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Abstract. We study the problem of selfishly routing splittable traffic with
respect to maximum congestion through a shared network. Our model nat-
urally combines features of the two best studied models in the context of
selfish routing: The KP-model [11] and the Wardrop-model [20].
We are given a network with source nodes si, sink nodes ti, 1 ≤ i ≤ k, m
edges, and a latency function for each edge. Traffics of rate ri are destined
from si to ti. Traffics are splittable and each piece of traffic tries to route
in such a way that it minimizes its private latency. In the absence of a
central regulation, Nash Equilibria represent stable states of such a system.
In a Nash Equilibrium, no piece of traffic can decrease its private latency by
unilaterally changing its route. The increased social cost due to the lack of
central regulation is defined in terms of the coordination ratio, i.e. the worst
possible ratio of the social cost of a traffic flow at Nash Equilibrium and the
social cost of a global optimal traffic flow.
In this paper, we show that in the above model pure Nash Equilibria always
exist. Then, we analyze the coordination ratio of single-commodity networks
with linear latency functions. Our main result is a tight upper bound of 4

3
m,

where m is the number of edges of the network, for the coordination ratio
of single-commodity networks with linear latency functions. On our way to
our main result we analyze the coordination ratio of single-hop networks and
show a tight upper bound of m+Θ(

√
m). A more sophisticated analysis yields

an upper bound of 4
3
m for the coordination ratio of multi-hop networks,

which is then used to derive the main result for arbitrary single-commodity
linear networks.

1 Introduction
Motivation and Framework: Routing traffic through a shared network
is a fundamental problem that has been studied since the early 1950s [20].
While at that time road traffic systems were the focus of interest, nowadays,
routing models are re-investigated to model the behavior of communication
networks like the internet [11, 16, 5, 3]. Due to the size of the networks a
central regulation of flow is usually impossible. In such a scenario, users are
assumed to act selfishly in that they try to optimize their individual welfare,
e.g. minimize their personal delay. The individual welfare experienced by a
user depends on the total traffic flow of all users in the system. A central
authority would try to optimize the social welfare. A fundamental question
that has recently been studied by several researchers in different routing
models [11, 17, 14, 4, 6, 9, 10, 8, 12, 13] is the question of how much the social
welfare suffers from the lack of a central authority.
Routing problems with selfish users are typically modeled as a game with
non-cooperative agents, which choose routes through the network aiming
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to maximize their individual welfare. One of the most important concepts
in non-cooperative game theory is the concept of Nash Equilibria [15]. A
Nash Equilibrium is a stable state in such a system: No user can decrease
his individual welfare by unilaterally deviating from his routing strategy (a
path through the network). A natural question to ask is the following: What
is the largest possible ratio of the social cost of a Nash Equilibrium and the
social cost of a global optimal solution? This ratio is termed coordination
ratio [11], or price of anarchy [16].
In this paper we study a new model, called Wmax-model, which combines
features from the Wardrop-model [20] and the KP-model [11]. In the KP-
model routing networks are restricted to single-hop networks with m parallel
links, traffics are unsplittable, link latencies are given as the ratio of load and
link speed, private costs are defined to be the maximum (expected) latency
experienced by a user, and the social cost is defined to be the maximum
(expected) link latency in the network. In the Wardrop-model networks are
arbitrary, traffics are splittable, link latencies are given as nondecreasing
link latency functions, private costs are defined to be the sum of the link
latencies on a path used, and the social cost is defined to be the sum of the
link congestions.
In the Wmax-model, we allow arbitrary networks, splittable traffics, and
arbitrary continuous, nonnegative, nondecreasing edge latency functions as
in the Wardrop-model. We define the private cost of a piece of traffic as
the maximum edge latency experienced by the traffic, and the social cost
as the maximum edge congestion in the network. Another modification of
the Wardrop-model has already been studied in [19, 2], where the authors
consider minimizing the maximum path latency of a network. In application,
it enables to identify bottlenecks in the traffic network and models selfish
users that, e.g. in a road traffic system, try to avoid heavily congested roads,
but instead prefer a detour along uncongested roads.
Related work: The Wardrop-model has already been studied in the 1950’s
[20, 1] as a model for road traffic systems. Koutsoupias and Papadimitriou
[11] considered the KP-model, and defined the coordination ratio, or ”price
of anarchy” as termed by Papadimitriou [16].
Inspired by the work in [11], Roughgarden and Tardos re-investigated the
Wardrop-model and showed that for networks with linear latency functions
the coordination ratio is bounded by the constant 4

3
. Roughgarden [18]

showed that the network design problem is computationally hard.
Since its definition the KP-model has been studied by several researchers:
Mavronicolas and Spirakis [14] introduced fully mixed Nash Equilibria, i.e.
mixed Nash Equilibria with strictly positive probabilities only, and proved
that for identical links the worst case coordination ratio when restricted to
fully mixed Nash Equilibria is O( log m

log log m
). Czumaj and Vöcking [4] proved a

tight bound of Θ(min{ log m
log log log m

, log m

log
(

log m
log c1/cm

)}) for the coordination ratio

of the KP-model with m related links and link speeds in [cm, c1]. The com-
binatorial structure and computational complexity of Nash Equilibria in the
KP-model were studied in [7, 9, 12]. Lücking et al. [13] defined a modifica-
tion of the KP-model with quadratic social cost and showed, besides constant
bounds for the coordination ratio, that for identical users and identical links
the fully mixed Nash Equilibrium is the worst one. Gairing et al. [8] consider
a modification, where users have restricted access to links. They present a
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polynomial time algorithm which, given an arbitrary routing, computes a
Nash Equilibrium with social cost not worse than that of the input.
Roughgarden [19] and Correa et al. [2] study a modification of the Wardrop-
model. They define private cost as the maximum path latency in the network
Roughgarden [19] proved a bound of n − 1 for the coordination ratio of
single-commodity networks with n nodes in this model. Correa et al. [2] give
complexity results for this model and show that the coordination ratio is
unbounded for multi-commodity networks.
Results: First, in section 2, we present the terminology used throughout
this paper. We then start our analysis of the coordination rato in section
3, showing that the coordination ratio of single-hop networks with linear
latency functions is bounded from above by m+Θ(m). In section 4, we show
an upper bound of 4

3
m for the coordination ratio of multi-hop networks with

linear latency functions, which is then used in section 5 to prove an upper
bound of 4

3
m for the coordination ratio of arbitrary networks with linear

latency functions.

2 The Model
Throughout the paper we will use the notations N for the natural numbers,
R for the real numbers, and [k] = {1, . . . , k} for k ∈ N. An instance of the
Wmax-model is a tuple (G, r, l), where G = (V, E) is a directed network
with node set V and edge set E. r = (ri, si, ti)i∈[k], is a vector of k requests,
i.e. traffics of rate ri ∈ R>0 have to be routed from a source si ∈ V to a
destination ti ∈ V . l = (le(x))e∈E is a vector of continuous, nonnegative,
and nondecreasing edge latency functions le(·). We denote by Pi the set of
paths from si to ti in G. P = ∪i∈[k]Pi. A flow f is a function f : P →
R≥0, where, for a fixed flow f , we define fe :=

∑
P :e∈P fP . A flow f is

feasible, if
∑

P∈Pi
fP = ri for all i ∈ [k]. The latency lP (f) of a path P ∈ P

with respect to a flow f is defined as the maximum latency on P : lP (f) =
maxe∈P {le(fe)}. L(f) := maxe∈E{le(fe)}. Traffic routing along a path P in
a flow f experiences a private latency of lP (f). The cost ce(fe) of an edge
e ∈ E routing traffic fe is defined as ce(fe) = fe · le(fe). The social cost C(f)
of a flow f is given as C(f) = maxe∈E{ce(fe)}. cP (f) := maxe∈P {ce(fe)}.
Definition 1. A flow f in G is at Nash equilibrium, if for all i ∈ [k],
P1, P2 ∈ Pi and all δ ∈]0, fP1 ], we have lP1(f) ≤ lP2(f̃), where

f̃P =


fP − δ if P = P1,
fP + δ if P = P2, and
fP if P 6∈ {P1, P2}.

With continuous and nondecreasing edge latency functions, letting δ tend to
zero we obtain

Lemma 1. A flow f is at Nash equilibrium iff ∀ i ∈ [k], P1, P2 ∈ Pi with
fP1 > 0 we have lP1(f) ≤ lP2(f).

Thus, in a Nash equilibrium all paths P ∈ Pi which are used by request i
have equal latency, say Li(f).
It can be shown easily that in our model a Nash Equilibrium always exists.
In contrast to the Wardrop-model Nash Equilibria of an instance may have
different social costs.

Definition 2. Let (G, r, l) be an instance for the Wmax-model. Let f∗ be
an optimal flow for (G, r, l). The coordination ratio of (G, r, l) is defined as
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ρ(G, r, l) = supf NE

{
C(f)

C(f∗)

}
. The coordination ratio of a set of instances I

is defined as ρ(I) = sup(G,r,l)∈I{ρ(G, r, l)}.

For the rest of the paper it will be guaranteed that a flow f at Nash Equi-
librium with maximum cost C(f) exists, so we will use maxf instead of supf

in the definition of the coordination ratio. We will denote a flow f at Nash
Equilibrium with maximum cost C(f) a worst flow at Nash Equilibrium, or
worst Nash Equilibrium, for short.

3 Coordination Ratio of Single-Hop Networks
In this section we will analyze the coordination ratio of single-hop instances
(G, r, l) with m parallel links, i.e. instances with G = (V, E), V = {s, t},
E = {e1, . . . , em}, ej = (s, t), a traffic rate r ∈ R>0 of traffic to be send from
s to t, and linear latency functions lj(x) = ajx + bj , j ∈ [m]. Such instances
will be termed as single-hop linear networks. We start this section with two
simple lemmas:

Lemma 2. Let (G, r, l) be a single-hop instance, lj(x) = ajx + bj, j ∈ [m].
Let f = (f1, . . . , fm) be a Nash Equilibrium and let f∗ = (f∗1 , . . . , f∗m) be a
global optimum for (G, r, l). Let fi = mine∈E{fe}, and fj = maxe∈E{fe}.
Then, fi ≤ f∗i and f∗j ≤ fj.

Sketch of proof: Since the global optimum equalizes the costs ci(f
∗
i ) and

cj(f
∗
j ), but the Nash Equilibrium does not necessarily do so, the maximum

flow on a link of the global optimum must be less or equal to the maximum
flow of the Nash Equilibrium on any link. Similarly, the minimum flow on a
link in the global optimum cannot be smaller than the minimum one in the
Nash Equilibrium. ut
Lemma 3. Let (G, r, l) with lj(x) = ajx + bj, j ∈ [m]. Then, there exists
(G, 1, l̃), with ρ(G, r, l) ≤ ρ(G, 1, l̃). (Proof: see full version)

Consequently, in what follows, we will always assume that r = 1. In order not
to change the notation we will continue to denote instances of the Wmax-
model as (G, r, l). We will now show that the coordination ratio of single-hop

linear networks is bounded from above by R(m) := 2(m−1)2

2m−1−
√

4m−3
, and that

this bound is tight. The proof proceeds in four steps:
First, in lemma 5 we show that the coordination ratio of instances with
constant latencies only, i.e. lj(x) = bj , 1 ≤ j ≤ m, is bounded by m.
Then, in lemma 6 we prove that for all m ≥ 2 there exist instances (G, r, l)
achieving a coordination ratio of R(m). In particular, we present instances
which have m− 1 identical constant latency functions and one proportional
latency function and achieve the above bound.
In a third step, in lemma 7 we show that for an instance (G, r, l) with arbi-
trary linear latency functions there is an instance (G, r, l̃) where l̃ has pro-
portional and constant latency functions only and has a coordination ratio
not less than the coordination ratio of (G, r, l).
Finally, based on the result of step 3 we prove in theorem 1 that for an
arbitrary instance (G, r, l) there always exists an instance (G, r, l̃) where l̃
contains a single proportional latency function le(x) = ax and m−1 identical
constant latency functions le(x) = a, for some a ∈ R>0, such that (G, r, l̃)
has a coordination ratio not less than the coordination ratio of (G, r, l).

Definition 3. Define the function R : R>1 → R as R(m) = 2(m−1)2

2m−1−
√

4m−3
.
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Before we proceed with the main line of the proof we present some simple
properties of the R-function. The proofs are given in the full version.

Lemma 4. Let R(m) as defined in definition 3. Then, for all m ∈ R>1,

a) R(m) = m +
√

4m−3−1
2

, b) R(m) ≤ m +
√

m− 1,

c) R(m) ≥ m +
√

m− 1− 1, d) R(m) ≤ 4
3
m.

Lemma 5. Let (G, r, l) be a single-hop instance, lj(x) = bj, 1 ≤ j ≤ m.
Then, ρ(G, r, l) ≤ m.

Proof: Let b = min1≤j≤m{bj}. Wlog we assume that b1 = b. Then, f =
(1, 0, . . . , 0) is a worst Nash Equilibrium for (G, r, l) with cost C(f) = b.
On the other hand, replacing all constant latencies l(x) = bj > b with
l̃(x) = b cannot increase the cost of a global optimum, and f still is a Nash
Equilibrium. Therefore, for the cost C(f∗) of a global optimum f∗ we have
C(f∗) ≥ b

m
. Together we obtain ρ(G, r, l) ≤ b

b/m
= m. ut

The next lemma shows, that there exist instances (G, r, l) which are worse in
terms of coordination ratio compared to the instances with constant latency
functions.

Definition 4. The set of instances W is defined as
W = {(G, r, l) | G = (V, E), V = {s, t}, E = {e1, . . . , em}, for some m ∈ N,

ej = (s, t), j ∈ [m], l = (ax, a, . . . , a), a ∈ R>0 }.

Lemma 6. Let (G, r, l) ∈ W be a single-hop instance with m links. Then,
ρ(G, r, l) = R(m). (Proof: see full version)

Next, we will prove a lemma that allows us to restrict our further consider-
ations to special instances (G, r, l):

Lemma 7. Let (G, r, l) be a single-hop instance with m links, lj(x) = ajx+
bj, j ∈ [m]. Let f be a worst Nash Equilibrium for (G, r, l). Then, there exists
a single-hop instance (G, r, l̃) such that
i) l̃ contains proportional or constant latency functions only,
ii) all constant latency functions are equal to L(f),
iii) any worst Nash Equilibrium f̃ for (G, r, l̃) has

maxi∈[m]{f̃i} = maxi∈[m]{fi}, and

iv) ρ(G, r, l) ≤ ρ(G, r, l̃).

Proof: Let f∗ be a global optimum for (G, r, l). For a first step, define l̂j(x) :=

L(f), if fj ≤ f∗j , and l̂j(x) := L(f)
fj

x, otherwise.

Then, l̂(fj) = L(f) for all j ∈ [m]. Thus, f is a Nash Equilibrium for (G, r, l̂)
with L̂(f) = L(f) and Ĉ(f) = C(f). It follows that for a worst Nash Equi-
librium f̂ we must have Ĉ(f̂) ≥ C(f). Moreover, any Nash Equilibrium f̂
for (G, r, l̂) will have L̂(f) = L(f). Now, consider the global optimum f∗ for
(G, r, l):
If l̂j(x) = L(f), then l̂j(x) ≤ lj(x) for all x ∈ [fj ,∞]. Since f∗j ≥ fj we have

l̂j(f
∗
j ) ≤ lj(f

∗
j ), and thus ĉj(f

∗
j ) = f∗j l̂j(f

∗
j ) ≤ f∗j lj(f

∗
j ) = cj(f

∗
j ) = C(f∗). If

l̂j(x) = L(f)
fj

x, then l̂j(x) ≤ lj(x) for all x ∈ [0, fj ]. Since f∗j < fj we have

l̂j(f
∗
j ) < lj(f

∗
j ), and thus ĉj(f

∗
j ) = f∗j l̂j(f

∗
j ) < f∗j lj(f

∗
j ) = cj(f

∗
j ) = C(f∗).

Therefore, ĉj(f
∗
j ) ≤ C(f∗) for all j ∈ [m]. It follows that a global optimum

f̂∗ for (G, r, l̂) must have Ĉ(f̂∗) ≤ C(f∗). Thus, ρ(G, r, l) = C(f)
C(f∗) ≤

Ĉ(f̂)

Ĉ(f̂∗)
=

ρ(G, r, l̂).
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Let α = maxi∈[m]{fi}. A worst Nash Equilibrium f̂ for (G, r, l̂) has f̂j = fj

for all j ∈ [m] such that l̂j(x) is proportional, and load α̂ :=
∑

j:l̂(x)=L(f) fj

on a single constant link, say m. If α̂ > α, let k = b α̂
α
c. Then, by lemma

2, we know that f̂∗m ≤ f̂m = α̂, and we can replace k constant latency
functions l̂(x) = L(f) by l̃(x) = L(f)

α
x. The new instance (G, r, l̃) has C̃(f̃) =

αL(f) = C(f), C̃(f̃∗) ≤ Ĉ(f̂∗) by the same argument as above, and obeys
the constraints i) to iv). ut
The following technical lemma will be used in the proofs of thrs. 1 and 2:

Lemma 8. Let k ∈ N. The problem P : max{
∑

i∈[k]
1√
ai
} s.t.

∑
i∈[k]

1
ai

=

1, ai ∈]1,∞], i ∈ [k] has the unique solution (a1, . . . , ak) = (k, . . . , k) with
objective value

√
k. (Proof: see full version)

Now, we show that we may replace an instance (G, r, l) having at least two
non-constant latency functions by an instance (G, r, l̃) having a single non-
constant latency function without decreasing the coordination ratio.

Theorem 1. Let (G, r, l) be a single-hop instance with m links and lj(x) =
ajx+ bj, j ∈ [m]. Then, there exists an instance (G, r, l̃) ∈ W with 1 propor-
tional link, m− 1 identical constant links, and ρ(G, r, l̃) ≥ ρ(G, r, l).

Proof: Let f = (f1, . . . , fm) be a worst Nash Equilibrium for (G, r, l) with
latency L(f), and let f∗ = (f∗1 , . . . , f∗m) be a global optimum for (G, r, l).
By lemma 7 we may assume wlog that l = (a1x, . . . , akx, L(f), . . . , L(f)),
k ∈ {2, . . . , m}, and fp > f∗p for all p ∈ [k] (otherwise, lp(x) may be replaced
by lp(x) = L(f) as in the proof of lemma 7). Reordering the links gives
0 < a1 ≤ a2 ≤ . . . ≤ ak. Since aifi = L(f) for all i ∈ [k] and

∑
i∈[k] fi ≤ 1,

we get
∑

i∈[k]
1
ai

≤ 1
L(f)

. A worst Nash Equilibrium f will use at most

one of the links with constant latency function L(f), say fk+1 > 0. Define

l̃1(x) = L(f)
f1+fk+1

x. Then, f̃ = (f1 + fk+1, f2, . . . , fk, 0, . . . , 0) is the unique

Nash Equilibrium for (G, r, l̃) with C̃(f̃) = (f1+fk+1)L(f) ≥ f1L(f) = C(f).

Since a1 = L(f)
f1

≥ L(f)
f1+fk+1

=: ã1, it follows that l̃1(x) ≤ l1(x) for all x ∈ [0, 1]

which implies that for a global optimum f̃∗ of (G, r, l̃) we get C̃(f̃∗) ≤ C(f∗).
Therefore, we may now assume wlog that l = (a1x, . . . , akx, L(f), . . . , L(f))
with 0 < a1 ≤ a2 ≤ . . . ≤ ak, fi ∈]0, 1] for all i ∈ [k],

∑
i∈[k] fi = 1. By

scaling we may additionally assume that L(f) = 1. We want to show that
the coordination ratio of (G, r, l) is upper bounded by the coordination ratio
of (G, r, l̃), where l̃ = (L(f)x, L(f), . . . , L(f)).
L(f) = 1 implies that l̃ = (x, 1, . . . , 1). f̃ = (1, 0, . . . , 0) is the unique Nash

Equilibrium for (G, r, l̃) with C̃(f̃) = 1
L(f)=1

= L(f)f1
f1

= C(f)
f1

1
f1

=a1
= a1C(f).

Now, let l = (a1x, . . . , akx, 1, . . . , 1) for some k ∈ [m]. Let a1 = mini∈k{ai}.
In order to prove that ρ(G, r, l̃) ≥ ρ(G, r, l) we have to show that C̃(f̃∗) ≤
a1C(f∗), or, equivalently, C(f∗) ≥ C̃(f̃∗)

a1
, for a global optimum f̃∗ of (G, r, l̃).

Since the total flow to be routed equals 1, we have 1 =
∑

i∈[m] f
∗
i =(∑

i∈[k]

√
1
ai

) √
C(f∗)+(m−k)C(f∗), and 1 =

∑
i∈[m] f̃

∗
i =

√
C̃(f̃∗)+

(m − 1)C̃(f̃∗). By lemma 8,
∑

i∈[k]

√
1
ai

attains its maximum value
√

k iff

all the a′is are equal to k, in which case
√

k =
√

a1. Thus, from the first

equation we obtain
√

a1

√
C(f∗) + (m − k)C(f∗) ≥ 1. Now, suppose to the
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contrary that C(f∗) < C̃(f̃∗)
a1

. Then,
√

a1

√
C̃(f̃∗)

a1
+ (m− k) C̃(f̃∗)

a1
> 1, from

which, since a1 ≥ 1, we deduce that
√

C̃(f̃∗) + (m− k)C̃(f̃∗) > 1.

But
√

C̃(f̃∗) + (m − 1)C̃(f̃∗) = 1, which gives us a contradiction for all

k ∈ [m]. Therefore, C(f∗) ≥ C̃(f̃∗)
a1

. It follows that we can replace the propor-

tional latency functions l1(x), . . . , lk(x) by l̃1(x) = L(f)x and l̃i(x) = L(f),
2 ≤ i ≤ k, without decreasing the coordination ratio. The resulting instance
(G, r, l̃) is in W, and ρ(G, r, l̃) ≥ ρ(G, r, l). ut
As a corollary we obtain a tight upper bound for the coordination ratio of
single-hop networks with m links:

Corollary 1. Let (G, r, l) with G = (V, E), V = {s, t}, E = {e1, . . . , em},
ej = (s, t), lj(x) = ajx + bj, 1 ≤ j ≤ m. Then, ρ(G, r, l) ≤ R(m) =
m + Θ(

√
m) and this bound is tight.

4 Coordination Ratio of Multi-Hop Networks
Consider a 2-hop instance (G, r, l), G = (V, E), V = {s, v, t}, E = E1 ∪
E2 with E1 = {e1,1, . . . , e1,m1}, e1,j = (s, v) for all j ∈ [m1] and E2 =
{e2,1, . . . , e2,m2}, e2,j = (v, t) for all j ∈ [m2]. Let li,j(x) be the latency
functions for edges ei,j , i ∈ [2], j ∈ [mi].
Assume that in a Nash Equilibrium f all edges of the first hop with strictly
positive flow have equal latency, say L(f). Then, f may route the total flow
of 1 in an arbitrary manner across the second hop, as long as the latencies
le(fe) of the edges e ∈ E2 do not exceed L(f). If α = maxe∈E1{fe} then
C1(f) := maxe∈E1{ce(fe)} = αL(f).
If, for some e ∈ E2, le(x) = L(f), f may route the total flow along the
single edge e of the second hop, thus incurring costs C(f) = L(f) = 1

α
C1(f)

for some α ∈]0, 1]. But then, ρ(G, r, l) in general cannot be bounded by the
coordination ratio of a single-hop network consisting of the first hop only.
Since α = maxe∈E1{fe} ≥ 1

m1
, a trivial upper bound for the coordination

ratio is ρ(G, r, l) ≤ m1R(m1) = m2
1 + Θ(m

3/2
1 ).

In what follows we will show a tight upper bound of 4
3
m for the coordination

ratio of h-hop networks, where m is the number of edges of a cut (hop) at
Nash Equilibrium.
We proceed by identifying worst case single-hop instances with bounded max-
imum flow α at Nash Equilibrium. These worst-case instances are then used
to derive a bound of 4

3
m on the coordination ratio of multi-hop instances.

The proofs of the following lemmas can be found in the full version. We start
with two generalizations of the R-function from definition 3 in section 3:

Definition 5. The function R0 : R>1×]0, 1] → R is defined as R0(m, α) =
2α(m−k)2

2(m−k)−k
√

4α(m−k)+α2k2+αk2
, where, for α ∈]0, 1], k = k(α) ∈ N is such that

α ∈] 1
k+1

, 1
k
].

R0(m, α) is well defined for all α ∈] 1
m

, 1], since k = k(α) ∈ [m− 1].

Lemma 9. Let m ∈ N, α ∈] 1
m

, 1]. Let k = k(α) ∈ N be such that α ∈
] 1
k+1

, 1
k
].

a) R0(m, α) = αm− αk + 1
2
α2k2 + αk

√
αm− αk + 1

4
α2k2.

b) R0(m, 1
k
) = R(m

k
), where R(m) is the function defined in definition 3.
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Definition 6. Let m ∈ N, p ∈ [m− 1], α ∈] 1
m

, 1]. Let h =
√

p 1−α
α

.

The functions Rp : R>1×]0, 1] → R are defined as

Rp(m, α) = 2α(m−p−1)2

2(m−p−1)−(1+h)
√

4α(m−p−1)+α2(1+h)2+α(1+h)2
,, if p ≤ m−2, and

Rm−1(m, α) = α
(
α +

√
(m− 1)α(1− α)

)
.

Lemma 10. Let m ∈ N, p ∈ [m− 2].

a) Rp(m, α) = α(m− p− 1) + 1
2

(
α +

√
pα(1− α)

)2

+ (α +
√

pα(1− α)) ·
√

α(m− p− 1) + 1
4
(α +

√
pα(1− α))2.

b) Rp(m, m
p+1

) = R( m
p+1

), where R(m) is the function defined in definition
3 in section 3.

The next lemma shows that there are single-hop networks achieving a coor-
dination ratio of exactly R0(m, α).

Definition 7. The set of instances W0 is defined as
W0 = {(G, r, l) | G = (V, E), V = {s, t}, E = {e1, . . . , em}, for m ∈ N,

ej = (s, t), 1 ≤ j ≤ m, l = (ax, . . . , ax︸ ︷︷ ︸
k links

, aα, . . . , aα︸ ︷︷ ︸
m−k links

),

a ∈ R>0, α ∈ [ 1
m

, 1], k = k(α) ∈ N such that α ∈] 1
k+1

, 1
k
] }.

Lemma 11. Let (G, r, l) ∈ W0 be an instance with m links and maximum
load α in a worst Nash Equilibrium. Then, ρ(G, r, l) = R0(m, α).

Similarly, we can find single-hop networks achieving a coordination ratio
equal to Rp(m, α):

Definition 8. The set of instances Wp is defined as
Wp = {(G, r, l) | G = (V, E), V = {s, t}, E = {e1, . . . , em}, for m ∈ N,

ej = (s, t), 1 ≤ j ≤ m, l = (ax, bx, . . . , bx︸ ︷︷ ︸
p links

, aα, . . . , aα︸ ︷︷ ︸
m−p−1 links

),

a ∈ R>0, α ∈ [ 1
p+1

, 1], b = paα
1−α

}.

Lemma 12. Let (G, r, l) ∈ Wp be an instance with m links and maximum
load α in a worst Nash Equilibrium. Then, ρ(G, r, l) = Rp(m, α).

The lemma above states that there exist single-hop instances (G, r, l) achiev-
ing a coordination ratio of ρ(G, r, l) = Rp(m, α) for some p ∈ {0, . . . , m−1}.
These instances have maxe∈E{fe} = α for a worst Nash Equilibrium f . In

the following we will state that the ratios
Rp(m,α)

α
are bounded from above

by 4
3
m for all p ∈ {0, . . . , m− 1}.

Lemma 13. Let m ∈ R>1, α ∈] 1
m

, 1]. Then, R0(m, α) ≤ R(αm). Moreover,
R0(m, α) = R(αm) iff α = 1

k
, where k = k(α) ∈ N such that α ∈] 1

k+1
, 1

k
].

Lemma 14. Let m ∈ N≥2, α ∈] 1
m

, 1]. Then, R(αm)
α

≤ 4
3
m.

As an immediate corollary of the previous two lemmas we obtain

Corollary 2. Let m ∈ N≥2, α ∈] 1
m

, 1]. Then, R0(m,α)
α

≤ 4
3
m. ut
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What makes the proof of corollary 2 easy is the fact that R0(m, α) ≤ R(αm).
Unfortunately, this does not hold for Rp(m, α) and general p ∈ [m − 2].

Nevertheless, in lemmas 15 and 16 we state that
Rp(m,α)

α
, can be bounded

from above by 4
3
m as well for all p ∈ [m− 1].

Lemma 15. Let m ∈ N≥2, α ∈ [ 1
m

, 1]. Then,
Rm−1(m,α)

α
≤ m.

Lemma 16. Let m ∈ N≥2, p ∈ [m− 2], α ∈] 1
m

, 1]. Then,
Rp(m,α)

α
≤ 4

3
m.

We are now ready to prove that the coordination ratio of single-hop instances
with maximum load α in a worst Nash Equilibrium is bounded from above
by the coordination ratio of an instance from Wp for some p ∈ {0, . . . , m}.
This is done in the following

Theorem 2. Let (G, r, l) be a single-hop instance with m links and lj(x) =
ajx + bj, j ∈ [m]. Let f = (f1, . . . , fm) be a worst Nash Equilibrium for
(G, r, l), α := maxe∈E{fe}. Then, ρ(G, r, l) ≤ maxp∈{0,...,m−1}{Rp(m, α)}.

Proof: By lemma 7 we may assume that l = (a1x, . . . , akx, L(f), . . . , L(f))

for some k ∈ [m]. Let 0 < a1 ≤ a2 ≤ . . . ≤ ak. fi = L(f)
ai

, 1 ≤ i ≤ k, and

fj 6= 0 for at most one link j ∈ {k + 1, . . . , m}, say j = k + 1.
Let α = maxi∈[m]{fi}. If α = fk+1, then, by lemma 2, f∗k+1 ≤ fk+1 for any

global optimum f∗ for (G, r, l), and we replace lk+1(x) = L(f) by l̂k+1(x) =
L(f)

α
x. f is still a Nash Equilibrium for (G, r, l̂) and any global optimum f̂∗

has C(f̂∗) ≤ C(f∗). Thus, ρ(G, r, l) ≤ ρ(G, r, l̂).
Therefore, we may assume that the maximum load α in (G, r, l) is on a
proportional link, say on link 1.
If k = 1, then l = (a1x, L(f), . . . , L(f)), and ρ(G, r, l) ≤ R0(m, α). If k = m,
then ρ(G, r, l) = Rm−1(m, α) ≤ m.
Now, let k ∈ {2, . . . , m−1}, and let p := k−1 ∈ [m−2]. Let β := 1

p

∑k
i=2 fi.

Since k ≥ 2, β 6= 0. Since α = maxi∈[m]{fi}, β ≤ α. fk+1 < α and by a
simple scaling argument we can assume wlog that L(f) = 1.
Let b = 1

β
and define l̃ = (a1x, bx, . . . , bx︸ ︷︷ ︸

p links

, 1, . . . , 1︸ ︷︷ ︸
m−p−1 links

).

Then, f̃ = (α, β, . . . , β, fk+1, 0, . . . , 0) is a Nash Equilibrium for (G, r, l̃) with
C̃(f̃) = αL(f).
Let f̃∗ be a global optimum for (G, r, l̃) and suppose to the contrary that
C̃(f̃∗) > C(f∗).

Since 1 =
∑

i∈[m] f
∗
i =

(
1√
a1

+
∑k

i=2
1√
ai

) √
C(f∗) + (m − p − 1)C(f∗)

and 1 =
∑

i∈[m] f̃
∗
i =

(
1√
a1

+ (k − 1) 1√
b

) √
C̃(f̃∗) + (m − p − 1)C̃(f̃∗),

C(f̃∗) > C(f∗) implies that 1√
a1

+
∑k

i=2
1√
ai

> 1√
a1

+ (k − 1) 1√
b
, which

is a contradiction to lemma 8. It follows that C(f̃∗) ≤ C(f∗) and thus

ρ(G, r, l) ≤ C̃(f̃)

C̃(f̃∗)
= ρ(G, r, l̃) = Rp(m, α) ≤ maxp∈{0,...,m−1}{Rp(m, α)}.

ut
Theorem 2 implies that for an arbitrary single-hop network (G, r, l) with
maximum load α there exists a number of links p ∈ {0, . . . , m− 1} such that
ρ(G, r, l) ≤ Rp(m, α). We have already seen, that we can bound the fraction
Rp(m,α)

α
by 4

3
m for all p. This fact is now used in the following theorem, which

gives a tight upper bound on the coordination ratio of multi-hop networks.
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Theorem 3. Let (G, r, l) be an h-hop instance, V = {v0, v1, . . . , vh}, E =
E1 ∪· . . . ∪· Eh, Ei = {ei,j | 1 ≤ j ≤ mj}, 1 ≤ i ≤ h, ei,j = (vi−1, vi),
1 ≤ i ≤ h, 1 ≤ j ≤ mi, s = v0, t = vh, lei,j (x) = li,j(x) = ai,jx + bi,j ,
1 ≤ i ≤ h, 1 ≤ j ≤ mi. Then ρ(G, r, l) ≤ 4

3
|E|.

Furthermore, there exist instances (G, r, l) such that ρ(G, r, l) = 4
3
(|E| − 2).

Proof: Let m := |E|. For an admissible flow g denote Ci(g) = maxe∈Ei{ce(ge)},
1 ≤ i ≤ h. Let f = (fi,j) be a worst flow at Nash Equilibrium for (G, r, l).
Then, there exists a hop q ∈ [h] of G and a number L(f) ∈ R≥0 such that
the following conditions hold:
a) li,j(fi,j) ≤ L(f) ∀i ∈ {1, . . . , h}, j ∈ {1, . . . , mi}, fi,j > 0.
b) lq,j(fq,j) = L(f) ∀j ∈ {1, . . . , mx}, fq,j > 0.
c) lq,j(fq,j) ≥ L(f) ∀j ∈ {1, . . . , mx}, fq,j = 0.

It follows that C(f) = maxe∈E{ce(fe)} = maxe∈E{fele(fe)}
fe≤1

≤ L(f).
Let f∗ = (f∗i,j) be a global optimum for (G, r, l). Wlog let f∗ be such that
f∗ is a global optimal flow at every single-hop i ∈ [h]. Let α ∈ [ 1

mp
, 1] be the

maximum load of a link of hop q at Nash Equilibrium f .
If α = 1

mq
then all latency functions at hop q must be equal, from which it

follows that Cq(f
∗) = Cq(f) = 1

mq
L(f). Then, ρ(G, r, l) ≤ L(f)

C(f∗) ≤
L(f)

Cq(f∗) =

mq
Cq(f)

Cq(f∗) = mq ≤ m.

Now, let α > 1
mq

. By thr. 2, we have
Cq(f)

Cq(f∗) ≤ maxp∈{0,...,m−1}{Rp(mq, α)}
from which we get the lower bound

Cq(f
∗) ≥ Cq(f)

maxp∈{0,...,m−1}{Rp(mq, α)} =
αL(f)

maxp∈{0,...,m−1}{Rp(mq, α)} .

It follows that ρ(G, r, l) ≤ L(f)
Cq(f∗) ≤ L(f)

maxp{Rp(mq,α)}
αL(f)

=
maxp{Rp(mq,α)}

α
.

By corollary 2 and lemmas 15, 16, it follows that ρ(G, r, l) ≤ 4
3
mq ≤ 4

3
m.

To see that the lower bound of 4
3
(m−2) holds, let m be any natural number

which is divisible by 3, and consider the following 2-hop instance:
G = (V, E), V = {s, v, t}, E = E1 ∪· E2, E1 = {e1, . . . , em}, ej = (s, v),
1 ≤ j ≤ m, E2 = {em+1, em+2}, ej = (v, t), m + 1 ≤ j ≤ m + 2. Let α = 3

m
,

k = m
3

and define l = (x, . . . , x︸ ︷︷ ︸
k links

, α, . . . , α︸ ︷︷ ︸
m−k links

, α, 0︸︷︷︸
hop 2

)

Then, f = (α, . . . , α, 0, . . . , 0, 1, 0) is a worst Nash Equilibrium for (G, r, l)
with C1(f) = α2, and C2(f) = α ≥ α2 = C1(f).
Let f∗ be a global optimal solution, and wlog let f∗ route optimally at every

hop of G. Then, C2(f
∗) = 0. Since for the first hop we have C1(f)

C1(f∗)
L.11
=

R0(m, α), a global optimal solution f∗ has C1(f
∗) = C1(f)

R0(m,α)
= α2

R0(m,α)
.

From this we get ρ(G, r, l) = C(f)
C(f∗) = α

α2
R0(m,α)

= R0(m,α)
α

= R(αm)
α

= 4
3
m =

4
3
(m−2), where the fourth equality follows from Lemma 13 (α = 1

k
) and the

fifth equality follows from α = 3
m

and R(αm) = R(3) = 4. ut
From the proof of theorem 3 we can see that instances almost matching the
upper bound can already be found in the set of 2-hop networks.

5 Coordination Ratio of Linear Networks
In this section, we prove the main result of our paper, namely an upper bound
of 4

3
m for the coordination ratio of arbitrary single-commodity networks with

linear latency functions.

10



Theorem 4. Let (G, r, l) be an arbitrary instance with a single commodity
network G = (V, E), and linear latency functions le(x) = aex + be for all
e ∈ E. Then, ρ(G, r, l) ≤ 4

3
|E|.

Sketch of proof: Let m := |E|. Let us denote by a cut (S, T ) of G a partition
of the nodes V of G into two disjoint subsets S, T , such that s ∈ S and
t ∈ T . Let ES,T denote the cut edges of (S, T ) directed from the set S into
the set T .
Let f = (fe)e∈E be a Nash Equilibrium. Then, there exists a cut (S, T ) of
G, ES,T = {e1, . . . , ep} such that le(fe) ≥ L(f) for all e ∈ ES,T and equality
holds iff fe > 0. Similarly to the result for single-hop networks in lemma 3
we may assume wlog that r = 1.
In a first case, let us assume that there exists an e ∈ ES,T with ce(fe) = C(f).
In this case consider a single-hop network (G̃, r, l̃) where G̃ = (Ṽ , Ẽ) is
defined as Ṽ = {s, t}, Ẽ = {e1, . . . , ep}, ei = (s, t) for all i ∈ [p], l̃i(x) :=
li(x), i ∈ [p], where li(x) is the latency function of the edge ei ∈ ES,T in
(G, r, l). Then, f̃ defined as f̃e := fe for all e ∈ Ẽ = ES,T confirms a flow
at Nash Equilibrium for (G̃, r, l̃) with C̃(f̃) = maxe∈ES,T {ce(fe)} = C(f).

A global optimal flow f̃∗ for (G̃, r, l̃) must have C̃(f̃∗) = maxe∈Ẽ{ce(f̃
∗
e )} ≤

maxe∈ES,T {ce(f
∗
e )} = C(f∗). Therefore, by corollary 1 and Lemma 4 d)

ρ(G, r, l) = C(f)
C(f∗) ≤

C̃(f̃)

C̃(f̃∗)
≤ R0(m, 1) ≤ 4

3
m.

In the second case, assume that for all e ∈ ES,T we have ce(fe) < C(f).
Let (S0, T0) be a cut such that ES0,T0 contains an edge e0 with ce0(fe0) =
C(f). Let q = |ES0,T0 |. Now consider a 2-hop network (G̃, r, l̃) where G̃ =
(Ṽ , Ẽ) is defined as Ṽ = {s, v, t}, Ẽ = Ẽ1 ∪· Ẽ2, Ẽ1 = {e1,1, . . . , e1,p},
Ẽ2 = {e2,1, . . . , e2,q}, e1,i = (s, v) for all i ∈ [p], e2,i = (v, t) for all i ∈ [q].
l̃1,i(x) := li(x), 1 ≤ i ≤ p, where li(x) is the latency function of the edge
ei ∈ ES,T , and l̃2,j(x) := lj(x), 1 ≤ j ≤ q, where lj(x) is the latency function
of the edge ej ∈ ES0,T0 .
Define f̃ by setting f̃e := fe for all e ∈ Ẽ. Then, l̃e(f̃e) = le(fe) ≥ L(f)
for all e ∈ Ẽ1, and equality holds iff fe > 0. For the seond hop, l̃e(f̃e) ≤
maxe∈ES0,T0

{le(fe) | fe > 0} = L(f) for all e ∈ Ẽ2. Therefore, all paths from
s to t are latency-blocked with respect to L(f) and f is a Nash Equilibrium.
For the cost C̃(f̃) of f̃ we obtain C̃(f̃) = c̃e0(fe0) = ce0(fe0) = C(f). On
the other hand, a global optimal flow f̃∗ for (G̃, r, l̃) must have C̃(f̃∗) =
maxe∈Ẽ{c̃e(f̃

∗
e )} ≤ maxe∈ES,T∪ES0,T0

{ce(f
∗
e )} ≤ maxe∈E{ce(f

∗
e )} = C(f∗).

Therefore, by theorem 3, ρ(G, r, l) = C(f)
C(f∗) ≤

C̃(f̃)

C̃(f̃∗)
≤ 4

3
m. ut

6 Conclusion

We have analyzed the coordination ratio of the Wmax-model, a model in
which selfish traffic routes through a shared network aiming to minimize the
maximum latency on a link used, while central optimization is done aiming
to minimize the maximum congestion in the whole network. First, we have
shown that Nash Equilibria always exist in the Wmax-model. Then, we have
proved that the coordination ratio for single-hop networks with linear edge
latency functions is bounded from above by m + Θ(m), and that this bound
is tight. For multi-hop networks, as well as for arbitrary networks, we have
shown a tight upper bound of 4

3
m.

We leave it as an open problem to generalize our results to networks with
nonlinear latency functions and to multi-commodity instances.
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Theorem 3. Let (G, r, l) be an h-hop instance, V = {v0, v1, . . . , vh}, E =
E1 ∪· . . . ∪· Eh, Ei = {ei,j | 1 ≤ j ≤ mj}, 1 ≤ i ≤ h, ei,j = (vi−1, vi),
1 ≤ i ≤ h, 1 ≤ j ≤ mi, s = v0, t = vh, lei,j (x) = li,j(x) = ai,jx + bi,j ,
1 ≤ i ≤ h, 1 ≤ j ≤ mi. Then ρ(G, r, l) ≤ 4

3
|E|.

Furthermore, there exist instances (G, r, l) such that ρ(G, r, l) = 4
3
(|E| − 2).

Proof: Let m := |E|. For an admissible flow g denote Ci(g) = maxe∈Ei{ce(ge)},
1 ≤ i ≤ h. Let f = (fi,j) be a worst flow at Nash Equilibrium for (G, r, l).
Then, there exists a hop q ∈ [h] of G and a number L(f) ∈ R≥0 such that
the following conditions hold:
a) li,j(fi,j) ≤ L(f) ∀i ∈ {1, . . . , h}, j ∈ {1, . . . , mi}, fi,j > 0.
b) lq,j(fq,j) = L(f) ∀j ∈ {1, . . . , mx}, fq,j > 0.
c) lq,j(fq,j) ≥ L(f) ∀j ∈ {1, . . . , mx}, fq,j = 0.

It follows that C(f) = maxe∈E{ce(fe)} = maxe∈E{fele(fe)}
fe≤1

≤ L(f).
Let f∗ = (f∗i,j) be a global optimum for (G, r, l). Wlog let f∗ be such that
f∗ is a global optimal flow at every single-hop i ∈ [h]. Let α ∈ [ 1

mp
, 1] be the

maximum load of a link of hop q at Nash Equilibrium f .
If α = 1

mq
then all latency functions at hop q must be equal, from which it

follows that Cq(f
∗) = Cq(f) = 1

mq
L(f). Then, ρ(G, r, l) ≤ L(f)

C(f∗) ≤
L(f)

Cq(f∗) =

mq
Cq(f)

Cq(f∗) = mq ≤ m.

Now, let α > 1
mq

. By thr. 2, we have
Cq(f)

Cq(f∗) ≤ maxp∈{0,...,m−1}{Rp(mq, α)}
from which we get the lower bound

Cq(f
∗) ≥ Cq(f)

maxp∈{0,...,m−1}{Rp(mq, α)} =
αL(f)

maxp∈{0,...,m−1}{Rp(mq, α)} .

It follows that ρ(G, r, l) ≤ L(f)
Cq(f∗) ≤ L(f)

maxp{Rp(mq,α)}
αL(f)

=
maxp{Rp(mq,α)}

α
.

By corollary 2 and lemmas 15, 16, it follows that ρ(G, r, l) ≤ 4
3
mq ≤ 4

3
m.

To see that the lower bound of 4
3
(m−2) holds, let m be any natural number

which is divisible by 3, and consider the following 2-hop instance:
G = (V, E), V = {s, v, t}, E = E1 ∪· E2, E1 = {e1, . . . , em}, ej = (s, v),
1 ≤ j ≤ m, E2 = {em+1, em+2}, ej = (v, t), m + 1 ≤ j ≤ m + 2. Let α = 3

m
,

k = m
3

and define l = (x, . . . , x︸ ︷︷ ︸
k links

, α, . . . , α︸ ︷︷ ︸
m−k links

, α, 0︸︷︷︸
hop 2

)

Then, f = (α, . . . , α, 0, . . . , 0, 1, 0) is a worst Nash Equilibrium for (G, r, l)
with C1(f) = α2, and C2(f) = α ≥ α2 = C1(f).
Let f∗ be a global optimal solution, and wlog let f∗ route optimally at every

hop of G. Then, C2(f
∗) = 0. Since for the first hop we have C1(f)

C1(f∗)
L.11
=

R0(m, α), a global optimal solution f∗ has C1(f
∗) = C1(f)

R0(m,α)
= α2

R0(m,α)
.

From this we get ρ(G, r, l) = C(f)
C(f∗) = α

α2
R0(m,α)

= R0(m,α)
α

= R(αm)
α

= 4
3
m =

4
3
(m−2), where the fourth equality follows from Lemma 13 (α = 1

k
) and the

fifth equality follows from α = 3
m

and R(αm) = R(3) = 4. ut
From the proof of theorem 3 we can see that instances almost matching the
upper bound can already be found in the set of 2-hop networks.

5 Coordination Ratio of Linear Networks
In this section, we prove the main result of our paper, namely an upper bound
of 4

3
m for the coordination ratio of arbitrary single-commodity networks with

linear latency functions.
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