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Abstract

Action-graph games (AGGs) are a fully expres-
sive game representation which can compactly
express both strict and context-specific indepen-
dence between players’ utility functions. Ac-
tions are represented as nodes in a graphG, and
the payoff to an agent who chose the actions
depends only on the numbers of other agents
who chose actions connected tos. We present
algorithms for computing both symmetric and
arbitrary equilibria of AGGs using a continua-
tion method. We analyze the worst-case cost of
computing the Jacobian of the payoff function,
the exponential-time bottleneck step, and in all
cases achieve exponential speedup. When the in-
degree ofG is bounded by a constant and the
game is symmetric, the Jacobian can be com-
puted in polynomial time.

1 Introduction

When modeling interactions between self-interested agents
in a multiagent system, it is natural to use game the-
ory as a theoretical foundation. (For an introduction to
games and equilibrium concepts, seee.g., Fudenberg and
Tirole [1991].) The central game-theoretic solution con-
cept is the Nash equilibrium, a fixed-point in mixed strat-
egy space which Nash [1950] proved exists in every finite
game. It remains an important open question to deter-
mine whether the problem of finding a Nash equilibrium
belongs toP [Papadimitriou, 2001]; the best known al-
gorithms for computing equilibria are exponential. One
state of the art general-purpose algorithm is the continu-
ation method of Govindan and Wilson [2003], a gradient-
following algorithm which is based on topological insight
into the graph of the Nash equilibrium correspondence by
Kohlberg and Mertens [1986]. (For a good survey describ-
ing earlier algorithms for games with more than two play-
ers, see [McKelvey & McLennan, 1996].) The worst-case

complexity of Govindan and Wilson’s algorithm is open
because the worst-case number of gradient-following steps
is not known; however, in practice the algorithm’s runtime
is dominated by the computation of Jacobian of the pay-
off function, required for computing the gradient, which
is both best- and worst-case exponential in the number of
agents. For many games this algorithm is an impressive
step beyond the previous state of the art; however, it is still
only practical when the numbers of players and of actions
per player are small (roughly on the order of 5–10).

1.1 Compact game representations

One response to the computational difficulty of comput-
ing the equilibria of general games has been the investi-
gation of compact game representations that can be lever-
aged to yield more efficient computation. One influential
class of representations exploits strict independencies be-
tween players’ utility functions; this class includes graph-
ical games [Kearnset al., 2001], multi-agent influence di-
agrams [Koller & Milch, 2001] and game nets [La Mura,
2000]. Various algorithms were proposed to take advan-
tage of these representations, including exact algorithms
for games with special structure [Kearnset al., 2001; Koller
& Milch, 2001] and approximate algorithms for arbitrary
games [Vickrey & Koller, 2002]. Recently, Blumet al.
[2003] adapted Govindan and Wilson’s continuation algo-
rithm to leverage these representations in an exact algo-
rithm for arbitrary games. Their algorithm computes the
Jacobian of the payoff function for unrestricted graphical
games and MAIDs. It requires time exponential in the tree
width of the underlying graph, an exponential improvement
over the Govindan and Wilson algorithm.

A second approach to compactly representing games fo-
cuses oncontext-specificindependencies in agents’ utility
functions—that is, games in which agents’ abilities to af-
fect each other depend on the actions they choose—and of-
ten also on symmetries in agents’ utility functions [Rosen-
thal, 1973; Monderer & Shapley, 1996; Kearns & Mansour,
2002; Roughgarden & Tardos, 2001]. Our past work on
local-effect games(LEGs) also falls into this class [Leyton-
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Brown & Tennenholtz, 2003]. LEGs are similar in spirit to
action-graph games (AGGs), the game representation we
introduce here. They have the same graphical representa-
tion, with actions corresponding to nodes, and edges in-
dicating context-specific utility dependencies between ac-
tions. However, LEGs involve a series of assumptions:
that utility independence between actions is always bidirec-
tional; that all agents share the same action sets; and that
utility decomposes into a sum of local effects from individ-
ual actions. Thus, LEGs cannot represent arbitrary games.
Intuitively, AGGs can be understood as unrestricted LEGs.

2 Technical background

2.1 Action-graph games

An action-graph game (AGG) is a tuple〈N, S, ν, u〉. Let
N ≡ {1, . . . , n} denote the set of agents in the game. Each
agenti has the set of action choicesSi, so the set of pure
action profiles is

S≡
∏

i∈N

Si (1)

where
∏

is the Cartesian product. Although the actions
available to different agents may be distinct, agents may
also have action choices in common. Let

S ≡
⋃

i∈N

Si (2)

denote the set of distinct action choices in the game. Let
∆ denote the set of possible distributions of agents over
actions, where a distribution is anumberof agents who
chose each action. For a given distributionD ∈ ∆, denote
byD(s) the number of agents who chose actions. D : S 7→
N|S| is a function mapping from a pure strategy profiles to
an agent distributionD.

Let G be the action graph: a graph having one node for
every actions ∈ S. The neighbor relation is given byν :
S 7→ 2S . Let there be a directed edge froms′ to s in G
iff s′ ∈ ν(s). Note thats ∈ ν(s) is possible. The utility
function

u : S ×∆ 7→ R (3)

maps from an action choices and a distribution of agents
D to a payoff. Observe that all agents have the same utility
function. The utility function has the property that given
any actions and any pair of distributionsD andD′,

[∀s′ ∈ ν(s), D(s′) = D′(s′)] ⇒ u(s, D) = u(s,D′).
(4)

In other words, for everyi andj agenti’s utility is inde-
pendent of agentj’s action choice conditional on agent
j choosing an action which is not in the neighborhood
of agent i’s action choice. This is the sense in which
AGGs express context-specific independencies in utility
functions. Beyond this condition, there are no restrictions
on the functionu. In some cases it will be notationally
simpler for us to writeu(s) as a shorthand foru(si,D(s)).

2.2 Examples

Any arbitrary game can be encoded as an AGG as fol-
lows. Create a unique nodesi for each action available
to each agenti. Thus ∀s ∈ S, D(s) ∈ {0, 1}, and
∀ı, ∑

s∈Si
D(s) must equal1. The distribution simply in-

dicates each agent’s action choice, and the representation is
no more or less compact than the normal form.

Example 1 Figure 1 shows an arbitrary 3-player, 3-action
game encoded as an AGG. As always, nodes represent ac-
tions and directed edges represent membership in a node’s
neighborhood. The dotted boxes represent the players’ ac-
tion sets: player 1 has actions 1, 2 and 3; etc. Observe that
there is always an edge between pairs of nodes belonging
to different action sets, and that there is never an edge be-
tween nodes in the same action set.

In a graphical game [Kearnset al., 2001] nodes denote
agents and there is an edge connecting each agenti to
each other agent whose actions can affecti’s utility. Each
agent then has a payoff matrix representing his local game
with neighboring agents; this representation is more com-
pact than normal form whenever the graph is not a clique.
Graphical games can be represented as AGGs by replac-
ing each nodei in the graphical game by a distinct cluster
of nodesSi representing the action set of agenti. If the
graphical game has an edge fromi to j, create edges so that
∀si ∈ Si, ∀sj ∈ Sj , si ∈ ν(sj). The AGG and graphical
game representations are equally compact. In Corollary 1
below we show that our general method for computing the
payoff Jacobian for AGGs is as efficient as the method spe-
cialized to graphical games due to Blumet al. [2003].

Example 2 Figure 2 shows the AGG representation of a
graphical game having three nodes and two edges between
them (i.e., player 1 and player 3 do not directly affect each
others’ payoffs). The AGG may appear more complex than
the graphical game; in fact, this is only because players’
actions are made explicit.

The AGG representation becomes even more compact
when agents have actions in common, with utility func-
tions depending only on thenumberof agents taking these
actions rather than on theidentitiesof the agents.

Example 3 The action graph in Figure 3 represents a set-
ting in whichn ice cream vendors must choose one of four
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Figure 1: AGG representation of an
arbitrary 3-player, 3-action game
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Figure 2: AGG representation of a
3-player, 3-action graphical game
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Figure 3: AGG representation of the
ice cream vendor game

locations along a beach. Vendors are of two kinds, choco-
late and vanilla. Chocolate (vanilla) vendors are nega-
tively affected by the presence of other chocolate (vanilla)
vendors in the same or neighboring locations, and are si-
multaneously positively affected by the presence of nearby
vanilla (chocolate) vendors. Note that this game exhibits
context-specific independence without any strict indepen-
dence, and that the graph structure is independent ofn.

Other examples of compact AGGs that cannot be com-
pactly represented as graphical games include: location
games, role formation games, traffic routing games, prod-
uct placement games and party affiliation games.

2.3 Notation

Letϕ(X) denote the set of all probability distributions over
a setX. Define the set of mixed strategies fori as

Σi ≡ ϕ(Si), (5)

and the set of all mixed strategy profiles as

Σ ≡
∏

i∈N

Σi. (6)

We denote an element ofΣi by σi, an element ofΣ by σ,
and the probability that playeri plays actions by σi(s).

Next, we give notation for applying some of the concepts
defined in Section 2.1 to situations where one or more
agents are omitted. By∆−{i,i′} we denote the set of pos-
sible distributions of agents other thani and i′, and by
D−{i,i′} we denote an element of∆−{i,i′}. Analogously,
we defineN−{i,i′}, S−{i,i′}, Σ−{i,i′} and σ−{i,i′}. As a
shorthand for the subscript−{i, i′}, which we will need
frequently in the remainder of the paper, we use an overbar,
yielding ∆, D, N, S, S, Σ andσ . When only one agent is
omitted, we writee.g. ∆−i. Finally, we overload our no-
tation, denoting byD(si, s

′
i, D) the distribution that results

when the actions ofi andi′ are added toD.

Define the expected utility to agenti for playing pure strat-
egy s, given that all other agents play the mixed strategy
profileσ−i, as

V i
s (σ−i) ≡

∑

s−i∈S−i

u(s, s−i) Pr(s−i|σ−i). (7)

The set ofi’s pure strategy best responses to a mixed strat-
egy profileσ−i is arg maxs V i

s (σ−i), and hence the full set
of i’s pure and mixed strategy best responses toσ−i is

BRi(σ−i) ≡ ϕ(arg max
s

V i
s (σ−i)). (8)

A strategy profileσ is a Nash equilibrium iff

∀i ∈ N, σi ∈ BRi(σ−i). (9)

Finally, we describe the projection of a distribution of
agents onto a smaller action space. Intuitively we construct
a graph from the point of view of an agent who took a par-
ticular action, expressing his indifference between actions
that do not affect his chosen action. For every actions ∈ S
define a reduced graphG(s) by including only the nodes
ν(s) and a new node denoted∅. The only edges included
in G(s) are the directed edges from each of the nodesν(s)
to the nodes. The projected distributionD(s) is defined
over the nodes ofG(s) as

D(s)(s′) ≡
{

D(s′) s′ ∈ ν(s)∑
s′′ 6∈ν(s) D(s′′) s′ = ∅ . (10)

In the analogous way, we defineS(s), s(s), Σ(s) andσ(s).
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2.4 Continuation Methods

Continuation methods are a technique for solving certain
systems of equations when the solution to a perturbed sys-
tem is known. Given a game of interest with payoff func-
tion u(si, s−i), one constructs a continuum of gamesΓλ

with payoff functionsuλ parameterized by a single param-
eterλ, such thatλ = 0 yields the game of interestΓ0, and
λ = 1 yields a gameΓ1 having a known solution. Then be-
ginning with the known solution, the continuation method
traces the solution asλ is decreased to zero, at which point
the desired solution is obtained. A good introduction to
continuation methods is given in Blumet al. [2003]; we
follow their treatment here. A more detailed explanation of
the method can be found in Govindan and Wilson [2003].

Nash equilibria are fixed points of a mapping that improves
a player’s utility by changing his strategy. This mapping
yields a system of equations to which continuation methods
can be applied. The expected utility of agenti is

E[u(si, s−i)] =
∑

si∈Si

σi(si)V i
si

(σ−i), (11)

where we recall thatV i
si

(σ−i) from Equation (7) is the ex-
pected payoff to agenti when he plays pure strategysi and
other agents play mixed strategy profileσ−i. Consider the
following strategy-improvement mapping for all agents:

σ′ = R(σ + V (σ)). (12)

Here we introduce the retraction operatorR : Rm 7→ Σ.
The retraction operator takes a vector of dimensionm ≡∑

i∈N |Si|, and normalizes it by mapping it to the nearest
point in Σ in Euclidean distance. Mapping fromσ to σ′ in
Equation (12) corresponds to increasing the probabilities
of playing strategies that have better payoffs, while lower-
ing the probabilities of playing strategies that have worse
payoffs. Its fixed pointsσ′ = σ, where no further (local)
improvement can be achieved for any agent, are the Nash
equilibria. Rather than searching inΣ, Govindan and Wil-
son found it computationally expedient to search in the un-
normalized spaceRm for a w such thatσ = R(w); then
the equilibrium is given byσ = R(w) such thatw satisfies

R(w) = w + R (V (R(w))) . (13)

The perturbed system can now be introduced: replaceV
with V + λb, whereb is a bonus to each agent depending
on his identity and action choice, but independent of the
actions of the other agents. If for each given agenti, bi

si
is

sufficiently large for one particular actionsi and zero for all
others, then there will be a unique Nash equilibrium where
each agenti plays the pure strategysi. We then have the
system of equationsF (w, λ) = 0, where

F (w, λ) = w −R(w)− (V (R(w)) + λb). (14)

For λ = 1, w is known; we then wish to decreaseλ to
zero while maintainingF (w, λ) = 0. This requires that
dF = 0 along the path. Pairs(w, λ) satisfying this con-
dition then map out a graph of the correspondencew(λ),
which is with probability one over all choices of the bonus
a one-manifold without boundary. Thus

dF (w, λ) =
[ ∇wF ∂F

∂λ

] [
dw
dλ

]
= 0 (15)

A nontrivial solution requires that
[ ∇wF ∂F

∂λ

]
be sin-

gular, and its null space defines the direction that is fol-
lowed by the graph of the correspondencew(λ). Using
Equation (14) we obtain

∇wF = I − (I +∇V )∇R (16)

whereI is them×m identity matrix. Computing the Jaco-
bian ofF is dominated by the Jacobian ofV . The deriva-
tives can be taken analytically; elements of the Jacobian for
which i = i′ vanish, and we obtain for thei 6= i′ elements
of the Jacobian ofV ,

∂V i
si

(σ−i
)

∂σi′(si′)
≡ ∇V i,i′

si,si′
(σ) (17)

=
∑

s∈S

u (si,D(si, si′ , s)) Pr(s|σ) (18)

and

Pr(s|σ) =
∏

j∈N

σj(sj). (19)

(Recall that whenever we use an overbar in our notation,
it is equivalent to the subscript−{i, i′}. For example,s≡
s−{i,i′}.) Equation (18) shows that the∇V i,i′

si,si′
(σ) element

of the Jacobian can be interpreted as the expected utility of
agenti when she takes actionsi, agenti′ takes actionsi′ ,
and all other agents use mixed strategies according toσ.

The size of the setS is exponential inn, but since the sum
must visit each member of the set, both best- and worst-
case scenario computation of the right-hand side of Equa-
tion (18) is exponential in the number of agents. In the sec-
tions that follow, we describe algorithms for the efficient
computation of this expression.

2.5 Other applications of the payoff Jacobian

Efficient computation of the payoff Jacobian is important
for more than this continuation method. For example, the
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iterated polymatrix approximation (IPA) method of Govin-
dan and Wilson [2004] has the same problem at its core.
At each step the IPA method constructs a polymatrix game
that is a linearization of the current game with respect to
the mixed strategy profile, the Lemke-Howson algorithm is
used to solve this game, and the result updates the mixed
strategy profile used in the next iteration. Though theoret-
ically it offers no convergence guarantee, IPA is typically
much faster than the continuation method; often it is used to
give the continuation method a quick start. Another appli-
cation of the payoff Jacobian is in multiagent reinforcement
learning algorithms that perform policy search.

3 Computing the Jacobian

Whenever∃si, ∃s′ such thats′ 6∈ ν(si), there exist distribu-
tions of agents that are equivalent from the point of view of
agenti. Furthermore, whenever∃i, ∃j 6= i, Si

⋂
Sj 6= ∅,

there exist pure action profiles that are equivalent from the
point of view of agents who choose certain actions. That is,
when some actions is available to multiple agents, agents
care only about thenumberof agents who chooses and
not their identities. We express the first kind of indiffer-
ence by projecting the action graph; the second is expressed
through partitioning the pure action profiles into distribu-
tions of agent numbers. Each provides computational ben-
efits. It will be seen below that partitioning amounts to
dynamic programming,i.e. pushing in of sums that analyt-
ically accounts for symmetry in the problem. For arbitrary
equilibria, the speedup due to projection is exponential as
long as the maximum indegree of the graphG is less than
the number of nodes inG. This speedup typically over-
whelms the gain due to partitioning in non-symmetric equi-
libria; however, for the important case of symmetric action
space (i.e. ∀i, Si = S), partitioning guarantees computa-
tion of the Jacobian in polynomial time. In Section 3.1 we
consider equilibria of arbitrary action-graph games; in Sec-
tion 3.2 we analyze symmetric equilibria.

3.1 Arbitrary equilibria

Given arbitrary action setS, the Jacobian can be expressed
compactly through projection at the level of the pure ac-
tion profiles (recall the definition of projection in Equation
(10)). Projecting onto actionsi, we rewrite the Jacobian
given in Equations (18) and (19) as

∇V i,i′
si,si′

(σ)

=
∑

s(si)∈S
(si)

u
(
si,D(si, s

(si)
i′ , s(si))

)
Pr

(
s(si)|σ(si)

)

(20)

where

Pr
(

s(si)|σ(si)
)

=
∏

j∈N

σ
(si)
j (s(si)

j ). (21)

To reflect the indifference between pure action profiles giv-
ing rise to the same distribution, we define an equivalence
relation that partitionsS:

s∼ s′ iff D (s) = D (
s′

)
. (22)

Then denote byS(D) the equivalence class containing all
s such thatD (s) = D. The analogous partitioning can be

done in the projected space, yieldinge.g.S(D
(si)).

To exploit this indifference, we rewrite the elements of the
Jacobian in Equations (20) and (21) in terms of the pro-

jected distributionD
(si) rather than the projected pure ac-

tion profiles(si), obtaining

∇V i,i′
si,si′

(σ)

=
∑

D
(si)∈∆

(si)

u
(
si,D

(
si, si′ , D

(si)
))

Pr
(
D

(si)|σ(si)
)

(23)

where

Pr
(
D

(si)|σ(si)
)

=
∑

s(si) ∈ S
(
D

(si)
) Pr

(
s(si)|σ(si)

)
.

(24)

Given the valuePr(s(si)|σ(si)) for somes(si), dynamic
programming can be used to compute the result for another
“adjacent” values(si)′ in constant time. We introduce the
permutation operation(j ↔ j′), such thats(si)′ is the pure
strategy profile obtained froms(si) by switching the actions
of agentsj andj′. Thuss(si)′ = s(si)

(j↔j′). Then we have that

Pr
(

s(si)
(j↔j′)|σ(si)

)

=
σ

(si)
j′

(
s(si)
j

)
σ

(si)
j

(
s(si)
j′

)

σ
(si)
j

(
s(si)
j

)
σ

(si)
j′

(
s(si)
j′

)Pr
(

s(si)|σ(si)
)

. (25)

We note that some elements of the Jacobian are identical:

∀s /∈ ν(si), s′ /∈ ν(si),∇V i,i′

si,s′(σ) = ∇V i,i′
si,s(σ). (26)

Intuitively, Equation (26) expresses context-specific inde-
pendence: the property that if agenti′ takes an action out-
side the neighborhood of the action taken byi, then i is
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indifferent to which particular action was taken byi′. It
amounts to projecting the Jacobian. Given that the Jaco-
bian hasO(m2) entries, and given Equation (26), we have
that the Jacobian hasO(n2|S|(I+1)) independent entries.

Theorem 1 Computation of the Jacobian for arbitrary
action-graph games using Equations(23) and (24) takes
time that isO

(
(I + 1)npoly(n)poly (|S|)).

Proof. Computing elements of the Jacobian using Equa-
tions (23) and (24) involves computing the right hand side

of Equation (21) for eachs(si) ∈ S
(
D

(si)
)

, for each

D
(si) ∈ ∆

(si). Since this is just a partitioning of the space

S
(si), it amounts to a sum over all elements of the setS

(si).
This is the same number of elements as in the sum for the
Jacobian in Equations (20) and (21). Depending on their
specific action sets, each agent has the choice of some sub-
set of the at mostI + 1 actions in the projected graph

G(si), and these choices are independent. ThusS
(si) has

O
(
(I + 1)n

)
elements. Using Equation (26), we have that

the Jacobian hasO(n2|S|(I + 1)) independent elements.
Then computation of the full Jacobian takes time that is
O

(
(I + 1)npoly(n)poly (|S|)).

Corollary 1 For a graphical game encoded as an AGG, if
f is the maximum family size andα is the maximum num-
ber of actions available to each agent, the Jacobian can be
computed in time that isO

(
poly(αf )poly(n)poly (|S|)).

Proof. Graphical games can be written as AGGs follow-
ing the procedure given in Section 2.2. Define the family
of agenti, fam(i), to be the set of all agentsj such that
∃si ∈ Si, ∃sj ∈ Sj , sj ∈ ν(si). Compute the Jacobian us-
ing the method of Equations (20) and (21). The key to the
complexity of computing the Jacobian is the size of the set

S
(si). For all elements ofS

(si), all agentsj /∈ fam(i) take
action∅. Each agent infam(i) has at mostα available ac-
tions in the projected graphG(si). Since there are at most
f such agents, and since all agents choose independently,

therefore
∣∣∣S(si)

∣∣∣ = O(αf ). Then the full Jacobian can be

computed in time that isO
(
poly(αf )poly(n)poly (|S|)).

This result is consistent with that of Blumet al. [2003],
in which the graphical game representation is leveraged to
speed up computation of the payoff Jacobian. We note that
for strict independence there is a result for AGGs similar
to Equation (26) indicating that further elements of the Ja-
cobian are equal; also, the domain of the product in equa-
tion (21) can be reduced. These provide further (polyno-
mial) speedup. We omit these results here for reasons of
space but note that the full exponential speedup described
in [Blum et al., 2003] is already obtained by projecting the
action graph.

We note that for an arbitrary action-graph game, it may not

be convenient to list the elements of each classS
(
D

(si)
)

;

in such a case the Jacobian should be computed using
Equations (20) and (21). However, many games have struc-
ture that allows convenient iteration over members of these
classes, and for such games the method of Equations (23)
and (24) provide a constant speedup in computation of the
Jacobian. In the method of Equations (20) and (21), the
utility function is evaluatedO((I + 1)n) times, whereas
using Equations (23) and (24) it is evaluated once for each

D
(si) ∈ ∆

(si). Consider the operation of extending all

agents’ action sets via∀i, Si → S. Then
∣∣∣∆(si)

∣∣∣ is bounded

from above by
∣∣∣∆(si)

∣∣∣
∀i,Si→S

. This bound is the number

of (ordered) combinatorial compositions ofn into
∣∣∣S(si)

∣∣∣
nonnegative integers (seee.g.[Nijenhuis & Wilf, 1975]),

∣∣∣∆(si)
∣∣∣
∀i,Si→S

=
(n +

∣∣∣S(si)
∣∣∣− 1

∣∣∣S(si)
∣∣∣− 1

)
. (27)

This expression is a polynomial inn with degree
∣∣∣S(si)

∣∣∣−1,

and it follows that

∣∣∣∆(si)
∣∣∣
∀i,Si→S

= Θ
(

n

∣∣∣S(si)
∣∣∣−1

)
. (28)

Thusmaxsi

∣∣∣∆(si)
∣∣∣ = O(nI). So whereas computing the

Jacobian using Equations (20) and (21) requires evaluat-
ing the utility functionO((I+1)n) times, using Equations
(23) and (24) require evaluating the utility functionO(nI)
times. SincePr(s(si)|σ(si)) is computed an exponential
number of times in both cases, the overall speedup is by a
constant factor.

In some games, utility functions depend linearly on the
number of agents taking each action. This is true,e.g.for
local-effect games [Leyton-Brown & Tennenholtz, 2003],
where the utility function is defined as

u(si, D) =
∑

a∈S

fsi,a (D(a)) . (29)

Further dynamic programming is possible in this setting.

Given the value of the utility function for oneD
(si), it can

be evaluated for anotherD
(si)

(a→a′) in constant time using

u
(
si, D

(si)

(a→a′)

)
= u

(
si, D

(si)
)

+
(
fsi,a

(
D

(si)

(a→a′)(a)
)
− fsi,a

(
D

(si)(a)
))

+
(
fsi,a

(
D

(si)

(a→a′)(a
′)

)
− fsi,a

(
D

(si)(a′)
))

. (30)
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Thus the summation in Equation (29) can be evaluated once

rather than|∆(si)| times.

3.2 Symmetric equilibria

Nash proved [1951] that all finite symmetric games have
at least one symmetric equilibrium. We seek such an equi-
librium here, specializing to the case in which all agents
have the same action choices:∀i, ∀j, Si = Sj = S. All
agents use the same mixed strategy:σi = σj ≡ σ∗. In
order to compute a symmetric equilibrium, the continua-
tion method must be seeded with a symmetric equilibrium
of the perturbed (λ = 1) game. This is accomplished by
giving all agents the same bonus, so in the perturbed initial
equilibrium all agents take the same action. Then since the
path-following algorithm is symmetric (i.e. the operation
of propagation along the path commutes with the permuta-
tion of agent identities), the path-following algorithm takes
a symmetric perturbed equilibrium to a symmetric equilib-
rium of the unperturbed game.

Since all agents have the same strategies, each pure action

profile is equally likely, so for anys∈ S(D
(si))

Pr
(
D

(si)|σ(si)∗
)

=
∣∣∣S(D

(si))
∣∣∣ Pr

(
s(si)|σ(si)∗

)
, (31)

where

Pr
(

s(si)|σ(si)∗
)

=
∏

a∈S
(si)

(σ(si)∗ (a))D
(si)(a). (32)

The classes vary exponentially in size. Sizes are given by

∣∣∣S
(
D

(si)
)∣∣∣ =

n!
∏

a∈S
(si)

(
D

(si)(a)
)
!

(33)

which is the multinomial coefficient. The largest classes
are those in which agents are distributed as uniformly as
possible across the nodes of the projected graph (relative
to the unprojected graph, this corresponds to having just as
many agents choosing each action inν(si) as choose all the
other actions combined).

Furthermore, the Jacobian simplifies, since we need no
longer consider individual agent identities inV , so in-
stead of considering∇V i,i′

si,si′
(σ), we consider∇V∗s,s′(σ∗),

which equals∇V i,i′
si,si′

(σ) for any i 6= i′. We replace the
strategy improvement mapping of Equation (12) with

σ′∗ = R(σ∗ + V∗(σ∗)). (34)

We can thus compute the Jacobian as

∇V∗si,si′ (σ∗)

=
∑

D
(si)∈∆

(si)

u
(
si,D

(
si, si′ , D

(si)
))

Pr
(
D

(si)|σ(si)∗
)

(35)

wherePr(D
(si)|σ(si)∗ ) is given by Eqns (31) and (32). Bet-

ter still, dynamic programming allows us to avoid reeval-

uating these equations for everyD
(si) ∈ ∆

(si). Denote

the distribution obtained fromD
(si) by decrementing by

one the number of agents taking actiona ∈ S
(si) and

incrementing by one the number of agents taking action

a′ ∈ S
(si) asD

(si)
′
≡ D

(si)

(a→a′). Then consider the graph

H
∆

(si) whose nodes are the elements of the set∆
(si), and

whose directed edges indicate the effect of the operation
(a → a′). This graph is a regular triangular lattice in-

scribed within a(|S(si)|−1)-dimensional simplex. Having

computedPr(D
(si)|σ(si)∗ ) for one node ofH

∆
(si) corre-

sponding to distributionD
(si), we can compute the result

for an adjacent node inO(|S(si)|) time:

Pr
(
D

(si)

(a→a′)|σ(si)∗
)

=
σ

(si)∗ (a′)D
(si)(a)

σ
(si)∗ (a)

(
D

(si)(a′) + 1
)Pr

(
D

(si)|σ(si)∗
)

. (36)

H
∆

(si) always has a Hamiltonian path [Knuth, unpub-

lished], so having computedPr(D
(si)|σ(si)∗ ) for an ini-

tial D
(si) using Equation (32), the results for all other

projected distributions (nodes) can be computed by using
Equation (36) at each subsequent step on the path. Gener-
ating the Hamiltonian path corresponds to finding a com-
binatorial Gray code for compositions; an algorithm with
constant amortized running time is given by Klingsberg
[1982]. To provide some intuition, it is easy to see that
a simple, “lawnmower” Hamiltonian path exists for any
lower-dimensional projection ofH

∆
(si) , with the only state

required to compute the next node in the path being a di-
rection value for each dimension.

Theorem 2 Computation of the Jacobian for symmetric
action-graph games using Equations(35), (31), (32) and
(36) takes time that isO(poly(nI)poly(|S|)).

Proof. Recall from Equation (28) that when all agents
have the same action choices,

∣∣∣∆(si)
∣∣∣ = Θ

(
n

∣∣∣S(si)
∣∣∣−1

)
. (37)
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The summation for an element of the JacobianV∗ therefore

hasΘ
(

n

∣∣∣S(si)
∣∣∣−1

)
terms. If the utility function is taken

to be straightforward to compute, then the initial summand
requiresO(n) time. Through dynamic programming the
computation of subsequent summands can be done in con-
stant time. Since there areO(|S|2) independent entries in
the Jacobian to be computed, the computation of the sym-
metric Jacobian takes timeO(poly(nI)poly(|S|)).

4 Conclusions and Future Work

This paper introduced action-graph games, which com-
pactly represent both strict and context-specific indepen-
dencies between players’ utility functions. We showed how
the structure of this graph can affect the computation of
the Jacobian of the payoff function, the bottleneck step of
the Govindan and Wilson continuation algorithm. We pre-
sented algorithms for computing both general and symmet-
ric equilibria of AGGs. We showed that in the general case,
computation of the Jacobian grows exponentially with the
action graph’s maximal in-degree rather than with its total
number of nodes, yielding exponential savings. We also
showed that the Jacobian can be computed in polynomial
time for symmetric AGGs when the action graph’s maxi-
mal in-degree is constant, and described two dynamic pro-
gramming techniques to further speed up this case.

The full version of this paper will include two sections that
could not be included here. First, a game isk-symmetric
if agents have one ofk types and all agents of a given type
affect other agents in the same way (seee.g.Example 3).
Nash’s proof that a symmetric equilibrium exists in every
finite symmetric game implies that ak-symmetric equilib-
rium exists in every finitek-symmetric game. We will ex-
tend our results to thek-symmetric case, showing that the
Jacobian can still be computed in polynomial time for con-
stantk. Second, we will provide an implementation and ex-
perimental evaluation of our algorithms, derived from the
publicly available implementation of Blumet al. [2003].
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