Computing Nash Equilibria of Action-Graph Games

Navin A. R. Bhat
Department of Physics
University of Toronto

Toronto, ON Canada M5S 1A7

Abstract

Action-graph games (AGGSs) are a fully expres-
sive game representation which can compactly
express both strict and context-specific indepen-
dence between players’ utility functions. Ac-
tions are represented as nodes in a gr@pand

the payoff to an agent who chose the action
depends only on the numbers of other agents
who chose actions connected 40 We present
algorithms for computing both symmetric and
arbitrary equilibria of AGGs using a continua-
tion method. We analyze the worst-case cost of
computing the Jacobian of the payoff function,
the exponential-time bottleneck step, and in all
cases achieve exponential speedup. When the in-
degree ofG is bounded by a constant and the
game is symmetric, the Jacobian can be com-
puted in polynomial time.

1 Introduction

When modeling interactions between self-interested agen
in a multiagent system, it is natural to use game the
ory as a theoretical foundation.
games and equilibrium concepts, sg, Fudenberg and

Tirole [1991].) The central game-theoretic solution con-

cept is the Nash equilibrium, a fixed-point in mixed strat-
egy space which Nash [1950] proved exists in every finit
game.
mine whether the problem of finding a Nash equilibrium
belongs toP [Papadimitriou, 2001]; the best known al-

(For an introduction to

e
It remains an important open question to deter:

Kevin Leyton-Brown
Department of Computer Science
University of British Columbia
Vancouver, BC Canada V6T 174

complexity of Govindan and Wilson’s algorithm is open
because the worst-case number of gradient-following steps
is not known; however, in practice the algorithm’s runtime
is dominated by the computation of Jacobian of the pay-
off function, required for computing the gradient, which
is both best- and worst-case exponential in the number of
agents. For many games this algorithm is an impressive
step beyond the previous state of the art; however, it is still
only practical when the numbers of players and of actions
per player are small (roughly on the order of 5-10).

1.1 Compact game representations

One response to the computational difficulty of comput-
ing the equilibria of general games has been the investi-
gation of compact game representations that can be lever-
aged to yield more efficient computation. One influential
class of representations exploits strict independencies be-
tween players’ utility functions; this class includes graph-
ical games [Kearnst al,, 2001], multi-agent influence di-
agrams [Koller & Milch, 2001] and game nets [La Mura,
2000]. Various algorithms were proposed to take advan-
tage of these representations, including exact algorithms
for games with special structure [Keawetsal,, 2001; Koller

té Milch, 2001] and approximate algorithms for arbitrary

‘games [Vickrey & Koller, 2002]. Recently, Blurat al.
[2003] adapted Govindan and Wilson’s continuation algo-
rithm to leverage these representations in an exact algo-
rithm for arbitrary games. Their algorithm computes the
Jacobian of the payoff function for unrestricted graphical
games and MAIDs. It requires time exponential in the tree
width of the underlying graph, an exponential improvement

over the Govindan and Wilson algorithm.

gorithms for computing equilibria are exponential. OneA second approach to compactly representing games fo-
state of the art general-purpose algorithm is the continueuses orcontext-specifiindependencies in agents’ utility

ation method of Govindan and Wilson [2003], a gradient-

following algorithm which is based on topological insight

functions—that is, games in which agents’ abilities to af-
fect each other depend on the actions they choose—and of-

into the graph of the Nash equilibrium correspondence byen also on symmetries in agents’ utility functions [Rosen-

Kohlberg and Mertens [1986]. (For a good survey describ

ing earlier algorithms for games with more than two play-

thal, 1973; Monderer & Shapley, 1996; Kearns & Mansour,
2002; Roughgarden & Tardos, 2001]. Our past work on

ers, see [McKelvey & McLennan, 1996].) The worst-caselocal-effect gamef_EGs) also falls into this class [Leyton-

Dagstuhl Seminar Proceedings 05011
Computing and Markets
http://drops.dagstuhl.de/opus/volltexte/2005/220

Brown & Tennenholtz, 2003]. LEGs are similar in spirit to In other words, for every andj agenti’s utility is inde-
action-graph games (AGGs), the game representation wgendent of agenj’s action choice conditional on agent
introduce here. They have the same graphical representg-choosing an action which is not in the neighborhood
tion, with actions corresponding to nodes, and edges inef agenti’s action choice. This is the sense in which
dicating context-specific utility dependencies between acAGGs express context-specific independencies in utility
tions. However, LEGs involve a series of assumptionsfunctions. Beyond this condition, there are no restrictions
that utility independence between actions is always bidirecen the functionu. In some cases it will be notationally
tional; that all agents share the same action sets; and thaimpler for us to write:(s) as a shorthand far(s;, D(s)).
utility decomposes into a sum of local effects from individ-

ual actions. Thus, LEGs cannot represent arbitrary gameg.2 Examples

Intuitively, AGGs can be understood as unrestricted LEGs.

Any arbitrary game can be encoded as an AGG as fol-
lows. Create a unique nodeg for each action available
to each ageni. ThusVs € S, D(s) € {0,1}, and

V1, > ,cs, D(s) must equal. The distribution simply in-
dicates each agent’s action choice, and the representation is
no more or less compact than the normal form.

2 Technical background

2.1 Action-graph games

An action-graph game (AGG) is a tup{&V, S, v, u). Let

N ={1,...,n} denote the set of agents in the game. Eac
agent; has the set of action choicés, so the set of pure
action profiles is

}]Example 1 Figure 1 shows an arbitrary 3-player, 3-action
game encoded as an AGG. As always, hodes represent ac-
tions and directed edges represent membership in a node’s
neighborhood. The dotted boxes represent the players’ ac-
S= H S; (1) tion sets: player 1 has actions 1, 2 and 3; etc. Observe that
iEN there is always an edge between pairs of nodes belonging

)) ~ to different action sets, and that there is never an edge be-
where]] is the Cartesian product. Although the actionsyyeen nodes in the same action set.

available to different agents may be distinct, agents may

also have action choices in common. Let In a graphical game [Kearnst al, 2001] nodes denote
agents and there is an edge connecting each agent
each other agent whose actions can affisctitility. Each
agent then has a payoff matrix representing his local game
with neighboring agents; this representation is more com-

denote the set of distinct action choices in the game. LePact than normal form whenever the graph is not a clique.

A denote the set of possible distributions of agents ovefsraphical games can be represented as AGGs by replac-

actions, where a distribution is mumberof agents who ing each node in the graphical game by a distinct cluster

chose each action. For a given distributibne A, denote ~ Of nodesS; representing the action set of agentlf the

by D(s) the number of agents who chose actio® : S+~ 9graphical game has an edge fromo j, create edges so that

IN!S| is a function mapping from a pure strategy profile ~ Vsi € Si,Vs; € Sj, s; € v(s;). The AGG and graphical

an agent distributiom. game representations are equally compact. In Corollary 1
i) below we show that our general method for computing the

Let & be the action graph: a graph having one node forayoff Jacobian for AGGs is as efficient as the method spe-

every actions € S. The neighbor relation is given by : cialized to graphical games due to Blnal. [2003].
S +— 29 Let there be a directed edge frashto s in G

iff s € v(s). Note thats € v(s) is possible. The utility Example 2 Figure 2 shows the AGG representation of a
function graphical game having three nodes and two edges between
them (i.e., player 1 and player 3 do not directly affect each
3) others’ payoffs). The AGG may appear more complex than
the graphical game; in fact, this is only because players’
actions are made explicit.

s=Js 2)

iEN

u: S xA—R

maps from an action choiceand a distribution of agents
D to a payoff. Observe that all agents have the same utilit
function. The utility function has the property that given
any actions and any pair of distribution® and D’,

The AGG representation becomes even more compact
when agents have actions in common, with utility func-
tions depending only on theumberof agents taking these
actions rather than on théentitiesof the agents.

[Vs" € v(s), D(s") = D'(s")] = u(s, D) = u(s, D). Example 3 The action graph in Figure 3 represents a set-
(4) ting in whichn ice cream vendors must choose one of four

Figure 1: AGG representation of an Figure 2: AGG representation of a Figure 3: AGG representation of the
arbitrary 3-player, 3-action game 3-player, 3-action graphical game ice cream vendor game

locations along a beach. Vendors are of two kinds, chocowhen the actions afands:’ are added td.

late and vanilla. Chocolate (vanilla) vendors are nega- . .. -) .
i ' efine the expected utility to ageintor playing pure strat-
tively affected by the presence of other chocolate (vanilla . .

egy s, given that all other agents play the mixed strategy

vendors in the same or neighboring locations, and are si-
multaneously positively affected by the presence of nearb
vanilla (chocolate) vendors. Note that this game exhibits
context-specific independence without any strict indepen- i _

. i) = s_;) Pr(s_;|lo—;). 7
dence, and that the graph structure is independent. of Vilo-) Z (s) Pr(s-ilo—) (7)

rofilec_;, as

S ;€S

Other examples of compact AGGs that cannot be com-

pactly represented as graphical games include: locatiomhe set ofi’s pure strategy best responses to a mixed strat-
games, role formation games, traffic routing games, prod€gy profilec_; is arg max V¢ (o _;), and hence the full set
uct placement games and party affiliation games. of i’s pure and mixed strategy best responses tpis

2.3 Notati .
otation BR;(0_;) = p(arg maxv,) (o_;)). (8)

Leto(X) denote the set of all probability distributions over

a setX. Define the set of mixed strategies foas o L
A strategy profiles is a Nash equilibrium iff

Vie N, o; € BRi(O',i). (9)
and the set of all mixed strategy profiles as

Finally, we describe the projection of a distribution of
Y= H > (6) agents onto a smaller action space. Intuitively we construct
i€EN a graph from the point of view of an agent who took a par-
ticular action, expressing his indifference between actions
We denote an element &f; by o;, an element ok by o, that do not affect his chosen action. For every actianS
and the probability that playémplays actions by o (s). define a reduced grap&(*) by including only the nodes

Next, we give notation for applying some of the concepts”(¢) @hd a new node denotéd The only edges included
defined in Section 2.1 to situations where one or mordn G** are the directed edges from each (()I)the nodes
agents are omitted. BfA_, ., we denote the set of pos- to the nodes. The(ErOJected distributio'®’ is defined
sible distributions of agents other tharand i/, and by ~ ©Ver the nodes of'* as

D_y; 1y we denote an element & _¢; ;3. Analogously,

we defineN_{,;J/}, S_{i,i/},Z_{i,i/} and O_{ii'} As a

shorthand for the subscript{i,'}, which we will need () /.y —
frequently in the remainder of the paper, we use an overbar, D¥(s') = {
yielding A, D, N, S, S, ¥ andz . When only one agent is

omitted, we writee.g. A_;. Finally, we overload our no-

tation, denoting byD(s;, s}, D) the distribution that results In the analogous way, we defig", s*), ©(*) ando(®).

D(s") s ewv(s)
s Zv(s) D(‘S//) s’ =

2.4 Continuation Methods

F(w,\) =w — R(w) — (V(R(w)) + Ab). (14)
Continuation methods are a technique for solving certain
systems of equations when the solution to a perturbed sysor A = 1, w is known; we then wish to decreaseto
tem is known. Given a game of interest with payoff func- zero while maintaining?’(w, \) = 0. This requires that
tion u(s;,s—;), one constructs a continuum of gamies dF = 0 along the path. Pair&w, \) satisfying this con-
with payoff functionsu, parameterized by a single param- dition then map out a graph of the corresponden¢s),
eter), such that\ = 0 yields the game of intere$t,, and which is with probability one over all choices of the bonus
A = lyields a gamé’; having a known solution. Then be- a one-manifold without boundary. Thus
ginning with the known solution, the continuation method
traces the solution asis decreased to zero, at which point dw
the desired solution is obtained. A good introduction to dF(w,\) = [V,F 25] { I\] =0
continuation methods is given in Bluset al. [2003]; we
follow their treatment here. A more detailed explanation of o ontrivial solution requires tha{t v,F 2F } be sin-

: : 5 ox
the method can be found in Govindan and Wilson [2003]. gjar, and its null space defines the direction that is fol-

Nash equilibria are fixed points of a mapping that improvedowed by the graph of the correspondenc@)). Using
a player’s utility by changing his strategy. This mapping Equation (14) we obtain

yields a system of equations to which continuation methods

can be applied. The expected utility of agéi VoF=1-(I+VV)VR (16)

(15)

Elu(si,s_i)] = Z oi(s)Vi (0_s), (12) wherel is them x m identity matrix. Computing the Jaco-

‘ bian of ' is dominated by the Jacobian Bf The deriva-
tives can be taken analytically; elements of the Jacobian for
where we recall that’i (o_;) from Equation (7) is the ex- Whichi = ¢’ vanish, and we obtain for thie7- " elements
pected payoff to ageritvhen he plays pure strategyand ~ ©f the Jacobian o¥,
other agents play mixed strategy profile;. Consider the
following strategy-improvement mapping for all agents:

5;€S5;

Pelr) — gvis (o) (17)

o' = R(o + V(o)) (12) drele)
' = u(si,D(si,50,9) Pr(slo) (18)

Here we introduce the retraction operafor: R™ — X. seS

The retraction operator takes a vector of dimension=

> e |Sil, and normalizes it by mapping it to the nearestand

point in X in Euclidean distance. Mapping fromto ¢’ in

Equation (12) corresponds to increasing the probabilities Pr(37) = H 7;(5). (19)

of playing strategies that have better payoffs, while lower- P

ing the probabilities of playing strategies that have worse

payoffs. Its fixed points’ = o, where no further (local) (Recall that whenever we use an overbar in our notation,

improvement can be achieved for any agent, are the Nashis equivalent to the subscript{i,i’}. For examples =

equilibria. Rather than searchingh Govindan and Wil- s_, ;1) Equation (18) shows that theV"’, () element

son found it computationally expedient to search in the unof the Jacobian can be interpreted as the expected utility of

normalized spac®™ for aw such thatr = R(w); then agenti when she takes action, agenti’ takes actions;,

the equilibrium is given byr = R(w) such thatw satisfies and all other agents use mixed strategies accordiay to

The size of the séis exponential im, but since the sum
R(w) =w+ R(V(R(w))). (13) must visit each member of the set, both best- and worst-
case scenario computation of the right-hand side of Equa-
The perturbed system can now be introduced: replace tion (18) is exponential in the number of agents. In the sec-
with V' + Ab, whereb is a bonus to each agent dependingtions that follow, we describe algorithms for the efficient
on his identity and action choice, but independent of thecomputation of this expression.
actions of the other agents. If for each given ag,’ehii is
sufficiently large for one particular actishand zeroforall 2.5 Other applications of the payoff Jacobian
others, then there will be a unique Nash equilibrium where
each agent plays the pure strategy;. We then have the Efficient computation of the payoff Jacobian is important
system of equationB'(w, A) = 0, where for more than this continuation method. For example, the

iterated polymatrix approximation (IPA) method of Govin-

dan and Wilson [2004] has the same problem at its core. Pr (é(si)\i(si)) =11 T (). (21)

At each step the IPA method constructs a polymatrix game jenN '

that is a linearization of the current game with respect to

the mixed strategy profile, the Lemke-Howson algorithm isTo reflect the indifference between pure action profiles giv-
used to solve this game, and the result updates the mixefld rise to the same distribution, we define an equivalence
strategy profile used in the next iteration. Though theoretrelation that partitions:

ically it offers no convergence guarantee, IPA is typically

much fastert_han the continuation method; oftenitis used to s~3iff D5 =D(F). (22)

give the continuation method a quick start. Another appli-

cation of the payoff Jacobian is in multiagent reinforcementrhen denote bys(D) the equivalence class containing all
learning algorithms that perform policy search. ssuch thatD (s) ~ D. The analogous partitioning can be
done in the projected space, yie|die@_8(ﬁ(3i))_

3 Computing the Jacobian To exploit this indifference, we rewrite the elements of the

Wheneves;, 35’ such that’ & v(s;), there exist distribu- Jacobian in Equations (20) and (21) in terms of the pro-

tions of agents that are equivalent from the point of view ofiécted di_stribqtionD(S_‘)_ rather than the projected pure ac-
agenti. Furthermore, wheneveti, 3; # i, S;(S; # 0, ton profiles'*, obtaining
there exist pure action profiles that are equivalent from the

point of view of agents who choose certain actions. That s,

when some action is available to multiple agents, agents VVS”S (@)

care only about theumberof agents who choose and .

—(si) (i) —(s;
not their identities. We express the first kind of indiffer- = >, wu (Si’D (Sivsi”D)) Pr (D o))
ence by projecting the action graph; the second is expressed DA
through partitioning the pure action profiles into distribu- (23)

tions of agent numbers. Each provides computational ben-

efits. It will be seen below that partitioning amounts to Where

dynamic programming,e. pushing in of sums that analyt-

ically accounts for symmetry in the problem. For arbitrary —(s9))
equilibria, the speedup due to projection is exponential ag’" (D ' |5(51)) = > Pr (g(‘”)W(Si)) .
long as the maximum indegree of the gra@hs less than) e § (E(Si))

the number of nodes i¥. This speedup typically over-

whelms the gain due to partitioning in non-symmetric equi- (24)
libria; however, for the important case of symmetric actionGijven the vaIuePr(E(Si) (*1)) for somes®i), dynamic
space ie. Vi, S; = S), partitioning guarantees computa- programming can be used to compute the result for another
tion of the Jacobian in polynomial time. In Section 3.1 we “adjacent” values® in constant time. We introduce the
consider equilibria of arbitrary action-graph games; in Secpermutation operatiofyj < j’), such tha®" is the pure

tion 3.2 we analyze symmetric equilibria. strategy profile obtained frosi*:) by switching the actions

of agentsi and;’. Thuss®*"’ = égjlj) Then we have that

3.1 Arbitrary equilibria

Given arbitrary action se3, the Jacobian can be expressed (
-

compactly through projection at the level of the pure ac-
tion profiles (recall the definition of projection in Equation (50 (g(s'i)) (50 (g(si))
(10)). Projecting onto actior;, we rewrite the Jacobian _ 0 \T J ") p, (g(si)b(sl-)) (25)
given in Equations (18) and (19) as F(s0) (g(_Si)) F(s) (g(fi)) '
J J J J
_ We note that some elements of the Jacobian are identical:

Vs (@)

_ (57,) alsi alsi)|=(s: . . ot

= 2 (s Dlns SN Pr(SUIE) s, (), VY (@) = TV 0). (26)

5(s0) g8led)) 3

(20) Intuitively, Equation (26) expresses context-specific inde-
pendence: the property that if agéhtakes an action out-
where side the neighborhood of the action takenibyheni is

amounts to projecting the Jacobian. Given that the Jacqy, guch a case the Jacobian should be computed using

bian hasO(m?) entries, 2and given Equation (26), we have gqyations (20) and (21). However, many games have struc-
that the Jacobian ha#(n"|S|(Z + 1)) independent entries. 16 that allows convenient iteration over members of these

classes, and for such games the method of Equations (23)

. : ; and (24) provide a constant speedup in computation of the
action-graph games using Equatio(3) and (24) takes Jacobian. In the method of Equations (20) and (21), the

time thatisO ((Z + 1)"poly(m)poly (|51))- utility function is evaluated)((Z + 1)™) times, whereas
Proof. Computing elements of the Jacobian using Equa—lfisng Equia(tsi.o)ns (23) and (24) itis evaluated once for each
tions (23) and (24) involves computing the right hand sideD™" € A""". Consider the operation of extending all
of Equation (21) for eac™) e S (ﬁ(s”), for each agents’ action sets vi&, S; — S. Then‘Z(S"’) is bounded

indifferent to which particular action was taken By It be convenient to list the elements of each cls: *(Si)).

Theorem 1 Computation of the Jacobian for arbitrary

. This bound is the number
Vi,S;—S

8f (ordered) combinatorial compositions @finto F(‘”)

D) ¢ A since this is just a partitioning of the space from above by‘z(si)
5 it amounts to a sum over all elements of the®&t .
This is the same number of elements as in the sum for th 0 N) i
Jacobian in Equations (20) and (21). Depending on thejfonnegative integers (seeg.[Nijenhuis & Wilf, 1975]),
specific action sets, each agent has the choice of some sub-

set of the at mosf + 1 actions in the projected graph e o ‘g(sn‘ -1
G, and these choices are independent. TBUE has ‘A ' vig g ()
O ((Z + 1)™) elements. Using Equation (26), we have that v
the Jacobian ha®(n?|S|(Z + 1)) independent elements.

(27)

5| -1

Then ComEutation of the full Jacobian takes time that isThijs expression isapo|ynomia|ﬁjwvith degrqu(si) -1,
O ((Z +1)"poly(m)poly (|S])). W and it follows that
Corollary 1 For a graphical game encoded as an AGG, if —(s9))gw .
f is the maximum family size andis the maximum num- ‘A vis g o (n) : (28)
ber of actions available to each agent, the Jacobian can be o

in ti hat i ! n . — (s .
computed in time that i® (poly(a!)poly(@)poly (|S])) Thusmax., [A®?| = O(F). So whereas computing the

Proof. Graphical games can be written as AGGs follow- Jacobian using Equations (20) and (21) requires evaluat-
ing the procedure given in Section 2.2. Define the familying the utility functionO((Z + 1)™) times, using Equations

of agenti, fam(i), to be the set of all agengssuch that (23) and (24) require evaluating the utility functiein?)

Js; € S;,3s; € S, s5; € v(s;). Compute the Jacobian us- times. SincePr (3" |z(*?)) is computed an exponential
ing the method of Equations (20) and (21). The key to thenumber of times in both cases, the overall speedup is by a
complexity of computing the Jacobian is the size of the setonstant factor.

s _)- For all elements o8, all agenty ¢ fam(i) take |5 some games, utility functions depend linearly on the
a}ctlor?ﬂ). Each agent infam(i) has at mostr available ac- nymper of agents taking each action. This is teg, for
tions in the projected grapfi'*"). Since there are at most |,ca|-effect games [Leyton-Brown & Tennenholtz, 2003],
f such agents, and since all agents choose independentyare the utility function is defined as

therefore‘é(si)‘ = O(af). Then the full Jacobian can be

computed in time that i) (poly (o)poly(m)poly (|S])). u(s;, D) = Z fora (D(a)). (29)
This result is consistent with that of Bluet al. [2003], nes

in which the graphical game representation is leveraged to

speed up computation of the payoff Jacobian. We note thdturther dynamic programming is possible in this setting.
for strict independence there is a result for AGGs similarGiven the value of the utility function for onﬁ(s’?), it can

to Equation (26) indicating that further elements of the Ja (s0)
cobian are equal; also, the domain of the product in eque}—)e evaluated for anothe? , .,
tion (21) can be reduced. These provide further (polyno-
mial) speedup. We omit these results here for reasons of —(s1)
space but note that the full exponential speedup described % () =u (Sia D)
in [Blum et al,, 2003] is already obtained by projecting the

")
action graph.m + (fsm (ﬁﬁiiaq(a)) — fsia (5(Si)(a)))
+ (Fora (DGLarn(@) = Fora (D™(@))) - (20)

in constant time using

—(s:)
SZ,D(

i
a—a

We note that for an arbitrary action-graph game, it may not

Thus the summation in Equation (29) can be evaluated once
rather thar{A """ times.

vv*si,si/ (0-*)

3.2 Symmetric equilibria = > u (si,D (si, si/,ﬁ(si))) Pr (5(‘”) af"’))
Fsi) ~ A (s4)

Nash proved [1951] that all finite symmetric games have prres (35)

at least one symmetric equilibrium. We seek such an equi-

librium here, specializing to the case in which all agents () (s)r e

have the same action choiceg;, Vj, S; = S; = S. Al WherePr(D""|o,™"") is given by Eqns (31) and (32). Bet-
agents use the same mixed strategy:= o; = o,.. In ter stil, dynamic programming allows us to avoid reeval-
order to compute a symmetric equilibrium, the continua-uating these equations for eveﬁ(si) e A", Denote
t|?rt'1hmethotd Lnudst be sleeded W't:_]h"?‘ symmetric ?q#'lg’%“mthe distribution obtained frorD"*"’ by decrementing by
of the perturbed{ = 1) game. This is accomplishe ya?ne the number of agents taking actiene F(S’) and

giving all agents the same bonus, so in the perturbed initi I crementing by one the number of agents taking action
equilibrium all agents take the same action. Then since the _ 9 by Y —(sh) 9 9
Z.a)- Then consider the graph

. <(si) __=(s:) _
path-following algorithm is symmetrid.€. the operation a €S asD =D
of propagation along the path commutes with the permutazz_ .., whose nodes are the elements of the/s&t’, and
tion of agent identities), the path-following algorithm takes whose directed edges indicate the effect of the operation

a symmetric perturbed equilibrium to a symmetric equilib-(, — ¢’). This graph is a regular triangular lattice in-
rium of the unperturbed game. scribed within 6(G(si)

—1)-dimensional simplex. Having
Since all agents have the same strategies, each pure acti@gmputedpr(ﬁ(si)|a*8i)) for one node off—.,, corre-

iy Alei
profile is equally likely, so for ang € S(D(‘)))

sponding to distributiorD"* , We can compute the result

for an adjacent node i@(\ﬁ(si)) time:
Pr(D108) = |S@*)| Pr ($01057) - (31)
where Pr (ﬁ&iﬂa,)wfi))
- (Si‘;’gSi)(‘“)(Z;Sl)/(a) Pr(D™1ol). (36)
Pr (g(si) ogsi)) _ H (Uﬁsi)(a))ﬁ(b‘i)(a). (32) 0. (a) (D (a’) + 1)
ae5(*? Hx;, always has a Hamiltonian path [Knuth, unpub-

The classes vary exponentially in size. Sizes are given bylished], so having computedr(D"*”|5{*)) for an ini-
tial Db using Equation (32), the results for all other

S E(si) B n! 33 projected distributions (nodes) can be computed by using
‘ ()‘ - I (E(Si)(a)) (33) Equation (36) at each subsequent step on the path. Gener-
aest ’ ating the Hamiltonian path corresponds to finding a com-

binatorial Gray code for compositions; an algorithm with

which is the multinomial coefficient. The largest classesCOnStant amortized running time is given by Klingsberg

are those in which agents are distributed as uniformly a 1982]. To provide some intuition, it is easy to see that
possible across the nodes of the projected graph (relati simple, “lawnmower” Hamiltoniz;n path exists for any
to the unprojected graph, this corresponds to having just awer-dimensional projection .., , with the only state
many agents choosing each actiow{s;) as choose all the required to compute the next nodé in the path being a di-

other actions combined). rection value for each dimension.

Furthermore, the Jacobian simplifies, since we need no]))
longer consider individual agent identities 1A, so in- Theorem 2 Computation of the Jacobian for symmetric

stead of considerin@Vj;_i;_/ (@), we consideR/ Vi, o (4), action—graph games using Eiqzuatio(135), (31), (32) and

which equalsVVj;féH (E)l for anyi # i'. We replace the (36)takes time that i) (poly (7~)poly |5]))-

strategy improvement mapping of Equation (12) with Proof. Recall from Equation (28) that when all agents
have the same action choices,

_6 (n‘s(8i>

0. = R(ow + Vi(0.)). (34)

‘Z(Si)

1) . (37)

We can thus compute the Jacobian as

The summation for an element of the Jacobiatherefore Kearns, M., Littman, M., & Singh, S. (2001). Graphical
()| _
has©® ﬁ‘s ") terms. If the utility function is taken models for game theoryJAl.

to be straightforward to compute, then the initial summand<earns, M., & Mansour, Y. (2002). Efficient Nash compu-
requiresO(n) time. Through dynamic programming the tation in large population games with bounded influence.
computation of subsequent summands can be done in con- UAI.

stant time_. Since there a€(|5|°) independe_nt entries in Klingsberg, P. (1982). A Gray code for compositiodsur-

the Jacobian to be computed, the computation of the sym- nal of Algorithms 3, 41-44

metric Jacobian takes tin@(poly(n”)poly(|S|)). A 9 : '

Kohlberg, E., & Mertens, J. (1986). On the strategic stabil-
) ity of equilibria. Econometricab4(5), 1003-1038.

4 Conclusions and Future Work

Koller, D., & Milch, B. (2001). Multi-agent influence dia-
This paper introduced action-graph games, which com- grams for representing and solving gamdEAL
pactly represent both stry|ct_r.:1nd context—speuﬂc mdepenl—_a Mura, P. (2000). Game networkisAl.
dencies between players’ utility functions. We showed how
the structure of this graph can affect the computation of_eyton-Brown, K., & Tennenholtz, M. (2003). Local-effect
the Jacobian of the payoff function, the bottleneck step of games.IJCAI.
the Govindan and Wilson continuation algorithm. We pre- _
sented algorithms for computing both general and symmetMcKelvey, R., & McLennan, A. (1996). Computation of
ric equilibria of AGGs. We showed that in the general case, €quilibria in finite games. In J. R. H. Amman (Ed.),
computation of the Jacobian grows exponentially with the Handbook of computational economiesl. I. Elsevier.

action graph’s maximal in-degree rather than with its totaIMOnderer D., & Shapley, L. (1996). Potential games
number of nodes, yielding exponential savings. We also Games'am.j’ Economic E;eh;ewiarﬂf 1'24_143 ’
showed that the Jacobian can be computed in polynomial T '
time for symmetric AGGs when the action graph’s maxi- Nash, J. F. (1950). Equilibrium points in n-person games.
mal in-degree is constant, and described two dynamic pro- Proceedings of the National Academy of Sciences of the
gramming techniques to further speed up this case. United States of Americ&6, 48—409.

The full version of this paper will include two sections that Nash 3. F. (1951). Non-cooperative ganmese Annals of
could not be included here. First, a game:isymmetric Mathematics54(2), 286—295.

if agents have one df types and all agents of a given type
affect other agents in the same way (seg. Example 3). Nijenhuis, A., & Wilf, H. S. (1975). Combinatorial algo-
Nash'’s proof that a symmetric equilibrium exists in every rithms New York: Academic Press.

finite symmetric game implies thatkasymmetric equilib-
rium exists in every finit&-symmetric game. We will ex-
tend our results to the-symmetric case, showing that the

Jacobian can still be (.:ompuj[ed in polynomial time for CON-Rosenthal, R. (1973). A class of games possessing pure-
stantk. Second, we will provide animplementation and ex- strategy Nash equilibridnternational Journal of Game
perimental evaluation of our algorithms, derived from the Theory 2, 65-67.

publicly available implementation of Bluet al. [2003].

Papadimitriou, C. (2001). Algorithms, games and the in-
ternet.STOC

Roughgarden, T., & Tardos, E. (2001Bounding the in-
efficiency of equilibria in nonatomic congestion games

References (Technical Report TR2002-1866). Cornell, Ithaca.

Blum, B., Shelton, C., & Koller, D. (2003). A continuation vjckrey, D., & Koller, D. (2002). Multi-agent algorithms
method for Nash equilibria in structured gamgxCAI. for solving graphical gamesAAl.

Fudenberg, D., & Tirole, J. (1991)Game theory MIT
Press.

Govindan, S., & Wilson, R. (2003). A global Newton
method to compute Nash equilibrid. Economic The-
ory, 110 65-86.

Govindan, S., & Wilson, R. (2004). Computing Nash equi-
libria by iterated polymatrix approximationlournal of
Economic Dynamics and Conty@8, 1229-1241.

