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We propose a method for determining how much to charge users of a communication network
when they share bandwidth. Our approach can be employed either when a network owner wishes
to sell bandwidth for a specified period of time to a number of different users, or when users
cooperate to build a network to be shared among themselves. We show how a Contract and
Balancing Mechanism can be defined to mediate between rapidly fluctuating prices and the
longer time scales over which bandwidth contracts might be traded. An important property of
the process is that it avoids introducing perverse incentives for a capacity provider to increase
congestion.
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1 Introduction

In this paper we propose a Contract and Balancing mechanism, involving long term contracts and
a short term balancing process, as a method for sharing capacity in a communication network.
Such capacity is usually given in terms of bandwidth, which is the amount of data that can be
transmitted per unit time—usually via fiber optic cables—specified in bits per second, or bps.
The approach we propose allows volatile prices to be appropriately averaged, and may facilitate
the creation of liquid markets in bandwidth.
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At the present time large carriers trade capacity through long-term contracts known as
Indefeasible Right of Use (IRU). An IRU is essentially a long-term lease of a portion of the
capacity of a cable by the company, or companies, that built the cable, with fiber physically
provided via switches along a single network, or segments of several networks. However, the
procedure is unavoidably complex. Fortune magazine explains it this way (Kirkpatrick 2000):

To deliver a broadband signal—say, a digitized video stream—over long distances
generally requires that the data travel entirely on one dedicated fiber-optic network.
Though these independent networks connect to pass data around, getting one net-
work to reserve a pathway for another’s traffic is complicated. It can require months
of negotiation for deals that often last years at a locked-in price.

So customers (mostly small telecoms and businesses that host Internet applica-
tions) face a dilemma. If they reserve enough bandwidth to handle only their regular
needs, they’ll have problems when usage spikes. But if they buy enough pipeline
space to serve their maximum demand, they waste money on access they’re not us-
ing. Customers would benefit enormously if they could mix and match networks to
get the most flexibility and best price.

The difficulty is that existing long-term contracts were developed in an age of fairly pre-
dictable traffic carried over circuit-switched networks. In a circuit-switched network, e.g., the
public telephone network, an accepted call reserves a circuit (which may be physical or virtual)
and hence a fixed amount of capacity which it holds for the duration of the call.

However, communication networks have evolved towards a more flexible packet-switched
technology, and there is a need for a more appropriate form of long-term contract. In a
packet-switched network, the message to be transmitted is first broken down into small units,
called packets, each containing a data portion and a header. Then—and this is the essential
distinction—the packets flow through the network using an amount of capacity that depends on
how many other flows are simultaneously in progress; at the destination the headers are stripped
off and the data re-assembled into the original message.

In summary, a user of a packet-switched network will in general not know the exact capacity
he will require; correspondingly, the network owner will not know the actual capacity require-
ments of any of the users, only the contracted amounts. Each user would like to pay only for
the capacity he uses; the network owner will not invest in capacity for peak periods if he is
only paid for contracted capacity. And yet, even if every user were able to estimate his average
period needs precisely, requirements do change over time, and in a packet-switched network,
they can fluctuate rapidly by the second. It might seem at first that a market for options could
develop here; however, this would be unlikely, since the short intervals involved would imply
high accounting costs compared with the levels of payment.

The flexibility of packet-switched technology has led to huge growth in the demand for
communications capacity, at the same time as advances in router and optical technology have
allowed a huge growth in the supply. But the rate of growth of both demand and supply has
become much more difficult to predict than the steady growth experienced over earlier decades
in circuit-switched networks. We show that the mechanism described in this paper can mediate
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between rapidly fluctuating demands and the long time scales over which bandwidth contracts
may be traded, and may thus facilitate the creation of more liquid markets in bandwidth and
will hence more ably support an industry facing considerable uncertainty of demand and supply.

1.1 Using price signals to manage congestion

One of the major advantages of the technology of the Internet over older circuit-switched tech-
nologies is that the Internet’s congestion control mechanisms, in effect, share capacity among
users so as to absorb random fluctuations in their various demands. The rate at which a source
sends packets is controlled by TCP, the Transmission Control Protocol of the Internet, which
is implemented as software on the computers that are the source and destination of the data
(Clark 1996). TCP works as follows. When a resource within the network becomes overloaded,
one or more packets are lost. Loss of a packet is taken as an indication of congestion; the des-
tination informs the source, and the source immediately reduces its sending rate. The source
then gradually increases its sending rate until it again detects the loss of packets. This cycle of
increase and decrease thus serves to discover and utilize the available bandwidth and share it
among flows.

Using dropped packets to signal congestion has obvious drawbacks. First, it is wasteful of
system resources since a dropped packet may have already consumed resources at earlier stages
of its route and may need to be resent. Second, the congestion signal is late; until packets begin
to be dropped, users are unaware that congestion is becoming a problem.

These considerations have led naturally to proposals for the introduction of congestion mark-
ing, whereby packets that encounter congestion at a resource have certain bits in their headers
set by the resource to indicate congestion. The procedure is called Explicit Congestion Noti-
fication, or ECN (Floyd 1994). Users detecting ECN marks should respond by reducing their
transmission rates. The end result will be a system that can share resources without recourse
to dropped packets, except in periods of exceptionally heavy use. ECN has now been made a
“Proposed Standard” by the Internet Engineering Task Force (IETF), the body concerned with
the evolution of the Internet architecture (Ramakrishnan, Floyd and Black 2001).

In addition to its designated use as an indicator of congestion, an ECN mark also has an
intuitively appealing interpretation as a hypothetical congestion charge. When a link is well
below capacity, there will be few if any marks generated and the appropriate charge should
be quite low. Correspondingly, when a link is near capacity, many marks are generated and
the charge should be higher. Indeed, theoreticians have developed an interpretation of TCP
as a utility-maximizing algorithm, balancing the benefit to the user of its achieved flow rate
against the impact on other users as signaled by lost packets or marks (Gibbens and Kelly 1999,
Low, Paganini and Doyle 2002). Each link indicates its congestion by a scalar variable (termed
price), and sources have access to the aggregate price of links on a route. The price at a link may
be physically realized as, for example, a packet marking probability at the link, and can also
be viewed as an implicitly constructed dual variable within an optimization framework. The
packet-level interactions of sources and resources may then be viewed as a tatonnement process
(Varian 1992), by which competing demands reach equilibrium. Under this interpretation, part
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of the remarkable success of TCP can be attributed to its ability to balance demand exceedingly
rapidly, the speed of the process being limited only by network propagation delays.

Many choices are possible with regard to the level of aggregation at which marks might
be reflected as costs or prices to users. For example, the marks could allow the dispersal of
charging operations such as metering, accounting and billing to customer systems, as argued by
Briscoe et al. (2000). Alternatively, as suggested by Key (1999), an Internet Service Provider
might manage the risk associated with congestion pricing to provide end-users with a service
defined in more traditional terms. Briscoe et al. (2003) provide an overview of the resulting
network architecture, and discuss the potential engineering and commercial advantages over
earlier Internet architectures such as Diffserv and Intserv, as a consequence of the improved flow
of information from the network provided by congestion marking.

While there has been a considerable research effort on the connection between congestion
marking and user demand in communication networks, there has been little work on the ways in
which congestion marking might impact the supply of capacity. (For a review of the basic eco-
nomic theory of congestion pricing see MacKie-Mason and Varian 1995.) One natural approach
involves the owner of the link being paid based on the number of marks his link generates.
However, this solution produces a perverse incentive for the owner to increase congestion, e.g.,
to make side payments to some users to generate sufficient traffic so as to maintain a state of
high congestion. This would lead to high revenues for the owner and low utility to the users.
Although it is possible that severe abuse by the owner would be punished by an eventual loss
of business, it is not easy to see how systematic overcharging could be prevented.

What features should a charging scheme for bandwidth possess? We believe that there are
four desirable characteristics. First, the scheme needs to allow a single network resource to
be shared among different users when the particular profile of their requirements cannot be
predicted in advance. In other words, it is not sufficient just to divide the resource between
the different users according to some profile of predicted usage. Second, the charging scheme
needs to promote the efficient use of the network resource, so that different users compete for
bandwidth at times of high congestion in a way that will select the traffic with the highest
utility (or user’s willingness to pay). Third, the scheme needs to fix a payment to the network
provider that depends on the total bandwidth made available to all the users (i.e., the size of
the network resource) and not on their actual pattern of use. This makes the payment to the
network provider match the cost of provision, in addition to removing the perverse incentive
mentioned above. Finally, the users need to be able to control the amount that they pay; and,
in particular, they should be able to protect themselves from high costs brought about through
actions of other users. We will show that the Contract and Balancing Mechanism introduced in
this paper satisfies all these requirements.

1.2 A contract and balancing mechanism

We propose a method in which the network provider sells contracts for usage. The novel part
of our proposal is that users participate in a balancing process in which they make or receive
payments based on a comparison of the marks they generated with the capacity they had con-
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tracted. More precisely, a contract for a particular link will entitle the purchaser to a certain
proportion of the congestion marks generated on that link over a specified period of time. At
the end of the period, users will make or receive payments according to whether they generated
more or fewer congestion marks than their contracted amounts. We will call this the Contract
and Balancing Mechanism (CBM).

As an example, suppose that two users have each contracted for part of a link with a capacity
of 30 megabits per second (i.e., 30 Mbps), with user A contracting for 10 Mbps and user B for
20 Mbps. We suppose that the contractual rate is c dollars per Mbps for a period of a month,
and the balancing charge is γ dollars per mark. Actual usage varies over time, and so do the
congestion marks generated. Suppose that we fix on a “settling up” period of one month. At
the beginning of the month, users A and B pay the network owner, respectively, 10c dollars
and 20c dollars. Over the course of the month, if the number of marks generated by user A is
exactly one-third the total marks generated, then at the end of the month no further payments
are made. If, however, A generated greater than a third the total marks, then in the balancing
process A will pay B the sum of

γ [zA − (1/3)(zA+zB)],

where zA and zB denote the number of marks generated by A and B, respectively. If this
expression is negative, i.e., if A generated less than a third of the marks, then A will receive
this sum from B. Observe that the balancing payments are made among the users and do not
involve the network owner; the only payments received by the network owner are the contractual
payments at the beginning of the period.

Our proposal differs from that of Reichl et al. (2001), who suggest a long-term contract
mechanism they call the Cumulus Pricing Scheme. In their scheme there are two time scales of
interest, the contractual period (e.g., one year), and the measurement period (e.g., monthly).
When actual usage over a measurement period exceeds a specified initial threshold, the user
receives a red cumulus point ; a user will receive a larger number of red cumulus points if his
usage exceeds a further threshold, and so forth. Correspondingly, when measured usage over a
month falls below a certain threshold, the user will receive a green cumulus point; if usage falls
below a lower threshold, the user will receive a larger number of green cumulus points, and so
forth. At the end of the contractual period, the total number of green points are subtracted from
the total number of red points; the final tally dictates the renegotiation of the original contract.
The Cumulus Pricing Scheme is designed to allow a user to overuse his allocated capacity in one
period if it is balanced by a period of under use at another time.

There is a substantial literature on network and computing service pricing. Masuda and
Whang (1999) provides a recent discussion of dynamic pricing schemes where the network owner
charges in a way that induces optimal arrival rates to maximize the net value of the network, and
Rump and Stidham (1998) consider the dynamic behavior of an input-pricing mechanism for a
service facility in which self-optimizing customers base their future join/balk decisions on their
previous experience of congestion. These papers model waiting times within queues explicitly,
with demand decreasing as waiting times increase. In our model, congestion prices are used to
induce traffic levels that remain below the capacity of the network: hence packet waiting times
are small, and instead of a waiting cost there is a loss of utility as traffic is priced out of the

5



market. (The delay incurred by TCP in downloading a large file is primarily a consequence
of the limited rate that can be achieved across a congested network, rather than the times
taken by individual packets to pass through router queues.) The simpler nature of our model,
with its omission of externalities caused by queueing delays, allows us to concentrate on the
game-theoretic issues that arise from our proposed Contract and Balancing mechanism. In our
final section we remark on some of the other issues that would need to be addressed before our
Contract and Balancing mechanism could be employed in models with significant externalities
due to queueing delays.

In this paper we will show that a mechanism, involving long term contracts and a short term
balancing process, will be an effective method for sharing resources in a communication network.
A number of different issues need to be dealt with. We begin by providing a more detailed
description of the balancing process and introducing the principle of price complementarity
(Section 2). We next examine the short term choices on traffic volumes as each user attempts
to maximize his utility given the contracts he holds (Section 3). In particular, we are interested
in the case where users respond to congestion signals in the same way that they respond to
congestion signals under TCP. This corresponds to price taking with a specific choice of utility
function. Our main results are presented in Section 4, where we look at the interaction between
short and long term user decisions regarding the amount of network capacity to purchase in the
contract market. In Section 5, we consider a number of issues relating to implementation of
this scheme; for example, we ask what information need be collected in order for the balancing
process to be implemented in a network. Finally, in Section 6, we provide a brief summary of
the results of the paper. Proofs of the propositions appear in the Appendix.

2 Fundamentals

2.1 The balancing process

We start by giving a more detailed description of the balancing process. Our setting is dynamic
in which traffic levels vary over time. There exist complex issues concerned with the speed at
which a system can adapt to changes in traffic through user responses to price signals. However,
this will not be our focus here. We will work with time intervals that are assumed to be short
enough that we can ignore changes in traffic characteristics during the interval, but at the same
time sufficiently long compared with round trip time that users can easily adjust traffic levels so
as to achieve their desired overall traffic rates. In dealing with behavior over a longer period of
time we will just write traffic and price as functions of a continuous time parameter and assume
that adjustments take place instantaneously.

We assume that there are n (≥ 2) users of a single link. Each user receives some price signal
from the link (in the case of Internet traffic this will be a congestion mark or lost packet), and we
write p(t) for the price per unit of traffic in time interval t. This price is the same for each user
of the link; it may depend on the overall traffic on a link, but not otherwise upon the traffic of
any individual user. We assume that p(t) is generated by the network on the basis of congestion
in the link in interval t. The balancing process does not depend on any particular price-setting
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mechanism.

Furthermore, we assume that it has been agreed that balancing payments will be based on
the price p(t) in the following way. We suppose that the capacity of the link is Y and that
user i has contracted for a total capacity of yi during this interval. We write ρi = yi/Y for
the proportion of the link contracted to user i. Then, for time period t at which traffic from
user i is xi(t) and total traffic is D(t) =

∑n
k=1 xk(t), user i is required to make a payment of

p(t)(xi(t)−ρiD(t)).

This expression can be thought of as user i making a balancing payment at price p(t) for his
own traffic, xi(t), and then receiving back a proportion ρi of all the balancing payments made,
p(t) D(t). The actual payments are made on the basis of an integral of this expression over
some convenient balancing period. We express the balancing period as the unit interval [0, 1] to
obtain

Ei =
∫ 1

0
[xi(t)−ρiD(t)] p(t) dt (1)

as the payment to be made by user i for the period [0, 1].

In the TCP case that is our main focus, congestion marks are the price signals and we will
assume that at any time t the price p(t) is defined as a constant γ multiplied by the probability
of a packet being marked in the time interval t. So γ is a price per mark. Then

∫ 1
0 xi(t) p(t) dt

is the expected value of the marks generated by user i, and Ei is the expectation of the net
payment into the balancing process by user i. We shall discuss the choice of the parameter γ,
the charge per marked packet, in Section 5: until then it is convenient to standardize units so
that γ = 1, so that the symbol p(t) may be used for both the packet marking probability and
the price at time t.

An alternative approach might be to apportion a fixed capacity charge among different users
simply on the basis of the proportion of congestion marks each user generates. Then the payment
made by user i over a period is given by

Ei =

∫ 1
0 xi(t)p(t) dt∫ 1
0 D(t) p(t) dt

cY

and there is no initial contract payment. This guarantees that the network owner receives a
total payment of cY from the users. However this approach will leave individual users carrying
a large risk. This follows because if other users do not send traffic at all, then a single user will
end up paying the entire cost of the link. For example, suppose that user i expects to use about
one tenth of the total link capacity, so that

∫ 1
0 xi(t)p(t) dt = Y/10, then user i when sharing the

resource with 9 similar users would expect to pay cY/10. However if the total traffic from other
users is very low then very few congestion marks will be generated, but the proportion due to
user i will be much larger. Thus the total cost to user i will be much higher than cY/10. In
an extreme scenario there might only be one mark generated and if this falls onto the user in
question then user i will pay cY . Thus we see that this approach does not have the last of the
four desirable features we mentioned at the end of Section 1.1. In the same circumstance under
CBM, the contract is likely to be for an amount Y/10 and the total cost to user i will have an
upper limit of cY/10 + γ(9/10)N where N is the total number of marks generated during the
period. Since in these circumstances N is small, therefore the risk to user i is limited.
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The Contract and Balancing Mechanism can be defined for a network. We suppose that a
route through the network is identified with a nonempty subset of a set of links J . We suppose
that there are price signals pj(t) for each link j ∈ J . We can define the balancing process in
the network in various ways, but our starting point is just to carry out a link by link analysis.
Suppose that a user with route r contracts for a capacity yr over the balancing period [0, 1], and
has actual traffic xr(t). If the total traffic in link j is D(j)(t) and its capacity is Yj , then the net
balancing payments made by this user for a single link j ∈ r is

∫ 1

0
[xr(t)−ρjD

(j)(t)] pj(t) dt

where ρj = yr/Yj , the proportion of the link capacity contracted to this route. Let the total
price for route r be given by pr(t) =

∑
j∈r pj(t). Then the total net payments made for route r

are given by

Er =
∫ 1

0


xr(t)pr(t)−yr

∑

j∈r

D(j)(t)pj(t)
Yj


 dt. (2)

As an example, suppose that the network consists of two links: Link 1 from point 1 to point
2 with capacity 20 Mbps, and Link 2 from point 2 to point 3 with capacity 30 Mbps. There are
three users, with user A contracting for 5 Mbps from point 1 to point 2, user B contracting for
10 Mbps from point 2 to point 3, and user C contracting for 15 Mbps from point 1 to point 3.
This can be summarized in the following table:

Link 1 Link 2
User A 5 Mbps ·
User B · 10 Mbps
User C 15 Mbps 15 Mbps

We suppose that for each link the contractual rate is c dollars per megabit per month, and
the balancing charge is γ dollars per mark, with a contractual period of one month. At the
beginning of the month, users A, B, and C pay the network owner, respectively, 5c, 10c, and
30c dollars. Let zi

X denote the number of marks generated by user X on link i. Since user A

contracted for one-fourth the capacity of Link 1, then his payment in the balancing process will
be:

γ [z1
A − (1/4)z1],

where z1 =z1
A+z1

C . Similarly, user B contracted for two-fifths the capacity of Link 2, and thus
his payment in the balancing process will be:

γ [z2
B − (2/5)z2],

where z2 = z2
B +z2

C . Finally, user C contracted for three-quarters the capacity of Link 1 and
three-fifths the capacity of Link 2. His payment in the balancing process will be:

γ [z1
C + z2

C − (3/4)z1 − (3/5)z2].

Of course, the three balancing payments sum to zero.
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2.2 Price complementarity

The price signal in a link is naturally thought of as a function of the traffic in the link. But
sometimes it is convenient to model a link as having a fixed capacity that can be fully utilized.
In this case the price signal is not determined from the overall traffic level when the link is full.
We can have a link that is full, and hence has a given traffic level, but in different circumstances
there can be different price levels (or congestion marks generated).

We can instead think of the determining factor as the level of traffic that is desired by
the users. If the total desired traffic is less than the capacity of the link, then the link is not
congested, and no congestion marks are generated, corresponding to a price of zero. If the
desired traffic level is greater than the capacity of the link then the price is set to a level which
brings actual total demand back to the capacity of the link.

This leads to a disjunction: either the link is full or the price is zero. We capture this in the
following complementarity assumption:

Assumption 1: Price complementarity. For each link j and time t, pj(t)(Yj−D(j)(t)) = 0.

We may regard the price complementarity assumption as an approximation when prices rise
sharply from zero as the traffic levels approach the capacity of the link.

In the Internet, the mechanisms which place marks on packets at routers are generically
termed active queue management. These mechanisms function by marking packets at a resource
when measurements, such as arrival rate or queue size, indicate that congestion is near. Many
of the recent suggestions for active queue management adapt marking rates so as to achieve a
preset target for utilization or average queue size. Such adaptation can be interpreted in terms
of a design goal to implement price complementarity. For details and discussion, see Low et al.
(2002).

Assumption 1 enables us to simplify the equations for balancing payments. Specifically,
equation (1) takes the form

Ei =
∫ 1

0
[xi(t)−yi] p(t) dt, (3)

while the network version (2) simplifies to

Er =
∫ 1

0
[xr(t)−yr] pr(t) dt. (4)

It is important to realize that, although the Contract and Balancing Mechanism has been
designed to benefit users having highly variable bandwidth requirements, there are also sub-
stantial benefits to users whose bandwidth requirements are constant. Thus, in comparison
with a conventional method that simply divides up available capacity among the users, under
CBM a user who contracts for capacity on a link and only ever delivers that amount or less
into the network (say, through a pipe with exactly this capacity) will never be required to make
payments—and, in fact, might receive payments—in the balancing process. The simplest way to
see this is to invoke the price complementarity assumption and then observe that the statement
is a direct consequence of expression (3) or (4).
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3 Choice of Traffic Volume

3.1 Price taking

We begin our modelling by looking at the short term choices to be made by players (where we use
the term “player” rather than “user,” to include the possibility that an Internet Service Provider
has purchased a contract on behalf of a collection of end-users). We start by considering a single
link and a single time interval, so we drop t from our notation. We suppose that player i has
already fixed a contract position yi and we turn to the question of deciding on the demand xi .

There are several alternative models we could consider. However, we will start by considering
the simplest, which is to assume that all the players act as price takers, assuming that they can
have no effect on price or total demand, where each player has quasi-linear utility Vi(xi). We
ask what value of traffic is best for player i if the price, p , and the total demand, D , are given
and independent of player i ’s choices.

This has the effect of setting xi to be a price-dependent demand function, which we write
as Di(p) for player i. In this case we must choose xi = Di(p) to maximize

Vi(xi) = ui(xi)− [xi − ρiD] p (5)

where ui(xi) denotes the utility to player i if he generates a traffic volume xi in the time interval.
Under the normal assumption that the function ui(xi) is strictly concave and differentiable, the
maximum utility is achieved by choosing xi to solve u′i(xi)= p, with xi = 0 if p> u′i(0). So we
end up with a demand function for player i of

Di(p) = (u′i)
−1(p)

which, under our assumptions, is a well-defined decreasing function of p.

Though this discussion has been quite general, an important special case occurs if the Trans-
mission Control Protocol (TCP) is used. The steady state behavior of TCP has been ana-
lyzed extensively. In equilibrium, the throughput x achieved by a connection is approximately
k /(T

√
p), where T is the round-trip time of the connection, p is the packet loss or marking

probability, and k is a constant (Floyd and Fall 1999). This motivates consideration of the
demand function

Di(p) =
αi√
p
, (6)

where the parameter αi is determined by the number of TCP connections of player i, and their
various round-trip times.1 This will correspond to price-taking behavior for a player with utility
function of the form:

ui(x) = Ki − α2
i /x, (7)

for some arbitrary constant Ki. Gibbens and Kelly (1999) and Kunniyur and Srikant (2003)
have made this observation when congestion marks are straightforward charges rather than being
part of a balancing mechanism.

1Recall that we have standardized units so that the price per packet mark is 1.
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The TCP protocol was designed for applications such as bulk data transfer, and other con-
gestion control algorithms have been developed for applications such as streaming multimedia.
Many of these algorithms are explicitly designed to have the same bandwidth usage as TCP
when faced with the same marking probability (Floyd et al. 2000), and hence share the same
approximate demand function (6). A more general class of demand functions

Di(p) =
αi

p1/β
, (8)

where β ∈ (0,∞) has been studied in connection with more general congestion control algo-
rithms. The cases β = 1, β = 2 and β →∞ correspond respectively to notions of proportional
fairness, TCP fairness and max-min fairness (Mo and Walrand 2000), and there are currently
proposals to alter the TCP algorithm in a manner which would vary the parameter appearing
in its implicit demand function (8) from β = 2 downwards, perhaps as far as β = 1 (Floyd 2003,
Kelly 2003). Our later development will use a time-varying version of this demand function,

Di(t, p(t)) =
αi(t)

p(t)1/β
. (9)

corresponding to a time-varying utility function for player i of

ui(t, xi(t)) = αi(t)β xi(t)1−β

1− β
, β 6= 1

ui(t, xi(t)) = αi(t) log xi(t), β = 1.

We assume that all players share the same choice of β, but we allow αi(t) to fluctuate stochas-
tically, as connections come and go. Note that the demand function (9) is unbounded as p → 0,
and thus if the price complementarity condition holds, then for a link with capacity Y , we have∑

Di = Y , and so the price on the link is given by

p(t) =
(∑n

1 αi(t)
Y

)β

. (10)

3.2 More sophisticated player behavior

Next, we consider how a player might be motivated to deviate from price-taking behavior if he
takes into account the impact of his choices on the price p and the total demand D.

We will suppose that price complementarity holds. This enables us to carry out an analysis
of the optimal choice of traffic when a player knows the demand functions for the other players
(or at least the aggregate of these). As before, we consider a single link and a single time interval.
Thus, from (3), player i chooses xi to maximize

ui(xi)− p(xi−yi).

Under price complementarity, player i views the price p as a function p(xi) of its choice of traffic
xi, where p(xi) is determined by

D−i(p(xi)) + xi = Y,
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where D−i is the aggregate demand function of the other players. The viewpoint here is that a
player, rather than responding to a price signal, is controlling the price. We have

∂p

∂xi
=

1
−D′

−i(p)
.

Hence player i chooses xi so that

u′i(xi)− p− (xi−yi)
∂p

∂xi
= 0,

which can be rewritten as
(xi−yi) = D′

−i(p)[p− u′i(xi)]. (11)

When we consider individual decisions on the demand xi, it is not very satisfactory to assume
that a player will ignore actual price feedback in preference for a calculation based on an estimate
of the aggregate demand function D−i. However, we can use (11) to suggest an adjustment to the
demand function that would arise from the simpler price-taking approach. Under price taking,
player i would have selected xi so that u′i(xi) = p. Now D′

−i(p) < 0 and we assume that utility is
concave, so u′i is a decreasing function. Hence from relation (11) we see that, in the short term,
player i departs from price taking by understating/overstating his demand, according as his
demand is greater/less than his contracted capacity. He thus moves his demand in the direction
of his contracted capacity, a relatively benign deviation from price-taking behavior. Note also
that it is not necessary that player i be small for his behavior to be well approximated by price
taking: it is enough that the mismatch between his optimized demand and his contract capacity
be small.

A more extended version of the above argument would assume that each player j chooses a
demand function Dj(p), and would look for a Nash equilibrium among the demand functions.
This could give some indication of the equilibrium that might result when players repeatedly
adjust their demand behavior over time, as they learn of the other players’ choices. This is
essentially the same approach as has been suggested by Klemperer and Meyer (1989) within a
supply function—rather than demand function—context, and has also been used for electricity
(Green and Newbery 1992, Newbery 1998). It is perhaps less reasonable for us to suppose that a
player has so much knowledge of other players: as pointed out in Ganesh, Laevens and Steinberg
(2000), it is impractical for players in networks to be aware of even the number of other players
sharing resources with them. They also point out that in their setting, which applies equally
here, there can be multiple Nash equilibria and that sufficient conditions for uniqueness of the
Nash equilibrium are apparently neither simple nor intuitive. Further, there seems to be no
mechanism available that would lead players towards an equilibrium solution in the time scales
we are considering.

In our later development we shall assume price-taking behavior. We are motivated to do this
by the discussion of this section, which shows that more sophisticated behavior can be viewed
as a perturbation of price-taking, and by the observation that the steady state behavior of TCP
can be interpreted as price-taking.

Assumption 2: Price-taking. For his short-term choice of traffic volume, player i acts as a
price-taker with demand function Di(p) related to his utility via the equation u′i(Di(p)) = p.

12



3.3 Inappropriate incentives

As mentioned in the introduction, one important feature of the proposed method is that it
provides no incentive to the network owner to increase congestion in the network by adding
additional traffic.

We might ask whether there is ever an incentive for a player to boost his traffic artificially,
thereby gaining from the balancing process more than his potential losses from marked packets
as the link reaches capacity. This will happen only in some very specific circumstances. For
example consider a player, A, who has contracted for half the capacity of a link and knows
that the other players are using 60% of the link without any significant peakiness in their traffic
characteristics. This would enable A to benefit by pushing artificial traffic into the link so that it
is essentially at capacity, thereby pushing the price up. The other players will, in this scenario,
make a net payment into the balancing process of around 60% of all payments and end up
contributing to player A a total of 1/6 of all their payments in the balancing process. Notice,
however, that the only occasion when there is an incentive for a player to add artificial traffic
occurs when some other player is sending in a consistent way more than their contract amount of
traffic and is also operating with inadequate methods for reducing traffic as prices increase. This
is precisely the kind of behavior that we might wish to discourage, and the balancing process
will have the desirable deterrent effect.

We can interpret this same hypothetical situation in terms of non-price-taking behavior as
expressed in (11). Sending artificial traffic corresponds to a choice of xi for which u′i(xi) = 0.
This can be a solution of (11) only when xi < yi, so that player i’s traffic volume remains less
than his contracted amount. Moreover the sending of artificial traffic with the aim of creating
a significant benefit in the balancing process can only occur with high prices p, which in turn
will imply from (11) a small value of D′

−i(p), i.e. low price sensitivity by the other players.

4 Choice of Capacity

In this section we consider the two stage process where in the first stage players decide on the size
of contract they wish to purchase over the balancing period [0, 1], and these decisions determine
the size of the link (or network) which is built or purchased. The second stage of the process
occurs as the players make short term choices with respect to the quantity of traffic they wish
to send at each time point t ∈ [0, 1].

Since the CBM scheme does not require a match between contractual amounts and actual
traffic level, it is of interest to investigate how close these will be. There is nothing to prevent
a player from contracting for more than his expected usage so as to benefit from payments in
the balancing market or, correspondingly, from contracting for only a small (or zero) amount
and paying more directly for his actual usage via the balancing process. We shall identify
circumstances where a player has an incentive to contract for a capacity closely related to his
anticipated usage.

13



4.1 Choice of capacity for a link

Consider the CBM scheme for a link with n ≥ 2 players. Here we will assume player i (i =
1, 2, . . . , n) contracts for a capacity of yi over the balancing period [0, 1], at an immediate cost
to him of Ci(yi). A link capacity Y =

∑
i yi is then available for use by all n players over the

period [0, 1]. We will assume that Ci is a linear function: Ci(yi) = ciyi. We have in mind a
situation in which decisions on the capacities yi are taken before the construction of the link
and it is reasonable to take the cost for one user as independent of the costs for others.

The case that is of primary interest to us is that where a player—e.g., an ISP—is contract-
ing on behalf of end-users who are each operating under TCP. In this case the end-users are
constrained to operate as though their utility functions were of the form given by equation (7).
We model a situation in which this is indeed their utility function and the player who contracts
on their behalf uses this utility function when making tradeoffs between the cost of contracting
for a greater amount and the benefit to end-users as the size of the link is increased.

At time t ∈ [0, 1] we assume that the demand from player i is a function Di(t, p(t)) of a price
p(t), with

D(t, p(t)) =
n∑

1

Di(t, p(t)) ≤ Y. (12)

The total expected cost to player i of the contract for capacity yi is

Wi = Ci(yi) +
∫ 1

0
E [(Di(t, p(t))− ρiD(t, p(t))) p(t)] dt (13)

where ρi = yi/Y is the proportion of the link contracted to player i. The utility to player i at
time t is ui(t,Di(t, p(t))). Thus, the expected utility to player i over the period [0, 1] is

Ui =
∫ 1

0
E[ui(t,Di(t, p(t)))] dt. (14)

Hence player i, whom we assume to be risk neutral, will choose capacity yi so as to maximize

Vi = Ui −Wi =
∫ 1

0
E[ui(t,Di(t, p(t)))− (Di(t, p(t))−ρiD(t, p(t))) p(t)] dt − Ci(yi). (15)

Equation (15) indicates that the utility to player i has three components: (i) a positive benefit
corresponding to his actual demand over the period, (ii) a dis-benefit from having to pay for his
actual demand, net the payment reduction from the balancing process; and (iii) a dis-benefit
from the payment for the contracted capacity.

Next we consider the optimal choice of contract amount for player i. In addition to the price
complementarity assumption, we take each Di as given by (9), where the probability distribution
for (αi(t), t ∈ [0, 1], i = 1, 2, ...n) is common knowledge. We suppose player i’s utility ui(t, xi(t))
is consistent with his demand function, so that u′i(t,Di(t, p(t))) = p(t), using u′i, and later D′

i,
to denote the partial derivative with respect to the second argument. Let α(t) =

∑
j αj(t), and

write y−i for
∑

j 6=i yj .

14



Proposition 1 For given values of yj, j 6= i, player i has an optimal choice of contract quantity
yi which is unique. The choice is zero if

∫ 1

0
E

[(
α(t)
y−i

)β (
1 + β

αi(t)
α(t)

)]
dt < ci, (16)

and is otherwise given by the solution of the following equation:
∫ 1

0
E

[(
α(t)
Y

)β (
1 + β

αi(t)
α(t)

− β
yi

Y

)]
dt = ci (17)

The condition (16) gives a bound on the contract price, beyond which the cost of participating
in a contract is sufficiently expensive that a player will choose not to contract for any amount,
but pay for usage entirely through the balancing process. Note that (α(t)/y−i)

β is just the
anticipated price if yi = 0, so this condition can also be seen as giving the factor by which ci

must exceed this anticipated price, if contracts are to be uneconomic.

Now we turn to the case where each of the players are individually seeking to maximize their
overall utility—thus we consider a Nash equilibrium between the players with respect to their
choice of yi. First we consider a simple case in which one player is distinguished from all the
others.

Example 1: A network constructor. Suppose that one player, a network constructor, is
about to build a link at cost c1 per unit of capacity. This player has no demand of its own
but will profit by selling capacity to other users at a rate of c2 per unit of capacity using the
Contract and Balancing Mechanism. We assume symmetry of the demand structure among the
other players. An option for the network constructor is to build more capacity, by an amount
y1, than the other players require in total, and then to benefit from payments in the balancing
process.

In looking for a Nash equilibrium in the quantities yi we will optimize over y1 for given
y2, ...yn and hence the payment (c2 − c1)

∑n
i=2 yi does not change the choice of optimal y1. So

we need to consider the case where c1 < c2 = c3 = ... = cn, D1(t, p(t)) = 0, t ∈ [0, 1], the joint
distribution of (αj(t), j = 2, 3, ..., n) is invariant under permutation of players j = 2, 3, ..., n,
and β ≥ 1. To find a Nash equilibrium we look for a solution y1 > 0, y2 = y3 = ... = yn > 0 to
relations (17). The relation for player 1 gives

(
1− β

y1

Y

)∫ 1

0
E

[(
α(t)
Y

)β
]

dt = c1, (18)

while adding relation (17) over all n players gives
∫ 1

0
E

[(
α(t)
Y

)β
]

dt =
c1 + (n− 1)c2

n
. (19)

The left hand side of equation (19) is decreasing in the total capacity Y , and admits a unique
solution for Y . Since c1 < c2, relation (18) then admits a unique solution for y1, which lies in the
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range 0 < y1 < Y/β. Equation (17) can then be solved by y2 = y3 = ... = yn = (Y −y1)/(n−1).
Thus we have a Nash equilibrium where player 1 chooses a positive value of y1, in order to
benefit later from the balancing process.

Next, we show that this Nash equilibrium is unique. First any equilibrium must have y1 > 0,
since if y1 = 0 then from Proposition 1

∫ 1

0
E

[(
α(t)
Y

)β
]

dt ≤ c1,

while adding relation (17) over i such that yi > 0 gives that the same expression is not less
than c2, a contradiction since c1 < c2. Hence, at an equilibrium, y1 > 0, and so relation (18)
holds. Hence y1 < Y/β ≤ Y , and so at least some of y2, y3, ..., yn are positive. That all of
these variables are positive at an equilibrium now follows, since if relation (17) holds for a value
i ∈ {2, 3, ..., n} then inequality (16) cannot simultaneously hold for a different value i in this
range, by the symmetry assumption on the joint distribution of (αj(t), j = 2, 3, ..., n). Finally
y2 = y3 = ... = yn, from relation (17) and the assumed symmetry of the demand structure.

Finally, we consider whether player 1 might have an incentive to artificially induce congestion
later, in the second stage of the game (violating our assumption that he acts as a price-taker
at this stage). Suppose, then, that at a later time t, when the aggregate demand function from
players 2, 3, ..., n is D(t, p(t)) = α(t)/p(t)1/β, player 1 chooses to send an amount of (valueless)
traffic d(t) in an attempt to increase his benefit from the balancing process. Then the net
payment to player 1 at time t will be

(y1 − d(t))p(t) = (y1 − d(t))
(

α(t)
Y − d(t)

)β

.

This expression will be maximized by the choice d(t) = 0 provided y1 < Y/β. Thus players
2, 3, ..., n can be assured that, provided player 1’s share of capacity is bounded by 1/β, he will
have no incentive to send spurious traffic in the second stage of the game. ¤

Example 2: Cournot competition. Suppose c1 = c2 = ... = cL < cL+M = cL+2 = ... = cL+M ,
Di(t, p(t)) = 0, i = 1, 2, ..., L, t ∈ [0, 1], and the joint distribution of (αj(t), j = L+1, L+2, ..., L+
M) is invariant under permutation of players j = L+1, L+2, ..., L+M . We look for the existence
of a Nash equilibrium where y1, y2, ..., yL > 0 and yL+1 = yL+2 = ... = yL+M = 0, so that players
1, 2, ..., L supply all the capacity and players L+1, L+2, ..., L+M act only as customers, with all
their costs arise in the balancing market, in which they simply pay the price p(t) for any traffic
they generate.

The relation (17) for players 1, 2, ..., L becomes

(
1− β

yi

Y

)∫ 1

0
E

[(
α(t)
Y

)β
]

dt = c1, i = 1, 2, ..., L (20)

while yL+1 = yL+2 = ... = yL+M = 0 implies that
(

1 +
β

M

) ∫ 1

0
E

[(
α(t)
Y

)β
]

dt ≤ cL+1. (21)
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We deduce that, provided (
1 +

β

M

)
c1 ≤

(
1− β

L

)
cL+1, (22)

there exists a Nash equilibrium with yL+1 = yL+2 = ... = yL+M = 0 and y1 = y2 = ... = yL, where
y1 is the unique solution to the equation

(
1− β

L

) ∫ 1

0
E

[(
α(t)
Ly1

)β
]

dt = c1. (23)

This equilibrium is unique, by a variant of the argument used to show uniqueness in Example
1: observe that if any one of yL+1, yL+2, ..., yL+M is positive then they must all be equal, by the
symmetry assumption on the joint distribution of (αj(t), j = 2, 3, ..., n).

Next we consider the relationship of the above model with the Cournot model of an oligopoly.
Suppose that player i, i = 1, 2, ..., L, chooses yi to maximize

yi

(
P

(
L∑

1

yj

)
− c1

)

where

P (Y ) =
∫ 1

0
E

[(
α(t)
Y

)β
]

dt,

the time-averaged expected price if a total capacity Y is constructed. Then there is a unique
Nash equilibrium; at this equilibrium y1 = y2 = ... = yL, where y1 is the unique solution to
equation (23).

Hence the condition (22) is necessary and sufficient within our model for players L+1, L+
2, ..., L+M to act only as customers, and for players 1, 2, ..., L to act as if playing within a
Cournot game. Observe that the condition becomes easier to satisfy the larger the number of
suppliers L, the number of customers M , or the ratio of costs cL+1/c1.

If condition (22) is not satisfied then players L+1, L+2, ..., L+M will contract for positive
capacities, and by adding relation (17) over all players we obtain that the time-averaged expected
price is ∫ 1

0
E[p(t)] dt =

∫ 1

0
E

[(
α(t)
Y

)β
]

dt =
Lc1 + McL+1

L + M
,

generalizing equation (19). ¤

The symmetry assumptions on demand in Examples 1 and 2 were important in establishing
the uniqueness and the form of the Nash equilibrium. Now we consider the case where each
player has the same unit cost ci = c, i = 1, 2, ..., n, but are not otherwise identical, and we show
the existence of a unique Nash equilibrium.

Proposition 2 Under price complementarity, and assuming that all players follow a price-
taking policy, there is a unique Nash equilibrium for the contract quantities yi, i = 1, 2, ..., n. At
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the Nash equilibrium, the time-averaged expected price is the cost per unit of capacity:
∫ 1

0
E[p(t)] dt = c, (24)

and player i’s optimal choice of contract quantity yi is given by

yi = c−1/β

(∫ 1

0
E[α(t)β] dt

) 1
β
−1 ∫ 1

0
E

[
α(t)β−1αi(t)

]
dt . (25)

Moreover yi satisfies the following equation:

yi =

∫ 1
0 E [p(t)Di(t, p(t))] dt∫ 1

0 E[p(t)] dt
. (26)

Observe that the form (26) exhibits player i’s choice of contract quantity yi as a price-
weighted integral of Di(t, p(t)), the anticipated usage by player i of the link. A similar form,
but with a more general weight function, will occur in the next section.

Efficient investment in capacity occurs when the price on a link (what the users are prepared
to pay for more capacity) is the same as the cost of additional capacity. However the situation
here is complicated by the fact that prices fluctuate over time. The appropriate measure becomes
the time average of the expected price. Hence equation (24) establishes that the Nash equilibrium
induces players to contract for quantities which result in efficient investment in the capacity of
the link.

Example 3: The impact of sharing on capacity built. Using Proposition 2 we see that
the total capacity constructed by n players will be

Y =
n∑

i=1

yi = c−1/β

(∫ 1

0
E[α(t)β] dt

) 1
β

. (27)

If each player had constructed his own dedicated capacity, the total capacity built would be

n∑

i=1

c−1/β

(∫ 1

0
E[αi(t)β] dt

) 1
β

. (28)

If, for i = 1, 2, ..., n, the parameter αi(t) is neither time-varying nor stochastic, so that αi(t) = αi

for t ∈ [0, 1] where αi is a constant, then the total capacity constructed, Y , will be the same in
both cases. Further, from equation (10), the price on either the shared link, or on each of the n

dedicated links, will be p(t) = c, for t ∈ [0, 1]. For example, suppose that β = 2, and that player
i carries a constant number, αi, of connections over the interval [0, 1]. Then each connection
will receive a throughput c−1/2. Moreover, if the utility of each connection is u(x)=−1/x2, then
these values, for capacity initially constructed and throughputs later achieved, are exactly the
values which maximize the sum of utilities over all connections minus the cost of the capacity.

Suppose that β > 1. Then the total dedicated capacity (28) is larger than the shared
capacity (27), by Jensen’s inequality, unless αi(t) = αi with probability one for almost every
t ∈ [0, 1], i = 1, 2, ..., n.
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Example 4: Effect of variability in demand. It is interesting to ask how variability in
anticipated demand affects the size of the contract that a player will take. We use the Nash
equilibrium result to explore this question. Consider a situation in which two players have the
same average level of traffic so that

∫
Eα1(t) dt =

∫
Eα2(t) dt but player 1’s demand has higher

variability, in the sense that
∫
Eα1(t)2 dt >

∫
Eα2(t)2 dt. We ask which of the two players will,

in a Nash equilibrium, take the higher contract amount? The analysis here makes no distinction
between variation over time and variance of the values of αi at any fixed time. Thus we might
be considering a case where player 1 knows that his traffic volume will fluctuate significantly
according to the time of day while player 2 has a constant amount of traffic, but equally we
might consider a situation in which both players have the same expected demand profile over
the day, but for player 1 this is a forecast with considerable uncertainty, while player 2’s usage
can be predicted with near certainty.

Consider the case β = 2. Observe that y1 and y2 as given by (25) differ only in the term∫ 1
0 E[α(t)αi(t)] dt. Now

∫ 1

0
E [(α1(t) + α2(t))α1(t)] dt−

∫ 1

0
E [(α1(t) + α2(t))α2(t)] dt

=
∫ 1

0
Eα1(t)2 dt−

∫ 1

0
Eα2(t)2 dt > 0.

Thus player 1, the player with higher variability of demand, will take the larger contract in this
case. The result depends on the parameter β: if β = 1 the optimal choice of contract quantity
(25) depends only on the expectation

∫
Eαi(t) dt and not on higher moments. ¤

4.2 A network model

We next discuss a stylized network model, rather than a single link. Although we cannot give
general sufficient conditions for a Nash equilibrium to exist, we shall see that, under certain
conditions, any interior Nash equilibrium must take a form generalizing expression (26).

Associate each player with a single route, which is just some subset r of the set of links, J .
Thus our stylized network model does not allow a player to control more than one route. It
would certainly be desirable to remove this restriction, and to allow a player to distribute his
traffic over several routes, but this is not allowed in the model considered here.

Suppose that each link j of the network is associated with a cost cj per unit capacity. Let
R be the set of players. For each r ∈ R, player r contracts for a capacity yr over the balancing
period [0, 1] at an immediate cost to him of yr

∑
j∈r cj . If this is a consortium of players building

a network, then a capacity of
Yj =

∑

r:j∈r

yr (29)

is built on link j at a cost of cjYj . Thus the sum of the immediate costs to the players r ∈ R

exactly match the sum of the build costs of the links j ∈ J . In any case we will assume that
each link is fully contracted so that (29) always holds.
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At time t ∈ [0, 1] the demand from player r is a function Dr(t, pr(t)) of a price pr(t), where
pr(t) satisfies ∑

r:j∈r

Dr(t, pr(t)) ≤ Yj j ∈ J (30)

pr(t) =
∑

j∈r

pj(t) r ∈ R. (31)

The total cost to player r of the contract is

Cr = yr

∑

j∈r

cj +
∫ 1

0
[Dr(t, pr(t))−yr] pr(t) dt. (32)

Note that equations (30, 31) do not involve the costs (cj , j ∈ J), although we should expect
these costs to influence the choice of (yr, r ∈ R) and hence of the capacities Yj , j ∈ J .

We shall assume that the set of routes R includes {j} for each j ∈ J , so that for each link of
the network there is a player able to provide capacity on just that link. This ensures that the
link-route incidence matrix has rank J . Observe that for simplicity of notation we are using J

to indicate the total number of links, as well as set of links itself. Similarly, we shall write yk

for y{k}.

We now describe a simple example, to illustrate the notation and one of the new features
present in a network model.

Example 5: A hub and spokes network. Consider a network where the set of routes is
R = {{j}, j ∈ J, {i, j}, i 6= j, i, j ∈ J}, and Dr(pr) = α/pr, r ∈ R. We may view the J links of
the network as forming a hub and J spokes, with each route comprising either a single link, or
two links. From (30, 31) we have that

∑

i6=j

α

pi + pj
+

α

pj
= Yj .

Differentiating these equations with respect to yk we obtain,

−
∑

i 6=j

α

(pi + pj)2

(
∂pi

∂yk
+

∂pj

∂yk

)
− α

p2
j

∂pj

∂yk
= 0 k 6= j

−
∑

i6=k

α

(pi + pk)2

(
∂pi

∂yk
+

∂pk

∂yk

)
− α

p2
k

∂pk

∂yk
= 1 k = j.

Now suppose that Y2 = Y3 · · · = YJ , so that p2 = p3 = · · · = pJ , and consider the effect of
varying y1. We can solve for the partial derivatives, and it follows that

∂p1

∂y1
= −(p1 + p2)2

Jα
+ o(J−1)

while
∂p2

∂y1
=

2p2
2

J2α
+ o(J−2)
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as J → ∞. Thus both partial derivatives decay with an increase in the number of links J in
the network. But note especially that the second of the above partial derivatives decays much
more quickly than the first. This is an intuitively plausible result: varying the capacity of link
1 should be expected to have a more significant effect on prices at link 1 than on prices at other
links. ¤

In general
∂pr(t)
∂yr

=
∑

j∈r

∑

k∈r

∂pj(t)
∂yk

.

We shall make the approximation that

∂pr(t)
∂yr

=
∑

j∈r

∂pj(t)
∂yj

. (33)

This approximation ignores the cross-derivatives ∂pj(t)/∂yk for j 6= k; we have seen that they
are of smaller order than the diagonal terms ∂pj(t)/∂yj , at least for the simple network described
in Example 5. As well as this approximation, we assume price complementarity and that players
act as price takers in the short term. However we make no assumption on the forms for the
demand functions Dr, other than that they are decreasing and continuously differentiable.

Proposition 3 If yr, r ∈ R, is a Nash equilibrium at which yr > 0, r ∈ R, then yr satisfies the
equation

yr =

∫ 1
0 E [wr(t)Dr(t, pr(t))] dt∫ 1

0 E [wr(t)] dt
, (34)

where wr(t) = ∂pr(t)/∂yr. Further, the time-averaged expected price on link j is the cost per
unit of capacity on link j: ∫ 1

0
E[pj(t)] dt = cj . (35)

As in Proposition 2, the optimal choice of contract quantity (34) is just a weighted integral
of the anticipated usage. Whether there exists a useful sufficient condition for equations (34, 35)
to identify a unique Nash equilibrium in the network case remains an open question. Even in the
single link case the assumption (9) on the form of the demand functions is critical; without this
assumption it is possible to construct a single-link example where equations (34, 35) identify a
point which is not a Nash equilibrium.

5 Implementation Issues

There are a number of issues which need to be dealt with in considering the implementation of
the Contracting and Balancing Mechanism. Recall that with ECN marking, we suppose that
pj(t) is given by a multiple γ of the proportion of packets passing through link j at time t that are
marked. (For the purpose of this discussion we assume dropped packets are exceptional.) One
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critical issue is the information requirements. With a single link this is quite straightforward.
The balancing process needs to know for each player the total number of packets that have been
marked during the balancing period. If player i accounts for a total of zi packets marked during
the balancing period, then player i pays into the balancing process a net amount of

Ei =
∫ 1

0
[xi(t)−ρiD(t)] p(t) dt = γ

[
zi − ρi

n∑

k=1

zk

]
.

In implementing this scheme we might wish to have some check on the accuracy of reported
numbers of marked packets (cf. Briscoe et al. 2000).

When we come to consider the information requirements for a network there are a number
of options. First, consider the case where for each link j in the network we record Qj , the
total number of marks generated on that link during the balancing period (we do not need to
assign these marks to individual routes). If we also know the total number of packets marked
by each player, then from (2) the player associated with route r will make a net payment into
the balancing process of

Er = γ


zr − yr

∑

j∈r

Qj

Yj


 . (36)

This calculation assumes that Qj is not incremented when a packet that is already marked is
marked again (otherwise, the sum of all balancing payments might not be zero).

In order for the Contract and Balancing Mechanism to work well in a network we need the
price for a route r to be given by the sum of the prices on the links of that route (i.e. for
relation (31) to hold). If the marking probabilities on any link are small, then it is unlikely that
the same packet will be marked twice and this assumption will be sufficiently accurate.

In the case where we do not have access to marked packet counts for individual links in
the network, then it can still be possible to make estimates for the amounts to be paid in the
balancing process. Suppose that price complementarity holds. Then Er is given by (4) and
the estimation problem becomes that of estimating

∫ 1
0 pr(t) dt. It is possible that players would

agree to this being estimated for each route by the network owner sending uniformly distributed
“probe packets” on that route. Then, if Pr is the proportion of probe packets marked or dropped
during the balancing period,

Er = γ(zr − yrPr).

Another possibility is that the network owner might identify a subset of a player’s packets,
uniformly distributed in time, as probe packets. Notice that we cannot sensibly use the overall
proportion of a player’s packets marked or dropped (i.e. Qr/

∫ 1
0 xr(t) dt ) as an estimate of∫ 1

0 pr(t) dt. Doing so would just encourage players to send artificially high amounts of traffic at
quiet times in order to decrease this ratio

A remaining issue is the choice of γ, the charge per mark. This figure has to be agreed to by
the users at the outset as part of the contract arrangement - it is simply a scale factor applied
to the price. It is interesting that if price complementarity holds then the choice of γ will make
very little difference to the outcome in terms of the contract amounts yi or the transmission
rates that actually occur. It turns out that changing the value of γ does not lead to a change
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in the price, which is the product of γ and the marking probability. Instead, increasing γ just
leads to a scaling down of the marking probability with the average price in the link staying
the same (as is shown by (23)). As we discussed earlier, changes in the marking probability
are not necessarily related to changes in traffic volume. In this case both yi, given by (25),
and the traffic volume, Di(t, p(t)), remain unchanged. Even if price complementarity does not
hold exactly, this will still be approximately true. Hence we can set an appropriate value for γ,
the charge per mark, by deciding on a desired rate of marked packets, and then using (23) to
determine γ. In this way we can minimize the risk that the marking probability becomes high.

6 Conclusion

In this paper we have proposed a Contract and Balancing Mechanism, involving long term con-
tracts and a short term balancing process, as a method for sharing resources in a communication
network. The approach allows volatile prices to be appropriately averaged, so as to mediate be-
tween rapidly fluctuating congestion prices and the longer time scales over which bandwidth
contracts might be traded, and eliminates the incentive for a capacity owner to increase conges-
tion.

In Section 1.1 we set out four characteristics that a bandwidth charging mechanism should
possess: sharing of resources when demand is unpredictable; allocation of resources in a way
that reflects the users’ underlying utilities; payment to the network provider based on bandwidth
provided rather than demand; and protection of users from high costs when they have low usage
These are features of the mechanism we propose, but it is not the only mechanism that has
these properties. For example, we could use a balancing mechanism based on the square of the
number of marks received over the balancing period. More generally, for any increasing function
f(·), a user who generates zi marks could pay into the balancing mechanism an amount f(zi)
and receive back a proportion ρi of the total payments made by all users. This gives a balancing
payment of

Ei =
∫ 1

0
[f(xi(t) p(t))− ρi

n∑

k=1

f(xk(t) p(t))]dt.

The CBM approach is the simplest mechanism of this form and has the benefit of inducing
appropriate investments in link capacity (as shown by Proposition 2).

We have studied the existence and form of Nash equilibria for players’ choices of capacity
using a framework in which the players each begin by buying some capacity at the first stage,
then the traffic eventuates and finally payments are made to other players as a result of the
balancing process. We have been able to show that in many cases the choice of capacity at the
equilibrium will be close to the predicted traffic demand at the anticipated price.

Specifically, we have three main results. The first states that each player will have a unique
optimal choice of contract quantity for a link given any set of contract quantities by the other
players. The second states that if the players have the same marginal link cost and if they all
follow a price-taking policy, then there is a unique Nash equilibrium for the contract quantities;
further, the time-averaged expected price is the cost per unit of capacity. Finally, the third
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result generalizes the second result, under certain conditions, by finding the form of an interior
Nash equilibrium.

The Contract and Balancing mechanism we propose can also be employed in other situations
in which users compete for a service resource with significant negative externalities, so that
costs are imposed on other users when one of the users increases his use of the resource. For
example this occurs when users queue for a limited capacity resource. In order to use the
mechanism it would be necessary to record for each user, as a congestion charge, an estimate
of the externality (Dewan and Mendelson 1990) imposed on other users. However, rather than
pay the aggregate congestion charges to the service provider after the event, the user contracts
with the service provider in advance for a proportion of the total congestion charges. This
payment would be made in addition to any more conventional usage charges. Then, at the
end of each balancing period, a balancing process occurs: the proportion of congestion charges
contracted for is compared with the proportion of congestion charges incurred. Users who turn
out to be responsible for more than their contracted proportion of congestion charges need to
make a further payment, while users who end up with a smaller than contracted proportion of
congestion charges will receive a payment. The advantage of this sort of charging scheme is that
it provides appropriate price signals for the user while avoiding uncertainty in income for the
service provider.

An important further issue relates to competition among network providers. Though we
do not deal with this issue explicitly in this paper, we do in Example 2 consider a form of
competition between suppliers of capacity on the same link. It would be of considerable interest
to consider competition among providers of capacity on different links. Where the links are
direct substitutes, it is natural to consider the case where routing is sufficiently flexible to
enable an equalization of congestion prices on the various links. In this case, CBM applied to
each link separately will have the same net result as if it were applied to the combined link. An
analysis similar to that of Example 2 could then be carried out, with Cournot outcomes from the
capacity-setting game played by different providers. This analysis can still be carried through
when different links have different marking procedures, or different values of γ associated with
them. (See Kreps and Scheinkman (1983) for another example of Cournot outcomes when there
are pre-committed capacities followed by price-setting.) Further research could consider more
general network contexts in which routing flexibility complements the Contract and Balancing
Mechanism.
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Appendix

Proof of Proposition 1

The first order conditions for an optimal choice of contract quantity require

∂Vi

∂yi
=

∂Ui

∂yi
− ∂Wi

∂yi
= 0. (37)

From (14),

∂Ui

∂yi
=

∫ 1

0
E

[
u′i(Di(t, p(t)))D′

i(t, p(t))
∂p(t)
∂yi

]
dt

=
∫ 1

0
E

[
p(t)D′

i(t, p(t))
∂p(t)
∂yi

]
dt,

using the assumption that player i acts as a price taker for the choice of xi(t) = Di(t, p(t)).
Under the assumption of price complementarity,

Wi = Ci(yi) +
∫ 1

0
E[(Di(t, p(t))− yi) p(t)] dt

and
∂Wi

∂yi
= ci +

∫ 1

0
E

[(
p(t)D′

i(t, p(t)) + Di(t, p(t))− yi

) ∂p(t)
∂yi

− p(t)
]

dt.

Thus at a stationary point

∂Vi

∂yi
=

∫ 1

0
E[p(t)] dt−

∫ 1

0
E

[
(Di(t, p(t))− yi)

∂p(t)
∂yi

]
dt− ci = 0 (38)

Since Di(t, p(t)) is given by (9), p(t) is given by (10). Now consider ∂p(t)/∂yi, which measures
how price varies with changes in capacity at time t, and is equal to ∂p(t)/∂Y for each i. We
have that:

∂p(t)
∂yi

= −β

(
α(t)
Y

)β 1
Y

(39)

Substituting (9), (10), and (39) into (38) yields:

∂Vi

∂yi
=

∫ 1

0
E

[(
α(t)
Y

)β
]

dt +
∫ 1

0
E

[(
αi(t)

p(t)1/β
− yi

)
β

(
α(t)
Y

)β 1
Y

]
dt− ci

=
1

Y β

∫ 1

0
E

[
α(t)β

(
1 + β

αi(t)
α(t)

− β
yi

Y

)]
dt− ci, (40)

which gives the formula (17) at a stationary point.

Observe that for yi very large, Y becomes large and ∂Vi/∂yi is negative. We will show below
the following property of Vi: for every value of yi at which the second derivative of Vi is zero or
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positive, the derivative of Vi is negative. This property is enough to show that either there is
exactly one stationary point which is a maximum, or the maximum is achieved at yi = 0. (This
in turn will establish the result.) First observe that this property implies that at any stationary
point, Vi must have strictly negative second derivative and hence be a local maximum. Thus if
∂Vi/∂yi < 0 when yi = 0 it can never have a turning point at positive yi, and Vi achieves its
maximum at 0. If ∂Vi/∂yi ≥ 0 at 0 then there will be at least one stationary point in [0,∞).
Clearly a stationary point of Vi implies (17). But now note that if there are two stationary points
then the second derivative of Vi cannot be negative throughout the interval between them, and
we obtain a contradiction by considering the largest value of yi between them at which the
second derivative is not negative.

It only remains to prove the property we have referred to. Now

∂2Vi

∂yi
2

=
∫ 1

0
E

[
2
∂p(t)
∂yi

− (Di(t, p(t))− yi)
∂2p(t)
∂y2

i

−D′
i(t, p(t))

(
∂p(t)
∂yi

)2
]

dt. (41)

Since
∂2p(t)
∂y2

i

= − D′′(t, p(t))
(D′(t, p(t)))2

∂p(t)
∂yi

.

we have

∂2Vi

∂yi
2

=
∫ 1

0
E

[(
2 + (Di(t, p(t))− yi)

D′′(t, p(t))
D′(t, p(t))2

− D′
i(t, p(t))

D′(t, p(t))

)
∂p(t)
∂yi

]
dt.

For this form of demand we have

D′′(t, p(t)) =
(β + 1)α(t)

β2p(t)(2β+1)/β

and so
D′′(t, p(t))

(D′(t, p(t)))2
=

(β + 1)
Y

.

Hence

∂2Vi

∂yi
2

= −
∫ 1

0
E

[(
2 +

(
αi(t)

p(t)1/β
− yi

)
(β + 1)

Y
− αi(t)

α(t)

)
β

(
α(t)
Y

)β 1
Y

]
dt

= − β

Y β+1

∫ 1

0
E

[(
2 +

(
αi(t)
α(t)

− yi

Y

)
(β + 1)− αi(t)

α(t)

)
α(t)β

]
dt

= − β

Y β+1

∫ 1

0
E

[(
2 + β

αi(t)
α(t)

− (β + 1)
yi

Y

)
α(t)β

]
dt.

Thus if ∂2Vi/∂yi
2 is non-negative we must have

∫ 1

0
E

[(
2 + β

αi(t)
α(t)

− (β + 1)
yi

Y

)
α(t)β

]
dt ≤ 0. (42)

But note that for every t, and every realization of the αi(t),

1 + β
αi(t)
α(t)

− β
yi

Y
≤ 2 + β

αi(t)
α(t)

− (β + 1)
yi

Y
.

Thus if inequality (42) holds, then the integral term in the equation (40) is non-positive, and
hence ∂Vi/∂yi < 0 whenever the second derivative is non-negative. ¤
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Proof of Proposition 2

Since each of the players chooses short term traffic volumes on a price-taking basis and chooses
capacity optimally, we can use the development we gave for the proof of Proposition 1. We look
first for a Nash equilibrium at which each yi is non-zero, and so the set of yi will satisfy (38).
Because of the form of the demand functions we know that, except when α(t) = 0, we have
D(t, p(t)) = Y . On the other hand if D(t, p(t)) < Y then from price complementarity p(t) = 0
and ∂p(t)/∂Y = 0. Hence under any realization of demands

∫ 1

0
(D(t, p(t))− Y )

∂p(t)
∂Y

dt = 0.

Thus if we sum (38) over i, the terms involving ∂p/∂yi sum to zero, giving
∫ 1

0
E[p(t)] dt = c. (43)

Thus, again from (38), ∫ 1

0
E

[
(Di(t, p(t))− yi)

∂p(t)
∂yi

]
dt = 0

at the optimizing choice of yi. Since

∂p(t)
∂yi

= −
(

α(t)
Y

)β β

Y
,

the equation (26) for yi follows from (10).

This can be simplified by substituting for p and Di to obtain

yi =

∫ 1
0 E

[
α(t)βαi(t)/p(t)1/β

]
dt∫ 1

0 E[α(t)β] dt

=
Y

∫ 1
0 E

[
α(t)β−1αi(t)

]
dt∫ 1

0 E[α(t)β] dt
.

But using the expression (10) for p(t) we can rewrite (43) as
∫ 1

0
E

[
α(t)β

]
dt = Y βc,

and so

yi = c−1/β

(∫ 1

0
E[α(t)β] dt

) 1
β
−1 ∫ 1

0
E

[
α(t)β−1αi(t)

]
dt

as required. This is the only Nash equilibrium with all yi > 0, but we need to rule out the
possibility of some yi being zero.

At a solution with yi = 0, we have
∫ 1

0
E

[
α(t)β

(
1 + β

αi(t)
α(t)

)]
dt < Y βc
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and hence ∫ 1

0
E

[
α(t)β

]
dt < Y βc. (44)

Now each of the non-zero yj satisfies
∫ 1

0
E

[
α(t)β

(
1 + β

αj(t)
α(t)

− β
yj

Y

)]
dt = Y βc.

Let J ⊂ {1, 2, ..., n} be the set of indices for which yj 6= 0. Summing this over j ∈ J gives
∫ 1

0
E

[
α(t)β

(
1 + β

∑
j∈J αj(t)
α(t)

− β

)]
dt = Y βc.

But
∑

j∈J αj(t) < α(t) and so this implies
∫ 1
0 E

[
α(t)β

]
dt > Y βc, giving a contradiction from

(44). ¤

Proof of Proposition 3

Consider first the case without time-dependence or stochastic effects. Then the total cost to
player r of the contract is

Wr = yr

∑

j∈r

cj + [Dr(pr)− yr] pr. (45)

Thus
∂Wr

∂yr
=

∑

j∈r

cj +
∂

∂yr
{[Dr(pr)− yr] pr} .

But
∂ Ur(Dr(pr))

∂yr
= prD

′
r(pr)

∂pr

∂yr
.

The first order conditions for a Nash equilibrium, relation (14) with i replaced by r, require that
we set these derivatives equal, which gives

∑

j∈r

(cj − pj) = [yr −Dr(pr)]
∂pr

∂yr
,

where we have made use of (31). Similarly the first order conditions in the time-varying stochastic
case are ∑

j∈r

(cj −
∫ 1

0
E [pj(t)] dt) =

∫ 1

0
E

[
(yr −Dr(t, pr(t)))

∂pr(t)
∂yr

]
dt

From (33) we deduce that for each r ∈ R

∑

j∈r

(cj −
∫ 1

0
E [pj(t)] dt) =

∑

j∈r

∫ 1

0
E

[
[yr −Dr(t, pr(t))]

∂pj(t)
∂yj

]
dt.

The incidence matrix A = (Ajr) of links on routes has rank J , and hence AT z = 0 ⇒ z = 0.
We can thus deduce that

cj −
∫ 1

0
E [pj(t)] dt =

∫ 1

0
E

[
[yr −Dr(t, pr(t))]

∂pj(t)
∂yj

]
dt.
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But at each time t and every realization of the αi(t), either relation (30) holds with equality, or
∂pj(t)/∂yj = 0. Hence, summing the above equality over routes r such that j ∈ r, we obtain

cj =
∫ 1

0
E [pj(t)] dt,

and so

yr

∫ 1

0
E

[
∂pj(t)
∂yj

]
dt =

∫ 1

0
E

[
Dr(t, pr(t))

∂pj(t)
∂yj

]
dt

giving the formula we require. ¤
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