).

Armed with these predictions, the agent chooses the set of goods
on which to bid. If the agent has single-unit preference, it plays SB
because that strategy is then optimal. Otherwise, similar to the SB
strategy, the agent determines its preferred best bundle, but does so
by evaluating bundles at the predicted prices:

X∗ = arg max
X

σ(X, π),

whereσ(X, π) is the agent’s surplus defined in Section 1. The
agent then issues bids for goods inX∗ as in straightforward bid-
ding.

We thus have a family of point predicting strategies, parametrized
by the vector of initial price predictions,π(Ω0, φ). We denote a
specific point price prediction strategy byPP (πx), wherex labels
particular initial prediction vectors.

3.3 Distribution-Based Price Prediction
Typically, the information available to an agent will support not

just a point price prediction, but some estimate of additional char-
acteristics of the stochastic distribution of final prices. Strategies
using additional distribution information can at least weakly domi-
nate strategies using only a predictor of the distribution mean.

This consideration motivates us to consider a family of strategies
that employ more of an agent’s beliefs about the distribution of
prices. In this paper we specify a strategy that conditions on an
agent’s beliefs about the complete distribution of the final prices.
We call this familydistribution-based price predictors, or simply
distribution predictors. We now define the distribution predictor,
then explain how the initial distribution predictor is updated as new
information is revealed through auction price quotes, and end by
explaining how the agent uses the distribution predictions to select
the bundle on which to bid in each round of the SAA.

Let F ≡ F (Ω0; B) denote an agent’s belief about the joint cu-
mulative distribution function over final prices. We assume that
prices are bounded above by a known constant,V . Thus, the do-

4We do not claim this updating process makes optimal use of the
available information. Rather, it is simply the minimal adjustment
consistent with the available observations.
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main ofF is {1, . . . , V }M . As before, we assume the agent gen-
eratesF (Ω0; φ), an initial, pre-auction predictor. We denote the
strategy of bidding based on a particular distribution predictor by
PP (F x), wherex labels various distribution predictors.

We now turn to the prediction updating process. As with the
point predictor, we restrict the updating in our distribution predic-
tor to conditioning the distribution only on the fact that prices are
bounded from below byβ.

Formally, letPr(p|B; F ) be the predicted probability, according
to F , that the final price vector will bep, conditioned on the infor-
mation revealed by the auction B. Then, withPr(p|φ; F ) as the
pre-auction initial prediction, we have:

Pr(p|β; F ) ≡





Pr(p|φ; F )∑

q≥β

Pr(q|φ; F )
if p ≥ β

0 otherwise.

(1)

(By x ≥ y we meanxi ≥ yi for all i.) Note that (1) is well defined
for all possibleβ iff Pr(V, . . . , V |φ; F ) > 0.

We now describe how our distribution predictor strategy uses the
prediction to choose bids. In general the agent would determine
which bundle is expected to maximize surplus, with the expectation
over final prices taken with respect to the joint distributionF :

X∗ = arg max
X

Ep [σ(X, p)|F ] .

However, calculating these expectations is very demanding. There-
fore, for this paper we make a simplifying assumption. Our imple-
mentation of a distribution predictor strategy employs the predic-
tions as if final prices are independent across goods. That is, we
only use the information contained in the vector of marginal distri-
butions,(F1, . . . , FM ).

We follow a simple logic to exploit this reduced distribution in-
formation in the bid strategy. In SB the myopic agent calculates the
best bundle evaluated at current perceived prices. Point predictors
determine the best bundle evaluated at predictions of final prices.
For the distribution predictor the agent determines the best bun-
dle evaluated atexpected incrementalprices, taking the expectation
with respect to the predicted price distribution, and calculating in-
cremental prices by using the distribution to evaluate the degree to
which the agent’s current winning bids are likely to be sunk costs.

If an agent is currently not winning a good and bids on it, then
it has no prior (sunk) commitment on that good, and if it wins,
the incremental expected price is the full amount of the expected
price. If the agent is currently winning a good, then the incremental
expected price depends on the likelihood that the current bid price
will be increased by another agent, so that the agent has to bid
again to obtain the good; if it keeps the good at the current bid, the
full price is sunk and thus does not affect the incremental cost of
bidding.

For convenience, we define the expected price conditional on the
most recent vector of bid prices,β:

E(pm|β) =

V∑
qm=0

Pr(qm|β; F )qm =

V∑

qm=βm

Pr(qm|β; F )qm,

where the first equality follows because the strategy treats prices as
if they were independent.

We now define∆m, the expected incremental price for goodm.
If the agent is not winning goodm, then the lowest final price at
which it could isβm + 1, and the expected incremental price is

simply the expected price conditional onβm + 1:

∆not−winning
m = E(pm|βm + 1)

=
∑V

qm=βm+1 Pr(qm|βm + 1; F )qm (2)

If the agent is winning goodm, then the incremental price is zero if
no one outbids the agent. With probability1− Pr(βm|βm; F ) the
final price is higher than the current price, and the agent is outbid
with a new bid priceβm+1. Then, to obtain the good to complete a
bundle, the agent will need to bid at leastβm +2, and the expected
incremental price is

∆winning
m = (1−Pr(βm|βm; F ))

V∑

qm=βm+2

Pr(qm|βm+2; F )qm

(3)
Combining (2) and (3) we get the complete expression for the

expected incremental price for goodm:

∆m ≡





(1− Pr(βm|βm; F ))

V∑

qm=βm+2

Pr(qm|βm + 2; F )qm

if the agent is winning goodm
V∑

qm=βm+1

Pr(qm|βm + 1; F )qm

if the agent is not winning goodm

The final step in defining the strategy is to specify how an agent
calculates its bids. To select the bundle on which it will bid, the
agent evaluates bundle surplus at the expected incremental prices,

X∗ = arg max
X

σ(X,∆).

The agent then issues bids for goods inX∗ as in straightforward
bidding.

4. SELF-CONFIRMING PRICE DISTRIBU-
TIONS

4.1 Definition and Existence
An SAA environmentcomprises an SAA mechanism overM

goods, a set ofN agents, and a probability distribution overM -
good value functions for each agent. We now define a self-confirming
price distribution for SAA environments in which all agents play
the distribution predicting strategy we defined in the previous sec-
tion.

DEFINITION 1. Let SE be an SAA environment. The predic-
tion F is a self-confirming price distribution forSE iff F is the
distribution of prices resulting when all agents play bidding strat-
egyPP (F ) in SE.

We similarly refer to a prediction asapproximately self-confirming
if the definition above is satisfied for some approximate sense of
equivalence between the outcome distribution and the prediction
distribution.

The key feature of self-confirming prices, of course, is that agents
make decisions based on predictions that turn out to be correct with
respect to the underlying probability distribution.5 Since agents are
optimizing for these predictions, we might reasonably expect the
strategy to perform well in an environment where its predictions
are confirmed.
5In the economics literature an equilibrium with this feature is
sometimes called a “fulfilled expectations equilibrium” (Novshek
and Sonnenschein, 1982).
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We also define a more relaxed version of self-confirmation. The
actual joint distribution will in general have dependencies across
prices for different goods. We are interested in the situation in
which if the agents play a strategy based just on marginal distri-
butions, that resulting distribution has the same marginals, despite
dependencies.

DEFINITION 2. LetSE be an SAA environment. The prediction
F = (F1, . . . , FM ) is a vector ofself-confirming marginal price
distributions forSE iff for all m, Fm is the marginal distribution of
prices for goodm resulting when all agents play bidding strategy
PP (F ) in SE.

Note that the confirmation of marginal price distributions is based
on agents using these predictions as if the prices of goods were in-
dependent. However, we consider these predictions confirmed in
the marginal sense as long as the results agree for each good sepa-
rately, even if the joint outcomes do not validate the independence
assumption.

A natural question to raise at this point is whether self-confirming
predictions can actually be identified in plausible SAA environ-
ments. We demonstrate below that self-confirming marginal pre-
dictions can be found in some specific instances, at least approxi-
mately up to a numeric tolerance. However, it is easy to show that
they cannot generally exist, by invoking a particular case known to
be difficult for SAAs.

Specifically, consider theM = N = 2 configuration illustrated
by Table 2. This is a version of the simple instance commonly em-
ployed to illustrate the absence of a competitive equilibrium (Cram-
ton, 2005). There exist no prices for goods 1 and 2 such that both
agents optimize their demands at the specified prices, and the mar-
kets clear.

Name v({1}) v({2}) v({1, 2})
Agent 1 0 0 30
Agent 2 20 20 20

Table 2: A configuration with no price equilibrium.

PROPOSITION 1. There exist SAA environments for which no
self-confirming or marginally self-confirming price distributions ex-
ist.

Proof. Define an SAA corresponding to the configuration of Ta-
ble 2. Given a deterministic SAA mechanism,6 for fixed value func-
tions the outcome from playing any profile of deterministic trading
strategies is a constant. Thus, the only possible self-confirming dis-
tributions (which were defined for agents playing the deterministic
PP (F ) strategies) must assign probability one to the actual result-
ing prices. But given such a prediction, our trading strategy will
pursue the agent’s best bundle at those prices, and must actually
get them since the prices are correct if the distribution is indeed
self-confirming. But then the markets would all clear, contrary to
the fact that the predicted prices cannot constitute an equilibrium,
since such prices do not exist in this instance.2

Despite this negative finding, we conjecture that for a large class
of nondegenerate preference distributions, self-confirming price dis-
tributions or close approximations thereof will actually exist, and
6That is, without any nondeterministic effects of asynchrony or
random tie-breaking. For any reasonable degree to which these
are present, we can construct a more extreme example that would
swamp any noise from these effects.

can be computed given a specification of the preference distribu-
tion. We present a procedure for deriving such distributions, and
some evidence for its effectiveness, in the sections below.

4.2 Deriving Self-Confirming Price Distribu-
tions

Given an SAA environment—including the distributions over
agent preferences—we derive self-confirming price distributions
through an iterative simulation process. Specifically, we start from
an arbitrary predictionF 0, and run many instances of the SAA en-
vironment (sampling from the given preference distributions) with
all agents playing strategyPP (F 0). We record the resulting prices
from each instance, and designate the sample distribution observed
by F 1. We then run another battery of instances, oriteration, with
agents playingPP (F 1), and repeat the process in this manner for
some further series of iterations. If it ever reaches an approximate
fixed point, withF t ≈ F t+1 for somet, then we have statistically
identified an approximate self-confirming price distribution for this
environment. (Due to sampling error, the approximate version of
the concept is the best we can attain through simulation.)

Any reasonable measure of similarity of probability distributions
combined with a threshold constitutes an operable policy for vali-
dating approximate self-confirmation. We employ the Kolmogorov-
Smirnov (KS) statistic, defined as the maximal distance between
any two corresponding points in the CDFs:

KS(F, F ′) = max
x
|F (x)− F ′(x)|.

When we seek self-confirmation only of predictors for the marginal
distributions, we measure KS distance separately for each good,
and take the largest value. That is, we defineKSmarg =
maxm KS(Fm, F ′m).

Our complete procedure for deriving approximate self-confirming
price distributions is defined by specifying:

1. a number of samples per iteration,

2. a threshold onKS or KSmarg on which to halt the iterations
and return a result,

3. a maximum number of iterations in case the threshold is not
met,

4. a smoothing parameterk designating a number of iterations
to average over when the procedure reaches the maximum
iterations without finding an approximate fixed point.

The bound on the number of iterations ensures that this procedure
terminates and returns a price distribution, which may or may not
be self-confirming. When this occurs, the smoothing parameter
avoids returning a distribution that is known to cause oscillation.
However, the apparent nonexistence of a self-confirming equilib-
rium in this case suggests the problem cannot be totally eradicated,
and we do not expect the strategy to perform as well when the un-
derlying oscillations are large.

To illustrate the process, we present the calculation for an ex-
ample. First we specify an SAA environment that represents a
market-based scheduling problem. There are five agents compet-
ing for five time slots. An agent’s value function is defined by its
job length and its value for meeting various deadlines. We drew
job lengths randomly fromU [1, 5]. We chose deadline values ran-
domly fromU [1, 50] then pruned to impose monotonicity; for de-
tails see Reeves et al. (2005).
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Good Mean Price Standard Deviation
1 10.8 7.7
2 6.5 5.1
3 4.1 3.7
4 2.3 2.5
5 1.0 1.3

Sample size per iteration: one million.

Table 3: Descriptive statistics for a self-confirming price distri-
bution calculated in six iterations.
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Figure 1: Self-confirmed probability distribution functions for
five goods, calculated in five iterations.

Next we set the parameters for for our algorithm: one million
games per iteration, and a0.01 KS convergence criterion.7 We ran
the algorithm, playing the million games per iteration to generate
an empirical price distribution.

The predicted and empirical distributions quickly converged, with
a KS statistic of0.007 after only six iterations. We report descrip-
tive statistics for the result in Table 3, and we plot the SC price
distributions for the five slots in Figure 1.

4.3 Experiments in Iterative SC Price Estima-
tion

We described above one example of an SC price distribution.
To test the hypothesis that iterative derivation will produce useful
results with some regularity, we applied the procedure to the several
variations on this SAA environment.

Specifically, we defined 23 instances of the market-based schedul-
ing problem, for varying numbers of agents and goods. We again
drew deadline values fromU [1, 50] and pruned them for mono-
tonicity. We used two probability models for job lengths in the first
19 instances. In theuniformmodel, they are drawn fromU [1, M ].
In the exponentialmodel job lengthλ has probability2−λ, for
λ = 1, . . . , M − 1, and probability2−(M−1) whenλ = M .

We applied our iterative SC derivation algorithm with the same
parameters as above to 11 instances of the uniform model, com-
prising some combination of3 ≤ N ≤ 9 and3 ≤ M ≤ 7. In each

7Since KS is a distance between CDFs, a0.01 threshold is equiv-
alent to a maximal one percentage point probability difference at
any point in the two distributions.

case, the procedure found a set of approximately self-confirming
marginal price distributions (KS threshold 0.01) within 11 itera-
tions. Similarly, for 11 instances of the exponential model, with
the number of agents and goods varying over the same range, we
found SC distributions within seven iterations. Thus, for this class
of environments the iterative method is quite successful.

The 23d instance was designed to be more challenging: theN =
M = 2 example with fixed preferences described Table 2. Since
there exists no SC distribution, our algorithm did not find one, and
as expected after a small number of iterations it began to oscillate
among a few states indefinitely. After reaching the limit of 100
iterations, our algorithm returned as its prediction distribution the
average over the lastk = 10.

5. EMPIRICAL GAME ANALYSIS
We now analyze the performance of self-confirming distribu-

tion predictors in a variety of SAA environments, against a variety
of other strategies. We first describe our empirical game analy-
sis method and the subset of strategy space we explore. Then we
present the results.

5.1 Method
We briefly describe a computational methodology for analyz-

ing games and strategies, extending the approach developed in our
prior work (Reeves et al., 2005; MacKie-Mason et al., 2004), and
other recent studies in a similar empirical vein (Armantier et al.,
2000; Kephart et al., 1998; Walsh et al., 2002). See MacKie-Mason
and Wellman (2005) for a more complete description.

We use an empirical methodology for environments that are not
solvable using analytic methods. In general, no analytic solutions
have been found for SAAs with complementary goods. Exhaus-
tively analyzing possible strategies by enumeration is computa-
tionally intractable: for an SAA with incomplete information the
strategy space is the set of mappings from all price quote histo-
ries and own preferences (itself potentially as large as the space
of functions from the powerset of goods to the reals) to bid vec-
tors. Our empirical method applies computational methods (due to
analytic intractability) to a restricted strategy space (due to compu-
tational intractability) to find equilibrium strategies and to analyze
their characteristics.

Our methodology invokes the following steps:

1. Specify an environment.

2. Generate candidate strategies.

3. Estimate the “empirical game”.

4. Analyze the empirical game.

The remaining sections describe how we implemented these steps
to evaluate the performance of the self-confirming (SC) distribution
prediction strategy,PP (F SC).

5.2 Environments considered
We studied SAAs applied to market-based scheduling problems.

We defined examples of such problems in Sections 4.2 and 4.3.
Particular environments are defined by specifying the numberM
of goods, the numberN of agents, and a preference distribution
which for the scheduling problem comprises a probability distribu-
tion over job lengths and another distribution over deadline values.
We provide details below where we present the analyses.

The bulk of our computational effort went into an extensive anal-
ysis of one particular environment, theN = M = 5 uniform
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model presented above. As described in Section 5.5, the empirical
game for this setting provides much evidence supporting the unique
strategic stability ofPP (F SC). We complement this most detailed
trial with smaller empirical games for a range of other scheduling-
based SAA environments. Altogether, we have studied selected en-
vironments with uniform, exponential, and fixed distributions for
job lengths; a modified uniform distribution for deadline values;
and agents in3 ≤ N ≤ 9; goods in3 ≤ M ≤ 7.

5.3 Strategy space explored
To varying degrees, we have analyzed the interacting perfor-

mance of 53 different strategies. These were drawn from the three
strategy families described above: SB, point predictor, and distri-
bution predictor. For each family we varied a defining parameter to
generate the different specific strategies. In summary, we consid-
ered:

• SB and 20 SB variants, by varying the degree of sunk aware-
ness (Reeves et al., 2005) by increments of0.05 on [0, 1].

• 13 point predictor strategies (MacKie-Mason et al., 2004),
by varying the method used to generate the prediction vector,
πm(Ω0, φ).

• 19 distribution predictor strategies, by varying the method
used to generate the distribution prediction,F (Ω0; φ).

Naturally, our emphasis is on evaluating the performance ofPP (F SC)
in combination with the other strategies. One of the noteworthy al-
ternatives isPP (F SB), which employs the price distribution pre-
diction formed by estimating (through simulation) the prices result-
ing from all agents playing SB.

An exhaustive description of the prediction methods used for
point and distribution predictors is too long for this paper.8 To
summarize, we obtained predictions from variations on several ba-
sic methods: simulating an environment with all agents playing
SB; by solving for the competitive equilibrium of the SAA game;
and solving for self-confirming predictors (see Section 4.2). For
distribution predictors we also generated degenerate and Gaussian
distributions based on point predictor vectors.

5.4 Estimate and solve the empirical game
The next step in our empirical method is to convert the SAA in

extensive form, which is not tractable, to a manageable game in
normal form. We use Monte Carlo simulation methods to estimate
thepayoff functionmapping profiles of agent strategies to expected
payoffs for each agent. That is, given a profile of strategies fol-
lowed by other agents, we repeatedly draw preferences and assign
them to agents, simulate the auction protocol for the given strategy
profile to quiescence, and average the resulting surpluses to esti-
mate the expected payoffs to that strategy profile. We continue this
Monte Carlo procedure for as many strategy profiles as we care to
analyze.

Our environments are symmetric in the strategies available to
agents, and in the payoffs received by agents, so the payoff func-
tion is also symmetric. GivenN agents andS possible strategies,
the number of distinct strategy profiles is

(
N+S−1

N

)
. For our pri-

mary example below there are five agents, thus there are over four
million different strategy profiles to evaluate. Since we determine
the expected payoffs empirically for each profile by running mil-
lions of simulations of the auction protocol, estimating the entire

8An appendix is in preparation. Details are available from the au-
thors on request.

payoff function is infeasible. However, we can estimate the com-
plete payoff matrix for various subsets of our 53 strategies. And as
we describe below, we do not need the full payoff matrix to reach
conclusions about equilibria in the 53-strategy game.

Given a complete payoff function over some subset of strategies,
we solve for pure and mixed strategy equilibria using a variety of
techniques, including replicator dynamics, function minimization,
and the algorithms in theGAMBIT (McKelvey et al., 1992) game-
solver library.

5.5 5×5 Uniform Environment
By far the largest empirical SAA game we have constructed is

for the SAA scheduling environment discussed in Section 4.2, with
five agents, five goods, and uniform distributions over job lengths
and deadline values. We have estimated payoffs for 4916 strategy
profiles, out of out of the 4.2 million distinct combinations of 53
strategies. Payoff estimates are based on an average of 10 million
samples per profile (though some profiles were simulated for as
few as 200 thousand games, and some for as many as 200 million).
Despite the sparseness of the estimated payoff function (covering
only 0.1% of possible profiles), we have been able to obtain several
results.

First, as discussed above, we conjectured that the self-confirming
distribution predictor strategy,PP (F SC), would perform well. We
have directly verified this:the profile where all five agents play a
purePP (F SC) strategy is a Nash equilibrium. That is, we verified
that no unilateral deviation to any of the other 52 pure strategies is
profitable. Note that in order to verify a pure-strategy symmetric
equilibrium (all agents playings) for N players andS strategies,
one needs onlyS profiles: one for each strategy playing withN−1
copies ofs. Similarly, to refute the possibility of a particular profile
being in Nash equilibrium, we need find only one profitable devia-
tion profile (i.e., obtained by changing the strategy of one player to
obtain a higher payoff given the others).

The fact thatPP (F SC) is pure symmetric Nash for this game
does not of course rule out the existence of other Nash equilib-
ria. Indeed, without evaluating any particular profile, we cannot
eliminate the possibility that it represents a (non-symmetric) pure-
strategy equilibrium itself. However, the profiles we did estimate
provide significant additional evidence, including the elimination
of broad classes of potential symmetric mixed equilibria.

Let us define a strategycliqueas a set of strategies for which we
have estimated payoffs for all combinations. Each clique defines a
subgame, for which we have complete payoff information. Within
our 4916 profiles we have eight maximal cliques, all of which in-
clude strategyPP (F SC).9 For each of these subgames, we have
used the Gambit algorithms to determine thatPP (F SC) is the only
strategy that survives iterated elimination of (strictly) dominated
(pure) strategies (IEDS).10 It follows thatPP (F SC) is the unique
(pure or mixed strategy) Nash equilibrium in each of these clique
games.

From this result, we can further conclude that in the full 53-
strategy game there are no equilibria with support contained within
any of the cliques, other than the special case of the pure-strategy
PP (F SC) equilibrium.11

9One clique is a 10-strategy game with 2002 unique profiles; three
are 5-strategy games (126 profiles each); one is a 4-strategy game
(56 profiles); and three are 3-strategy games (21 profiles).

10Even better,PP (F SC) is a dominant strategy in three of the sub-
games (two 3-strategy subgames and the one 5-strategy subgame in
which it appears).

11By the IEDS result, any agent that plays a mixture of any clique
strategy set can do better by deviating and playingPP (F SC).
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Analysis of the available two-strategy cliques (not generally max-
imal) provides further evidence about potential alternative equilib-
ria. Of the

(
52
2

)
= 1326 pairs of strategies not includingPP (F SC),

we have all profile combinations for 46. Based on profiles esti-
mated, we can derive a lower bound of 0.32 on the value ofε such
that a mixture of one of these pairs constitutes anε-Nash equilib-
rium. In other words, we have determined that for any symmetric
profile defined by such a mixture, an agent can improve its payoff
by a minimum of0.32 through deviating to some other pure strat-
egy. For reference, the payoff for the all-PP (F SC) profile is 4.51,
so this represents a nontrivial difference.

Finally, for each of the 4916 evaluated profiles, we can derive a
bound on theε rendering the profile itself anε-Nash pure-strategy
equilibrium. The three most strategically stable profiles by this
measure are:

1. all PP (F SC): ε = 0 (confirmed Nash equilibrium)

2. onePP (F SB), four PP (F SC): ε > 0.13

3. two PP (F SB), threePP (F SC): ε > 0.19

All the remaining profiles haveε > 0.25 based on confirmed devi-
ations.

Our conclusion from these observations is thatPP (F SC) is a
highly stable strategy within this strategic environment, and likely
uniquely so. Of course, only limited inference can be drawn from
even an extensive analyis of only one particular distribution of pref-
erences.

5.6 Self-confirming prediction in other envi-
ronments

In order to test whether the strong performance ofPP (F SC)
generalizes across other SAA environments, we performed smaller
versions of the empirical game analysis on variations of the model
above. Specifically, we explored 13 instances of the market-based
scheduling problem:

• nine with the uniform model, with 3–8 agents and 3–7 goods

• three with the exponential model, with 3–8 agents and 3–5
goods

• one with fixed preferences, corresponding to the counterex-
ample model of Table 2

For each we derived self-confirming price distributions (failing
in the last case, of course), as reported in Section 4.3. We also de-
rived price vectors and distributions for the other prediction-based
strategies. For each symmetric game (the uniform and exponential
models), we evaluated 27 profiles: one with allPP (F SC), and for
each of 26 other strategiess, one withN − 1 PP (F SC) and one
s. For the non-symmetric game with fixed preferences, we evalu-
ated all 53 profiles with at least one agent playingPP (F SC). We
ran between one and seven million games per profile in all of these
environments.

In ten out of the twelve symmetric and uncertain environments,
PP (F SC) was verified to be anε-Nash equilibrium forε < 0.1.
In only two of these (one each uniform and exponential), however,
was it an exact equilibrium. The two worst environments of the
twelve were uniform withN = 3 and M = 5 ε = 0.10, and
uniform with N = 8 and M = 7 ε = 0.14. In the last case,
expected payoff for all-PP (F SC) was 2.67, soε represents about
5% of the value. For no other case did it reach 2%. Overall, we
regard this as favorable evidence for thePP (F SC) strategy across
the range of market-based scheduling environments, though clearly

not as strong as our results from the large-scale analysis of the uni-
form 5 × 5 case. Further exploration of these cases (i.e., evaluat-
ing more profiles) may shed light on the true strategic relation of
PP (F SC) to the other strategies where it is not apparently a pure-
strategy Nash equilibrium.

Not surprisingly, the environment with fixed preferences is an
entirely different story. Recall that in this case the iterative proce-
dure failed to find a self-confirming price distribution. The distri-
bution it settled on was quite inaccurate, and the trading strategy
based on this performed poorly—generally obtaining negative pay-
offs regardless of other strategies. Since one of the available strate-
gies simply does not trade,PP (F SC) is clearly not a best-response
player in this environment.

6. DISCUSSION
We have presented a general trading strategy for SAA environ-

ments that places bids based on probabilistic predictions of final
good prices. Such a policy tackles the exposure problem head-on,
by explicitly weighing the risks and benefits of placing bids on al-
ternative bundles, or no bundle at all. This strategy generalizes our
previous work on bidding based on point price predictions, and like
that scheme is parametrized by themethodfor generating predic-
tions. Given methods that take contextual conditions into account
(e.g., distributions of agent preferences), particular trading strate-
gies are potentially robust across varieties of SAA environments.

The method we consider most promising employs what we call
self-confirming price distributions. A price distribution is self-
confirming if it reflects the prices generated when all agents play
the trading strategy based on this distribution. Although such self-
confirming distributions may not always exist, we expect they will
(at least approximately) in many environments of interest, espe-
cially those characterized by relatively diffuse uncertainty and a
moderate number of agents. An iterative simulation algorithm ap-
pears effective for deriving such distributions.

Given the analytic and computational intractability of the game
induced by an SAA environment, we evaluated our approach using
an empirical game-theoretic methodology. We explored a restricted
strategy space including a range of candidate strategies identified in
prior work. Despite the infeasibility of exhaustively exploring the
profile spaces, our analyses support several game-theoretic conclu-
sions. The results provide favorable evidence for our method—very
strong evidence in one environment we investigated intensely, and
somewhat weaker (in some respects mixed) evidence for a range of
variant environments.

The self-confirming price-prediction trading strategy shares fea-
tures with other bidding policies proposed in the literature. Green-
wald and Boyan (2004) explicitly employ distributions of prices,
and consider approaches to optimize choice of bundles given gen-
eral joint price distributions. They evaluate their method on simul-
taneous one-shot auctions, as well as in an SAA-like environment
included in the TAC travel shopping game (Wellman et al., 2003).
The strategy proposed by Gjerstad and Dickhaut (1998) for trad-
ing in continuous double auctions employs price distributions for
determining what to bid, and calibrates these distributions online
based on experience in the dynamic auction.

Neither the strategy we present here nor any other strategy is
likely to be universally best across SAA environments. Neverthe-
less, we conjecture that the self-confirming price prediction strat-
egy will be difficult to beat by much for any broad scenario class. If
agents make optimal decisions with respect to prices that turn out
to be right, there may not be room for performing a lot better. On
the other hand, there are certainly areas where improvement should
be possible, for example:
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• accounting for one’s own effect on prices

• incorporating price dependencies with reasonable computa-
tional effort

• more graceful handling of instances without self-confirming
price distributions

• timing of bids: trading off the risk of premature quiescence
with the cost of pushing prices up

We intend to explore some of these opportunities in follow-on work
in this domain.
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