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Abstract

We introduce a new class of games, congestion games with failures (CGFs), which
extends the class of congestion games to allow for facility failures. In a CGF agents
share a common set of facilities (service providers), where each service provider (SP)
may fail with some known probability. For reliability reasons, an agent may choose a
subset of the SPs in order to try and perform his task. The cost of an agent for utilizing
any SP is an agent-specific function of the total number of agents using this SP. A main
feature of this setting is that the cost for an agent for successful completion of his task is
the minimum of the costs of his successful attempts. We show that although congestion
games with failures do not admit a potential function, and thus are not isomorphic
to classic congestion games, they always possess a pure-strategy Nash equilibrium.
Moreover, an efficient algorithm for the construction of pure-strategy Nash equilibrium
profile is presented. We also show that the SPs’ congestion experienced in different
Nash equilibria is (almost) unique. For the subclass of symmetric CGFs we give
a characterization of best and worst Nash equilibria, present algorithms for their
construction, and compare the social disutilities of the agents at these points.

1 Introduction

Rosenthal [10] introduced the class of congestion games and proved that they always
possess a Nash equilibrium in pure strategies. Congestion games are noncooperative games
in which a collection of agents have to choose from a finite set of alternatives (facilities).
The utility of an agent from using a particular facility depends only on the number of agents
using it, and his total utility is the sum of the utilities obtained from the facilities he uses.
Congestion games have been used to model traffic behavior in road and communication
networks, competition among firms for production processes, migration of animals between
different habitats, and received a lot of attention in the recent computer science and
electronic commerce communities [5, 8, 9, 10, 11]. Rosenthal [10] studied games with
a finite number of players. More recently, several authors have considered nonatomic
congestion games with a continuum of players [5, 6, 13].

However, the above settings do not take into consideration the possibility that facilities
may fail to execute their assigned tasks. Typically, the facilities are machines, computers,
service providers, communication lines etc. These kinds of facilities are obviously prone
to failures because of breakage or for any other reasons. Thus, the issue of failures should
not be ignored.
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As it turns out, such failures have significant implications on agent behavior, as illus-
trated by the following simple example. Consider a reliable network with two nodes s and
t, and two parallel links. Assume an agent wishes to send a message from s to t. Then,
he would send the message along one of the links. However, if the network links are not
reliable then, for reliability reasons, the agent may decide to send his message along both
links.

Suppose now that n agents share a reliable network with two parallel links, where
the cost associated with each link is a (nondecreasing) function l(x) of the congestion
experienced by this link. Each agent has to send a message from s to t, and his aim is to
minimize his own cost. If n is even, then in an equilibrium, half of the agents would take
one link and the other half would use the second link, and thus the cost to each agent is
l
(

n
2

)
. If the network links are not reliable, the agents might send a message along both

links. As a result of such behavior, the network might be overloaded, and the cost to
each agent will be very high. Therefore, each agent wants to maximize the probability of
successful delivery of his message and, simultaneously, to minimize his cost.

The above example illustrates the need for a careful study of the effects of failures in
congestion settings. In order to address this challenge, we introduce a model for congestion
games with failures (CGFs), and establish several basic results for this model. To the best
of our knowledge, no attempt has been made so far to incorporate the issue of failures in
congestion settings.

In a CGF agents share a common set of facilities (service providers), where each service
provider (SP) may fail with some known probability. For reliability reasons, an agent may
choose a subset of the service providers in order to try and perform his task. Therefore,
each agent’s set of pure strategies coincide with the power set of the set of SPs, and
the total load on the system is not known in advance, but strategy-dependent. The cost
for an agent for successful completion of his task is the minimum of the costs of his
successful attempts. The cost function associated with each SP is not universal but agent-
specific. That is, the utility to an agent depends not only on the number of agents using
the same SP, but also on the identity of the agent in question. Congestion games with
agent-specific cost functions were first studied by Milchtaich [4]. This generalization was,
however, accompanied by the assumption that each agent chooses only one facility.

The main result of our work is that, although congestion games with failures do not
admit a potential function, and thus are not isomorphic to classic congestion games, they
always possess a pure-strategy Nash equilibrium. Moreover, our proof is constructive, and
an efficient algorithm for the construction of pure-strategy Nash equilibrium is presented.
We also show that the SPs’ congestion experienced in different Nash equilibria is (almost)
unique. For the subclass of symmetric CGFs we give a characterization of best and
worst Nash equilibria, present algorithms for their construction, and compare the social
disutilities of the agents at these points.

Furthermore, we consider the worst possible ratio between the social disutilities in-
curred by agents in an equilibrium and in an optimal outcome. This ratio (dubbed ”the
price of anarchy”) was proposed by Koutsoupias and Papadimitriou [3] as a measure of
the inefficiency of selfish behavior in noncooperative systems, and was extensively stud-
ied for nonatomic congestion games [2, 11, 12, 13]. We show that in congestion games
with failures the price of anarchy depends on the parameters of the game and cannot be
bounded by a constant value as in classic congestion games, even for very simple (e.g.,
linear) cost functions.

The paper is organized as follows. In Section 2 we define our model. In Section 3 we
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show that CGFs do not admit a potential. In Section 4 we provide a (constructive) proof
of the existence of pure-strategy Nash equilibrium in CGFs and consider its uniqueness
properties. Section 5 is devoted to symmetric CGFs. We characterize the best and worst
Nash equilibria in symmetric CGFs, present algorithms for their construction and provide
an upper bound on the ratio between them. We also discuss the ratio between Nash
equilibria and social optimum in these games.

2 The Model

A CGF is defined as follows. Let N = {1, . . . , n} be a finite set of agents, and let E =
{1, . . . , m} be a finite nonempty set of independent service providers, each associated with
a failure probability. Each agent has a task which can be carried out by any of the service
providers. Agent i’s disutility from an uncompleted task is evaluated by his failure cost
(denoted by Wi). The service cost (denoted by lie) for agent i for utilizing service provider
e consists of an execution cost (denoted by bi

e) and a fixed completion cost (denoted by a).1

The disutility πi of agent i from a combination of strategies (one for each agent) is the
expectation of the sum of his failure and service costs, where the service cost for an agent
is the minimum of the service costs of the SPs he has chosen which did not fail. This is
defined more precisely below.

The success probability of e ∈ E is denoted by se (0 < se < 1). Similarly, fe = 1− se

stands for the failure probability of e. The set of pure strategies Σi for agent i ∈ N is the
power set of the set of SPs: Σi = P(E), and the set of pure-strategy profiles is defined to
be Σ = Σ1 × · · · × Σn = [P(E)]n.

Let σ = (σ1, . . . , σn) ∈ Σ be a combination of pure strategies. The (|E|-dimensional)
congestion vector that corresponds to σ is hσ = (hσ

e )e∈E , where hσ
e =

∣∣{i ∈ N |e ∈ σi}
∣∣. The

execution cost of service provider e for agent i is a function bi
e : Σ → R of the congestion

experienced by e. The disutility function of agent i, πi : Σ → R, is defined as follows. If
agent i chooses strategy σi = ∅ (i.e., does not assign his task to any service provider) then
his disutility equals his failure cost, πi(σ) = Wi. For any strategy σi 6= ∅ of agent i,

πi(σ) = Wi

∏
e∈σi

fe +
∑

A∈P(σi)r{?}
min
e∈A

(
bi
e(h

σ
e ) + a

) ∏

e∈A

se

∏

e∈σirA

fe

= Wi

∏
e∈σi

fe +
∑

A∈P(σi)r{?}
min
e∈A

lie(h
σ
e )

∏

e∈A

se

∏

e∈σirA

fe, (1)

where a is the fixed completion cost, bi
e(h

σ
e ) is the execution cost of service provider e for

agent i, when its congestion is hσ
e , and the sum of execution and fixed completion costs

lie(h
σ
e ) = bi

e(h
σ
e ) + a is the service cost of service provider e for agent i.

We assume that bi
e(·) is a nonnegative nondecreasing function satisfying bi

e(x) ≤ Wi for
all i ∈ N , e ∈ E and integer 0 ≤ x ≤ n. This means that the execution of a task does not
cost more than its failure. W.l.o.g., we also assume that for any agent i his failure cost Wi

is larger than the fixed completion cost a. Otherwise, the obvious dominant strategy of
agent i is to avoid assigning his task to any service provider. Note that for all 0 ≤ x ≤ n,
bi
e(x) ≤ Wi and a ≤ Wi, but lie(x) might be larger than Wi. Obviously, if lie(1) > Wi for

all e ∈ E, the dominant strategy of agent i is to avoid assigning a task, i.e. in this case
1This models for example a payment to the network administrator for successful execution of a task,

by one or more of the service providers. Our model can be extended, while leading to similar results, to
the case where the completion cost is agent-dependent or facility dependent.
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agent i can be actually ignored. Therefore, w.l.o.g., we assume that such cases do not take
place.

3 CGFs have no potential

Monderer and Shapley [7] introduced the notion of potential function and defined a po-
tential game to be a game which possesses a potential function. A potential function is a
real-valued function over the set of pure-strategy profiles, with the property that the gain
(or loss) of an agent shifting to another strategy is equal to the corresponding increment
of the potential function. The authors showed that the classes of potential games and
congestion games coincide.

In this section we show that the class of CGFs does not possess a potential function, and
therefore is not isomorphic to the class of congestion games. Notice that congestion games
with agent-specific cost functions, introduced by Milchtaich [4], can be viewed as CGFs
with zero failure probabilities. It has been shown that such games are not potential games.
Nevertheless, our result for CGFs is more general. We show that even agent-symmetric
CGFs do not admit a potential function. Hence, the non-existence of a potential in CGFs
is a result of allowing facility failures. To prove this statement we employ Theorem 3.1 of
Monderer and Shapley [7]. First, however, we need to present some definitions.

A path in Σ is a sequence γ = (σ0 → σ1 → · · · ) such that for every k ≥ 1 there exists
a unique player, say player i, such that σk = (σk−1

−i , x) for some x 6= σk−1
i in Σi. σ0 is

called the initial point of γ, and if γ is finite, then its last element is called the terminal
point of γ. A finite path γ = (σ0 → σ1 → · · · → σK) is closed if σ0 = σK . It is a
simple closed path if in addition σl 6= σk for every 0 ≤ l 6= k ≤ K − 1. The length of a
simple closed path is defined to be the number of distinct points in it; that is, the length
of γ = (σ0 → σ1 → · · · → σK) is K. For a finite path γ = (σ0 → σ1 → · · · → σK) and for
a vector U = (U1, . . . , Un) of utility functions, let us define

U(γ) =
K∑

k=1

[Uik(σk)− Uik(σk−1)],

where ik is the unique deviator at step k. Then,

Theorem 3.1 (Monderer—Shapley, [7]) Let Γ be a game in strategic form. Then, Γ
is a potential game if and only if U(γ) = 0 for every finite simple closed path γ of length
4.

By this theorem, if Γ is a game in strategic form with Ui : Σ → R the utility function of
agent i, then Γ is a potential game if and only if for every i, j ∈ N , for every z ∈ Σ−{i,j},
and for every xi, yi ∈ Σi and xj , yj ∈ Σj ,

Ui(β)− Ui(α) + Uj(γ)− Uj(β) + Ui(δ)− Ui(γ) + Uj(α)− Uj(δ) = 0 ,

where α = (xi, xj , z), β = (yi, xj , z), γ = (yi, yj , z), δ = (xi, yj , z) (thus, α → β → γ →
δ → α is a simple closed path of length 4).

Proposition 3.2 The class of CGFs does not possess a potential function.

Proof: A counterexample is the following symmetric game G in which two agents (N = {1, 2})
wish to assign a task to two independent SPs (E = {e1, e2}). The failure probability f
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of each SP is positive (f > 0). The failure cost to each of the agents is W ≥ 2, and the
service cost function of each SP to each agent is given by lie(x) = min{x, W} + a (∀e, i).
Consider the simple closed path of length 4 which is formed by

α = (∅, {e2}) , β = ({e1}, {e2}) , γ = ({e1}, {e1, e2}) , δ = (∅, {e1, e2}) :

{e2} {e1, e2}
? π1 = W π1 = W

π2 = fW + (1− f)(min{1, W}+ a) π2 = f2W + (1− f2)(min{1, W}+ a)

{e1} π1 = fW + (1− f)(min{1, W}+ a) π1 = fW + (1− f)(min{2, W}+ a)

π2 = fW + (1− f)(min{1, W}+ a) π2 = f2W + (1− f)(min{1, W}+ a) + f(1− f)(min{2, W}+ a)

Then,

π1(β)− π1(α) + π2(γ)− π2(β) + π1(δ)− π1(γ) + π2(α)− π2(δ)
= (fW + (1− f)(min{1,W}+ a))−W

+
(
f2W + (1− f)(min{1,W}+ a) + f(1− f)(min{2,W}+ a)

)

− (fW + (1− f)(min{1,W}+ a)) + W − (fW + (1− f)(min{2,W}+ a))
+ (fW + (1− f)(min{1,W}+ a))− (

f2W + (1− f2)(min{1,W}+ a)
)

= −(1− f)2 (min{2,W} −min{1,W}) = −(1− f)2 6= 0.

Then, by Theorem 3.1, congestion games with failures do not possess a potential
function. ¤

4 Pure-strategy Nash equilibria in CGFs

By Monderer and Shapley [7], every finite potential game possesses a pure-strategy Nash
equilibrium. We have shown in Section 3 that CGFs do not admit a potential function,
but this fact, in general, does not contradict the existence of an equilibrium in pure
strategies. In this section we present the main contribution of this paper. We prove that
all congestion games with failures possess Nash equilibria in pure strategies, and present
an efficient algorithm that finds such equilibrium points in a given CGF. Moreover, we
show that different Nash equilibrium profiles of a given CGF correspond to (almost) the
same congestion vector.

4.1 Existence and construction

The following theorem is the main result of this paper.

Theorem 4.1 Congestion games with failures possess a Nash equilibrium in pure strate-
gies.

The proof of Theorem 4.1 is quite long and tedious, and is given in the Appendix. One
point to notice is that the proof is constructive and makes use of the following efficient
simple algorithm for finding a pure Nash equilibrium in a given CGF.
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4.1.1 NE-algorithm

Initialization: For all 1 ≤ i ≤ n, set σi := ∅.

Main step: For all e ∈ E:
(1) Sort the agents in a non-increasing order of

xi
e = max{x|Wi > lie(x), x = 0, 1, . . . , n}.

Let ϕe : N → {1, . . . , n}
i 7→ ie = ϕe(i)

be the corresponding permutation function.
(2) For ie = 1 to n:

if ie ≤ xi
e, then σi := σi ∪ {e}.

4.2 (Almost) uniqueness

We consider uniqueness properties of Nash equilibria in CGFs. We restrict our attention
to games with strictly increasing service cost functions, and show that in such CGFs the
difference between the congestion experienced by an SP in two different Nash equilibria is
bounded by 1.

Let NE ⊆ Σ be a set of Nash equilibrium pure-strategy combinations, and let hM

represent the maximal congestion that may be experienced by any service provider at any
Nash equilibrium, i.e. hM = max{hσ

e |e ∈ E, σ ∈ NE}. Then,

Proposition 4.2 If for all e ∈ E and i ∈ N , lie(x) is a strictly increasing monotone
function on the interval 0 ≤ x ≤ hM , then for any pair of Nash equilibrium strategy
profiles σ1, σ2 ∈ NE the inequality |hσ1

e − hσ2

e | ≤ 1 holds for all e ∈ E.

For the proof of Proposition 4.2 we need the following claim.

Claim 4.3 Let σ ∈ NE be a Nash equilibrium strategy profile. Then, for all i ∈ N ,

(i) lie(h
σ
e ) ≤ Wi, ∀e ∈ σi;

(ii) lie(h
σ
e + 1) ≥ Wi, ∀e /∈ σi.

The proof of Claim 4.3 is given in the Appendix.
Proof of Proposition 4.2: Let σ1, σ2 ∈ NE be Nash equilibrium strategy profiles,

and assume that hσ1

e > hσ2

e + 1 for some e ∈ E. Then, there is an agent i such that
e ∈ σ1

i , but e /∈ σ2
i . By Claim 4.3, for agent i we have lie(h

σ1

e ) ≤ Wi and lie(h
σ2

e + 1) ≥ Wi.
Therefore, lie(h

σ1

e ) ≤ lie(h
σ2

e + 1). Now, hσ1

e > hσ2

e + 1 coupled with the monotonicity of
lie(x) lead to lie(h

σ1

e ) > lie(h
σ2

e + 1), in contradiction to Claim 4.3. ¤
It is easy to show that if in addition to the requirements of Proposition 4.2, the cost

function lie(·) satisfies lie(x) 6= Wi for 0 ≤ x ≤ hM , then all Nash equilibria of a given CGF
correspond to the same congestion vector, i.e. the congestion of any SP is fixed for all
equilibrium points. In particular, all generic CGFs have this uniqueness property.

5 Symmetric CGFs

In this subsection we give some additional characterization of Nash equilibria in symmetric
CGFs. In symmetric CGFs, the agents and the SPs are symmetric, i.e. for all i = 1, . . . , n
and e ∈ E we have Wi = W , fe = f , and lie(x) = l(x), for all x ∈ {0, 1, . . . , n}. We
also present efficient algorithms for finding best and worst Nash equilibria, and make a
comparison between this equilibria.
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Proposition 5.1 Let G be a symmetric CGF. If l(x) is a strictly increasing monotone
function on the interval 0 ≤ x ≤ hM , then at any Nash equilibrium σ ⊆ NE(G), the
difference between the congestions of different SPs is bounded by 1, i.e. for all σ ∈ NE
and for all a, b ∈ E, the inquality |hσ

a − hσ
b | ≤ 1 holds.

The proof of Proposition 5.1 is given in the Appendix.

5.1 Best and worst equilibria

Given a strategy profile σ, define the social disutility π(σ) as the sum of the agents’
disutilities in this strategy profile: π(σ) =

∑
i∈N πi(σ). A strategy profile that minimizes

the social disutility over the set of strategy profiles is called a social optimum. A best
(worst) equilibrium is a strategy profile that minimizes (maximizes) the social disutility
over the set of equilibrium strategies. The social disutility in a best equilibrium describes
the best result that can be obtained in a system with noncooperative selfish agents. The
ratio between the social disutilities in a worst equilibrium and in a social optimum serves
as a measure of the inefficiency of Nash equilibrium. In this subsection we characterize,
construct and compare best and worst Nash equilibria in symmetric CGFs.

Proposition 5.2 Let h∗ = max{x|l(x) < W}. Then, there is a best Nash equilibrium
strategy profile σ in which the congestion on each e ∈ E is hσ

e = h∗, and moreover,∣∣|σi| − |σj |
∣∣ ≤ 1 for all i, j ∈ N .

We prove below that the following algorithm (5.1.1), which is a (modified) version of
the NE-algorithm (4.1.1), finds a best pure-strategy Nash equilibrium with the properties
described by Proposition 5.2, in a given symmetric CGF.

5.1.1 BNE-algorithm

Initialization: For all 1 ≤ i ≤ n, set σi := ∅.

Main step: For all e ∈ E:
(1) Sort the agents in an order

ϕe : N → {1, . . . , n}
i 7→ ie = ϕe(i)

satisfying the following condition:
for all i, j ∈ N , |σi| < |σj | ⇒ ie = ϕe(i) < ϕe(j) = je.

(2) Let xmax = max{x|W > l(x), x = 0, 1, . . . , n}.
For ie = 1 to n:
if ie ≤ xmax, then σi := σi ∪ {e}.

Proof of Proposition 5.2: By Theorem 4.1, the combination of strategies con-
structed by BNE-algorithm is a Nash equilibrium strategy profile. One can check that
the resulting combination of strategies satisfies the conditions of Proposition 5.2. More
precisely, x agents choose bmh∗

n c service providers, where m denote the number of SPs, and
y agents choose bmh∗

n c+ 1 service providers, where x and y satisfy the following equation:

{
xbmh∗

n c+ y(bmh∗
n c+ 1) = mh∗

x + y = n.
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The values of x and y are

x = n

(
bmh∗

n
c+ 1

)
−mh∗ ;

y = mh∗ − nbmh∗

n
c . (2)

Note that if n divides mh∗, then x = n, y = 0. To complete the proof we need the
following two claims.

Claim 5.3 Let σ ∈ NE be a combination of strategies at Nash equilibrium with two agents
i, j ∈ N , such that |σi| > |σj |+ 1. Then, the combination of strategies

σ̂ = (σ1, . . . , σi r {b}, . . . , σj ∪ {b}, . . . , σn),

where b ∈ arg maxe∈σirσj l(hσ
e ), is better than σ, i.e.

∑n
k=1 πk(σ̂) ≤ ∑n

k=1 πk(σ).

Claim 5.4 Let σ 6= (E, . . . , E) be a Nash equilibrium strategy profile and let i be an agent
playing σi 6= E. Then, for all k ∈ N and for all e ∈ E r σi,

πk(σ) ≤ πk(σ1, . . . , σi ∪ {e}, . . . , σn).

The proofs of Claims 5.3 and 5.4 are given in the Appendix. By Claims 5.3 and 5.4, the
combination of strategies constructed by the BNE-algorithm is a best Nash equilibrium
profile. ¤

The BNE-algorithm provides an efficient procedure for construction best Nash equi-
libria in symmetric CGFs, as defined in Proposition 5.2. Next we identify some worst
equilibria in symmetric CGFs. These equilibrium points have very simple form and can
be easily constructed, as follows from the next proposition.

Proposition 5.5 Let h∗∗ = arg max{x|l(x) ≤ W}. Then, there is a worst Nash equi-
librium strategy profile σ in which exactly h∗∗ agents play E, n − h∗∗ agents play ∅ and
hσ

e = h∗∗ for all e ∈ E.

The proof of Proposition 5.5 is given in the Appendix. Next we compare the best and worst
Nash equilibria. Let us denote the social disutility of a best Nash equilibrium strategy
profile by πB, and the worst one by πW :

πW = h∗∗ (Wfm + l(h∗∗)(1− fm)) + (n− h∗∗)W
= h∗∗(1− fm) (l(h∗∗)−W ) + nW ; (3)

πB = x
(
Wf b

mh∗
n
c + l(h∗)(1− f b

mh∗
n
c)

)

+y
(
Wf b

mh∗
n
c+1 + l(h∗)(1− f b

mh∗
n
c+1)

)

= f b
mh∗

n
c(x + fy) (W − l(h∗)) + nl(h∗), (4)

where x and y are given by (2).
Therefore, the ratio between social disutilities in worst and best equilibria is

πW

πB
=

h∗∗(1− fm) (l(h∗∗)−W ) + nW

f b
mh∗

n
c(x + fy) (W − l(h∗)) + nl(h∗)

. (5)
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Since l(h∗) < W and l(h∗∗) ≤ W , we have that

πW

πB
<

nW

nl(h∗)
=

W

l(h∗)
. (6)

This implies that the values of the social disutility in different Nash equilibrium points lie
in a very narrow range. In the context of social performance of Nash equilibria, one has
to ask how far these values are from the social optimum.

5.2 Nash equilibria and social optimum

In this subsection we discuss the social performance of Nash equilibrium in CGFs. By
Ashlagi [1], a best equilibrium strategy profile in classic congestion games with monotone
concave cost functions is socially optimal. Simple examples (that were omitted from this
paper) show that in CGFs with such cost functions, best equilibrium strategy profiles are
not always socially optimal.

Furthermore, we show below that in CGFs the price of anarchy (the ratio between social
disutilities in a worst Nash equilibrium and a social optimum) depends on the parameters
of the game and cannot be bounded by a constant value as in classic congestion games,
even for very simple (e.g., linear) cost functions.

Consider the following example. Suppose we have n ≥ 2 agents sharing the set E =
{1, . . . , m} of m ≥ 2 independent SPs. Each service provider e ∈ E has the failure
probability f , and the service cost of each SP for each agent is l(x) = min{x,W} + a,
where a is a fixed completion cost. The failure cost of each agent is W = n + a.

The worst Nash equilibrium in this case corresponds to the combination of strategies
σ in which each agent chooses to use each of the SPs. The disutility of agent i, i ∈ N , at
this point is

πi(σ) = fmW + (1− fm) (min{x,W}+ a) (7)
= fm(n + a) + (1− fm)(n + a) = n + a,

and the social disutility is

π(σ) =
n∑

i=1

πi(σ) = n (n + a) . (8)

Consider the combination of strategies σ̂ that corresponds to the following agents’ behav-
ior: each agent chooses only one SP and the agents divide up the SPs in a uniform way,
i.e. each SP is chosen by n

m agents (assume m divides n). The disutility of agent i, i ∈ N ,
at this point is

πi(σ̂) = fW + (1− f)
(
min{ n

m
,W}+ a

)
(9)

= f(n + a) + (1− f)
( n

m
+ a

)
= fn + (1− f)

n

m
+ a,

and the social disutility is

π(σ̂) =
n∑

i=1

πi(σ̂) = n
(
fn + (1− f)

n

m
+ a

)
. (10)

9



Then, the ratio between outcomes of the worst Nash equilibrium and the social optimum
is

π(σ)
π(OPT )

≥ π(σ)
π(σ̂)

=
n (n + a)

n
(
fn + (1− f) n

m + a
) =

n + a

fn + (1− f) n
m + a

(11)

=
m(n + a)

fmn + (1− f)n + am

f→0
>

m(n + a)
n + am

a→0
>

mn

n
= m.

This implies that the price of anarchy in congestion games with failures, unlike in classic
congestion games, is not bounded by a constant value, but is game-dependent.

6 Discussion & future work

In this paper we studied congestion games in which facilities may fail to complete their
assigned tasks. We have shown that these games do not admit a potential function, and
therefore are not isomorphic to classic congestion games. However, we were able to prove
the existence of pure-strategy Nash equilibrium for these games, and to find an efficient
algorithm for its construction. We also showed that the congestion experienced by each
of the facilities in different Nash equilibria is (almost) unique. For symmetric CGFs we
provided a characterization of the best and worst Nash equilibria, presented algorithms for
their construction, and made a comparison of agents’ payoffs at these equilibrium points.

Since it is known that Nash equilibria do not optimize the overall welfare, the social
performance of Nash equilibria should be studied. In this context, we outline the following
two directions: (i) evaluation of the inefficiency of Nash equilibria; (ii) developing methods
for improving the outcome of Nash equilibria. In both directions we have some partial
results for the games presented in this paper. For instance, the price of anarchy in CGFs
is a function of the parameters of the game and cannot be bounded by constant value as in
classic congestion games, even for very simple (e.g., linear) cost functions. The inefficiency
of Nash equilibria motivates the study of methods for improving the social outcome ob-
tained by selfish agents. In this context, we have some positive results (that were omitted
from this paper) showing that economic incentives, e.g. taxation, can improve the out-
come of Nash equilibria in CGFs. That is, we can price the facilities to reduce the total
social disutility of Nash equilibrium - the sum of the agents’ disutilities plus taxes paid.
We are interested in formulating meaningful conditions under which taxes can reduce the
total cost of Nash equilibrium in games with failures.

As part of our research we plan to take further look at the modelling of noncooperative
games with failures. The model we presented here could be extended or modified. In
particular, the facility failures might be congestion-dependent or unknown to the agents.

Overall, we believe this work tackles a fundamental connection between distributed
computing and game theory. While congestion is substantial to both disciplines (and
indeed is extensively studied by both communities), the notion of selfish behavior pertains
to game theory and the notion of failures originates from distributed computing. However,
there is a natural connection between these topics which to the best of our knowledge is
first explored in this work.
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Appendix

Notations: For any subset A ⊆ E of the given set of SPs, we denote by P (A) the set of
all nonempty subsets of A, thus P (A) = P(A)r {∅}. We denote by liA(hσ

A) the minimal
cost of the SPs in A corresponding to congestion vector hσ: liA(hσ

A) = mine∈A lie(h
σ
e ).

Similarly, we denote by s(A) the success probability of all SPs in A, and by f(A) the
failure probability of all SPs in A. Then, the disutility function πi(σ) of agent i choosing
a nonempty strategy σi 6= ∅ may be written as follows:

πi(σ) = Wif(σi) +
∑

A∈P (σi)

liA(hσ
A)s(A)f(σi rA), (12)
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where

f(σi) +
∑

A∈P (σi)

s(A)f(σi rA) = 1. (13)

Proof of Theorem 4.1: Let (σ∗1, . . . , σ
∗
n) be the combination of pure strategies con-

structed by the algorithm, and h∗ = (h∗e)e∈E the corresponding congestion vector. For all
1 ≤ i ≤ n, the congestion vector h∗ satisfies the following two conditions:

(i) Wi > lie(h
∗
e) ∀e ∈ σ∗i ;

(ii) Wi ≤ lie(h
∗
e + 1) ∀e ∈ E r σ∗i . (14)

(14) is a result of the following observation. Choose any service provider e and any

agent i. If e ∈ σ∗i , then xi
e ≥ x

ϕ−1
e (k)

e , where

k = max
j=1,...,n

{ϕe(j)|e ∈ σ∗j } = h∗e.

Since e ∈ σ∗k, then x
ϕ−1

e (k)
e ≥ k, and xi

e ≥ x
ϕ−1

e (k)
e ≥ k = h∗e. By the definition of xi

e, for all
x ≤ xi

e, we have Wi > lie(x). Thus, since h∗e ≤ xi
e, we get Wi > lie(h

∗
e).

If e /∈ σ∗i , then xi
e ≤ x

ϕ−1
e (l)

e , where

l = min
j=1,...,n

{ϕe(j)|e /∈ σ∗j } = max
j=1,...,n

{ϕe(j)|e ∈ σ∗j }+ 1 = h∗e + 1.

Since e /∈ σ∗l , then x
ϕ−1

e (l)
e < l, and xi

e ≤ x
ϕ−1

e (l)
e < l = h∗e + 1. By the definition of xi

e, for
all x > xi

e, we have Wi ≤ lie(x). Thus, since h∗e + 1 > xi
e, we get Wi ≤ lie(h

∗
e + 1).

We show below that the combination of strategies (σ∗1, . . . , σ
∗
n) constructed by the al-

gorithm is in equilibrium, i.e. for each agent i, for all σi ∈ Σi, πi (σ∗1, . . . , σ
∗
i , . . . , σ

∗
n) ≤

πi (σ∗1, . . . , σi, . . . , σ
∗
n). For all σi ∈ Σi, we denote πi (σ∗1, . . . , σi, . . . , σ

∗
n) by πi(σi). Thus,

we want to show πi(σ∗i ) ≤ πi(σi), for all i and σi.

We make a distinction between two possible cases: the strategy of agent i is empty
(σ∗i = ∅); the strategy of agent i is nonempty (σ∗i 6= ∅). If agent i chooses an empty set
of SPs, i.e. σ∗i = ∅, his disutility is πi(σ∗i ) = Wi. The disutility of agent i deviating from
the empty strategy to any σi 6= ∅ is

πi(σi) = Wif(σi) +
∑

A∈P (σi)

liA(h∗A + 1)s(A)f(σi rA) (15)

≥ Wif(σi) + Wi

∑

A∈P (σi)

s(A)f(σi rA) = Wi = πi(σ∗i ).

The inequality follows from (14). Thus, for the first case we get πi(σ∗i ) ≤ πi(σi).

If agent i chooses a nonempty strategy σ∗i 6= ∅, his disutility is

πi(σ∗i ) = Wif(σ∗i ) +
∑

B∈P (σ∗i )

liB(h∗B)s(B)f(σ∗i rB) (16)

< Wif(σ∗i ) + Wi

∑

B∈P (σ∗i )

s(B)f(σ∗i rB) = Wi = πi(∅).

12



The inequality follows from (14). Thus, agent i loses from the deviation to an empty
strategy.

The disutility of agent i deviating to any nonempty set of SPs σi 6= σ∗i is

πi(σi) = Wif(σi) +
∑

A∈P (σi)

liA(hσ
A)s(A)f(σi rA), (17)

where

hσ
e =

{
h∗e e ∈ σ∗i ∩ σi;
h∗e + 1 e ∈ σi r σ∗i .

(18)

We show below that

πi(σi)− πi(σ∗i ) = Wif(σi) +
∑

A∈P (σi)

liA(hσ
A)s(A)f(σi rA)

−

Wif(σ∗i ) +

∑

B∈P (σ∗i )

liB(h∗B)s(B)f(σ∗i rB)


 = Wi (f(σi)− f(σ∗i ))

+
∑

A∈P (σi)

liA(hσ
A)s(A)f(σi rA)−

∑

B∈P (σ∗i )

liB(h∗B)s(B)f(σ∗i rB) (19)

is positive, i.e. πi(σi) > πi(σ∗i ).

For every pair of sets x, y, the next equality holds:

P (x) = P (x ∩ y) ∪ P (xr y) ∪ {
Ω ∪Ψ

∣∣Ω ∈ P (x ∩ y),Ψ ∈ P (xr y)
}

. (20)

Then, by (18) and (20),

πi(σi)− πi(σ∗i ) = Wi (f(σi)− f(σ∗i )) +
[ ∑

Ω∈P (σi∩σ∗i )

liΩ(h∗Ω)s(Ω)f (σi r Ω)

+
∑

A′∈P (σirσ∗i )

liA′(h
∗
A′ + 1)s(A′)f

(
σi rA′

)
(21)

+
∑

Ω∈P (σi∩σ∗i )

∑

A′∈P (σirσ∗i )

liA′∪Ω(hσ
A′∪Ω)s(A′ ∪ Ω)f

(
σi r (A′ ∪ Ω)

) ]

−
[ ∑

Ω∈P (σi∩σ∗i )

liΩ(h∗Ω)s(Ω)f (σ∗i r Ω) +
∑

B′∈P (σ∗irσi)

liB′(h
∗
B′)s(B

′)f
(
σ∗i rB′)

+
∑

Ω∈P (σi∩σ∗i )

∑

B′∈P (σ∗irσi)

liB′∪Ω(h∗B′∪Ω)s(B′ ∪ Ω)f
(
σ∗i r (B′ ∪ Ω)

) ]
.

For every pair of sets x, y and for any Ω ∈ P (x ∩ y), Ψ ∈ P (xr y) the next equalities
hold:

xr Ω = ((x ∩ y)r Ω) ∪ (xr y) ; (22)
xr (Ψ ∪ Ω) = ((x ∩ y)r Ω) ∪ ((xr y)rΨ) . (23)
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Using equalities (22), (23) and the fact that all sets Ω ∈ P (σi ∩ σ∗i ), A′ ∈ P (σi r σ∗i ),
and B′ ∈ P (σ∗i r σi) are disjoint, we get:

πi(σi)− πi(σ∗i ) = Wi (f(σi)− f(σ∗i )) +
∑

A′∈P (σirσ∗i )

liA′(h
∗
A′ + 1)s(A′)f

(
σi rA′

)

−
∑

B′∈P (σ∗irσi)

liB′(h
∗
B′)s(B

′)f
(
σ∗i rB′) +

[ ∑

Ω∈P (σi∩σ∗i )

liΩ(h∗Ω)s(Ω)f ((σi ∩ σ∗i )r Ω) f (σi r σ∗i )

+
∑

Ω∈P (σi∩σ∗i )

∑

A′∈P (σirσ∗i )

liA′∪Ω(hσ
A′∪Ω)s(A′)s(Ω)f ((σi ∩ σ∗i )r Ω) f

(
(σi r σ∗i )rA′

) ]

−
[ ∑

Ω∈P (σi∩σ∗i )

liΩ(h∗Ω)s(Ω)f ((σi ∩ σ∗i )r Ω) f (σ∗i r σi) (24)

+
∑

Ω∈P (σi∩σ∗i )

∑

B′∈P (σ∗irσi)

liB′∪Ω(h∗B′∪Ω)s(B′)s(Ω)f ((σi ∩ σ∗i )r Ω) f
(
(σ∗i r σi)rB′)

]
.

For all Ω ∈ P (σi ∩ σ∗i ), A′ ∈ P (σi r σ∗i ), and B′ ∈ P (σ∗i r σi), from (14) and (18) we
get liΩ(h∗Ω) ≤ liA′∪Ω(hA′∪Ω), and since Ω ⊆ B′ ∪ Ω, then liB′∪Ω(h∗B′∪Ω) ≤ liΩ(h∗Ω). Thus, for
all Ω, A′, B′, we have

liB′∪Ω(h∗B′∪Ω) ≤ liΩ(h∗Ω) ≤ liA′∪Ω(hσ
A′∪Ω). (25)

Using (25), we get

πi(σi)− πi(σ∗i ) ≥ Wi (f(σi)− f(σ∗i )) +
∑

A′∈P (σirσ∗i )

liA′(h
∗
A′ + 1)s(A′)f

(
σi rA′

)

−
∑

B′∈P (σ∗irσi)

liB′(h
∗
B′)s(B

′)f
(
σ∗i rB′) +

∑

Ω∈P (σi∩σ∗i )

liΩ(h∗Ω)s(Ω)f ((σi ∩ σ∗i )r Ω)

×
[ ∑

A′∈P (σirσ∗i )

s(A′)f
(
(σi r σ∗i )rA′

)−
∑

B′∈P (σ∗irσi)

s(B′)f
(
(σ∗i r σi)rB′)

+f(σi r σ∗i )− f(σ∗i r σi)
]
. (26)

By (13),
∑

A′∈P (σirσ∗i )

s(A′)f
(
(σi r σ∗i )rA′

)−
∑

B′∈P (σ∗irσi)

s(B′)f
(
(σ∗i r σi)rB′)

+f(σi r σ∗i )− f(σ∗i r σi) = (1− f(σi r σ∗i ))− (1− f(σ∗i r σi))
+f(σi r σ∗i )− f(σ∗i r σi) = 0. (27)
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By (13), (20), (22), (23), (27),

f(σi)− f(σ∗i ) =
∑

B′∈P (σ∗irσi)

s(B′)f
(
σ∗i rB′)−

∑

A′∈P (σirσ∗i )

s(A′)f
(
σi rA′

)

+
∑

Ω∈P (σi∩σ∗i )

s(Ω)f ((σi ∩ σ∗i )r Ω)×
[ ∑

B′∈P (σ∗irσi)

s(B′)f
(
(σ∗i r σi)rB′)

−
∑

A′∈P (σirσ∗i )

s(A′)f
(
(σi r σ∗i )rA′

)
+ f(σ∗i r σi)− f(σi r σ∗i )

]

=
∑

B′∈P (σ∗irσi)

s(B′)f
(
σ∗i rB′)−

∑

A′∈P (σirσ∗i )

s(A′)f
(
σi rA′

)
. (28)

Inserting (27) and (28) into (26), we get

πi(σi)− πi(σ∗i ) ≥ Wi

∑

B′∈P (σ∗irσi)

s(B′)f
(
σ∗i rB′)−

∑

B′∈P (σ∗irσi)

liB′(h
∗
B′)s(B

′)f
(
σ∗i rB′)

+
∑

A′∈P (σirσ∗i )

liA′(h
∗
A′ + 1)s(A′)f

(
σi rA′

)−Wi

∑

A′∈P (σirσ∗i )

s(A′)f
(
σi rA′

)
. (29)

By (14), Wi > liB′(h
∗
B′) for all B′ ∈ P (σ∗i rσi), and Wi ≤ liA′(h

∗
A′+1) for all A′ ∈ P (σirσ∗i ).

Thus πi(σi)− πi(σ∗i ) > 0.

Therefore, πi(σ∗i ) ≤ πi(σi), for all σ∗i , σi ∈ Σi, as claimed. ¤

Proof of Claim 4.3:

(i) Suppose there is an agent i such that the set Li ⊆ σi of SPs with lie(h
σ
e ) > Wi is not

empty: Li = {e ∈ σi|lie(hσ
e ) > Wi} 6= ∅. Let b ∈ Li be such SP with maximal lie(h

σ
e ):

b ∈ arg maxe∈Li lie(h
σ
e ).

We show below that πi(σ) > πi(σ1, . . . , σi r {b}, . . . , σn), i.e. σ is not a Nash equi-
librium strategy profile, in contradiction.

We denote (σ1, . . . , σi r {b}, . . . , σn) by σ̂.

πi(σ)− πi(σ̂) = Wif(σi) +
∑

A∈P (σi)

liA (hσ
A) s(A)f(σi rA) (30)

−Wif(σi r {b})−
∑

B∈P (σir{b})
liB

(
hσ̂

B

)
s(B)f ((σi r {b})rB) .

By (20),

πi(σ)− πi(σ̂) = Wif(σi r {b})(fb − 1) +
∑

B∈P (σir{b})
liB (hσ

B) s(B)f(σi rB) (31)

−
∑

B∈P (σir{b})
liB (hσ

B) s(B)f ((σi r {b})rB) + lib(h
σ
b )sbf(σi r {b})

+
∑

B∈P (σir{b})
liB∪{b}

(
hσ

B∪{b}
)

sbs(B)f ((σi r (B ∪ {b})) .
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Since σi r (B ∪ {b}) = (σi r {b})rB and σi rB = ((σi r {b})rB) ∪ {b},

πi(σ)− πi(σ̂) = sb

[
f(σi r {b})

(
lib (hσ

b )−Wi

)
(32)

+
∑

B∈P (σir{b})
s(B)f ((σi r {b})rB)

(
liB∪{b}

(
hσ

B∪{b}
)
− liB(hσ

B)
)]

.

If for all B ∈ P (σi r {b}), lib(h
σ
b ) ≥ liB(hσ

B), then liB∪{b}
(
hσ

B∪{b}
)

= liB(hσ
B), and we

are done. Else, there is B ∈ P (σi r {b}) such that lib(h
σ
b ) < liB(hσ

B), i.e. lie(h
σ
e ) >

lib(h
σ
b ) > Wi for all e ∈ B. Therefore, there exists c ∈ Li such that lic(h

σ
c ) > lib(h

σ
b ),

in contradiction to the choice of b. ¤

(ii) Suppose there are agent i and SP b ∈ E such that lib(h
σ
b + 1) < Wi and b /∈ σi. We

show below that πi(σ) > πi(σ1, . . . , σi∪{b}, . . . , σn), i.e. σ is not a Nash equilibrium
strategy profile, in contradiction.

We denote (σ1, . . . , σi ∪ {b}, . . . , σn) by σ̂.

πi(σ)− πi(σ̂) = Wif(σi) +
∑

A∈P (σi)

liA (hσ
A) s(A)f(σi rA) (33)

−Wif(σi ∪ {b})−
∑

B∈P (σi∪{b})
liB

(
hσ̂

B

)
s(B)f ((σi ∪ {b})rB) .

By (20),

πi(σ)− πi(σ̂) = Wif(σi)(1− fb) +
∑

A∈P (σi)

liA (hσ
A) s(A)f(σi rA) (34)

−
∑

A∈P (σi)

liA (hσ
A) s(A)f ((σi ∪ {b})rA)− lib (hσ

b + 1) sbf(σi)

−
∑

A∈P (σi)

liA∪{b}
(
hσ̂

A∪{b}
)

sbs(A)f ((σi ∪ {b})r (A ∪ {b})) .

Since (σi ∪ {b})r (A ∪ {b}) = σi rA and (σi ∪ {b})rA = (σi rA) ∪ {b},

πi(σ)− πi(σ̂) = sb

[
f(σi)

(
Wi − lib (hσ

b + 1)
)

(35)

+
∑

A∈P (σi)

s(A)f(σi rA)
(
liA(hσ

A)− liA∪{b}
(
hσ̂

A∪{b}
))]

.

For all A ∈ P (σi), liA(hσ
A) ≥ liA∪{b}

(
hσ̂

A∪{b}
)

(because A ⊂ (A ∪ {b}) and hσ̂
e = hσ

e ,

∀e ∈ E). Then, since Wi > lib(h
σ
b + 1) and fe, se > 0 for all e ∈ E, we get

πi(σ)− πi(σ̂) > 0, i.e. πi(σ) > πi(σ̂) and σ /∈ NE, in contradiction. ¤

Proof of Proposition 5.1: Let σ ∈ NE be a combination of strategies at Nash equi-
librium. Suppose there are two SPs a, b ∈ E such that hσ

a > hσ
b +1. Then, there exists agent
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i such that a ∈ σi, but b /∈ σi. We show below that if agent i deviates from σi to new strat-
egy σ′i = (σi r {a}) ∪ {b}, then his new disutility πi(σ′), where σ′ = (σ1, . . . , σ

′
i, . . . , σn),

is less than the disutility πi(σ), which implies that σ is not an equilibrium strategy, in
contradiction.

Since σi is nonempty, the disutility of agent i for this combination of strategies is

πi(σ) = Wif(σi) +
∑

A∈P (σi)

lA(hσ
A)s(A)f(σi rA). (36)

The disutility of agent i for the new combination of strategies σ′ is

πi(σ′) = Wif(σ′i) +
∑

B∈P (σ′i)

lB(hσ′
B )s(B)f(σi rB), (37)

where

hσ′
e =

{
hσ

e e ∈ σi ∩ σ′i;
hσ

e + 1 e ∈ σ′i r σi.
(38)

We show below that πi(σ)−πi(σ′) = Wi (f(σi)− f(σ′i))+
∑

A∈P (σi)
lA(hσ

A)s(A)f(σirA)

−
∑

B∈P (σ′i)

lB(hσ′
B )s(B)f(σi rB) (39)

is positive, i.e. πi(σ) > πi(σ′).

By (38) and (20),

πi(σ)− πi(σ′) = Wi

(
f(σi)− f(σ′i)

)
+

[ ∑

Ω∈P (σi∩σ′i)

lΩ(hσ
Ω)s(Ω)f (σi r Ω)

+
∑

A′∈P (σirσ′i)

lA′(hσ
A′)s(A

′)f
(
σi rA′

)
(40)

+
∑

Ω∈P (σi∩σ′i)

∑

A′∈P (σirσ′i)

lA′∪Ω(hσ
A′∪Ω)s(A′ ∪ Ω)f

(
σi r (A′ ∪ Ω)

) ]

−
[ ∑

Ω∈P (σi∩σ′i)

liΩ(hσ
Ω)s(Ω)f

(
σ′i r Ω

)
+

∑

B′∈P (σ′irσi)

lB′(hσ
B′ + 1)s(B′)f

(
σ′i rB′)

+
∑

Ω∈P (σi∩σ′i)

∑

B′∈P (σ′irσi)

lB′∪Ω(hσ′
B′∪Ω)s(B′ ∪ Ω)f

(
σ′i r (B′ ∪ Ω)

) ]
.

Using equality (22) and the fact that all sets Ω ∈ P (σi ∩ σ′i), A′ ∈ P (σi r σ′i), and
B′ ∈ P (σ′i r σi) are disjoint, we get:
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πi(σ)− πi(σ′) = Wif(σi ∩ σ′i)
[
f(σi r σ′i)− f(σ′i r σi)

]
+

∑

A′∈P (σirσ′i)

lA′(hσ
A′)s(A

′)f
(
σi rA′

)

−
∑

B′∈P (σ′irσi)

lB′(hσ
B′ + 1)s(B′)f

(
σ′i rB′) (41)

+
[ ∑

Ω∈P (σi∩σ′i)

lΩ(hσ
Ω)s(Ω)f

(
(σi ∩ σ′i)r Ω

)
f

(
σi r σ′i

)

+
∑

Ω∈P (σi∩σ′i)

∑

A′∈P (σirσ′i)

lA′∪Ω(hσ
A′∪Ω)s(A′)s(Ω)f

(
σi r (A′ ∪ Ω)

) ]

−
[ ∑

Ω∈P (σi∩σ′i)

lΩ(hσ
Ω)s(Ω)f

(
(σi ∩ σ′i)r Ω

)
f

(
σ′i r σi

)

+
∑

Ω∈P (σi∩σ′i)

∑

B′∈P (σ′irσi)

lB′∪Ω(hσ′
B′∪Ω)s(B′)s(Ω)f

(
σ′i r (B′ ∪ Ω)

) ]
.

Since σ′i = (σi r {a}) ∪ {b}, then

σi ∩ σ′i = σi r {a} = σ′i r {b};
σi r σ′i = {a};
σ′i r σi = {b}. (42)

For all sets x, y, z the next equality holds:

xr (y ∪ z) = (xr y)r z. (43)

By (42), (43) we get

πi(σ)− πi(σ′) = Wif(σi ∩ σ′i) (fa − fb) + l(hσ
a)saf(σi r {a})− l(hσ

b + 1)sbf(σi r {a})
+ (fa − fb)

∑

Ω∈P (σi∩σ′i)

lΩ(hσ
Ω)s(Ω)f ((σi r {a})r Ω)

+
∑

Ω∈P (σi∩σ′i)

l{a}∪Ω(hσ
{a}∪Ω)sas(Ω)f ((σi r {a})r Ω)

−
∑

Ω∈P (σi∩σ′i)

l{b}∪Ω(hσ′
{b}∪Ω)sbs(Ω)f ((σi r {a})r Ω) . (44)

Since all the SPs have the same failure and success probabilities,

πi(σ)− πi(σ′) = s f(σi r {a})
[
l(hσ

a)− l(hσ
b + 1)

]

+
∑

Ω∈P (σi∩σ′i)

l{a}∪Ω(hσ
{a}∪Ω)s(Ω)s f ((σi r {a})r Ω)

−
∑

Ω∈P (σi∩σ′i)

l{b}∪Ω(hσ′
{b}∪Ω)s(Ω)s f ((σi r {a})r Ω) . (45)

Because of the monotonicity of the function l(x) on the interval 0 ≤ x ≤ hM , where
hM = max{hσ

e |e ∈ E, σ ∈ NE}, and since hσ
a > hσ

b + 1, we get l(hσ
a) > l(hσ

b + 1) = l(hσ′
b ).

Then, for any Ω ∈ σi ∩ σ′i we have

l{a}∪Ω(hσ
{a}∪Ω) ≥ l{b}∪Ω(hσ′

{b}∪Ω). (46)
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Therefore, π(σ) > π(σ′), as claimed. ¤

Proof of Claim 5.3: Since |σi| > |σj |+1, then σirσj is not empty, and let b ∈ σirσj

be such a SP with maximal cost:

b ∈ arg max
e∈σirσj

l(hσ
e ).

We want to show that if we take this SP from agent i and give it to agent j, the total
disutility of the agents can only to be improved.

Obviously, for all e ∈ E, hσ̂
e = hσ

e (we will denote it by he). Then, since σ̂k = σk for
all k 6= i, j, we have πk(σ̂) = πk(σ), for all k 6= i, j. Therefore, it suffices to show that

πi(σ̂) + πj(σ̂) ≤ πi(σ) + πj(σ).

[
πi(σ) + πj(σ)

] − [
πi(σ̂) + πj(σ̂)

]
= Wf(σi) +

∑

A′∈P (σi)

lA′(hA′)s(A′)f(σi rA′)

+Wf(σj) +
∑

B∈P (σj)

lB(hB)s(B)f(σj rB) (47)

−Wf(σi r {b})−
∑

A∈P (σir{b})
lA(hA)s(A)f ((σi r {b})rA)

−Wf(σj ∪ {b})−
∑

B′∈P (σj∪{b})
lB′(hB′)s(B′)f

(
(σj ∪ {b})rB′) .

By (20), and since b ∈ σi r σj ,

P (σi) = P (σi r {b}) ∪ {b} ∪
{
A ∪ {b} ∣∣A ∈ P (σi r {b})

}
; (48)

P (σj ∪ {b}) = P (σj) ∪ {b} ∪
{
B ∪ {b} ∣∣ B ∈ P (σj)

}
. (49)

Then, by (48) and (49),
[
πi(σ) + πj(σ)

] − [
πi(σ̂) + πj(σ̂)

]
= Wf(σi r {b})(fb − 1) + Wf(σj)(1− fb)

+
∑

A∈P (σir{b})
lA(hA)s(A)f(σi rA) + l(hb)sbf(σi r {b})

+
∑

A∈P (σir{b})
lA∪{b}(hA∪{b})sbs(A)f (σi r (A ∪ {b}))

+
∑

B∈P (σj)

lB(hB)s(B)f(σj rB)−
∑

A∈P (σir{b})
lA(hA)s(A)f ((σi r {b})rA)

−
∑

B∈P (σj)

lB(hB)s(B)f ((σj ∪ {b})rB)− l(hb)sbf(σj)

−
∑

B∈P (σj)

lB∪{b}(hB∪{b})sbs(B)f(σj rB). (50)
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Simplifying this expression, we get

[
πi(σ) + πj(σ)

] − [
πi(σ̂) + πj(σ̂)

]
= sb

[
(f(σj)− f(σi r {b})) (W − l(hb)) (51)

+
∑

A∈P (σir{b})
s(A)f ((σi r {b})rA)

(
lA∪{b}(hA∪{b})− lA(hA)

)

+
∑

B∈P (σj)

s(B)f(σj rB)
(
lB(hB)− lB∪{b}(hB∪{b})

) ]
.

By (20), and since b ∈ σi r σj ,

P (σi r {b}) = P (σi ∩ σj) ∪ P ((σi r {b})r σj) (52)
∪{

Ω ∪A′
∣∣Ω ∈ P (σi ∩ σj), A′ ∈ P ((σi r {b})r σj)

}
;

P (σj) = P (σi ∩ σj) ∪ P (σj r (σi r {b})) (53)
∪{

Ω ∪B′ ∣∣Ω ∈ P (σi ∩ σj), B′ ∈ P (σj r (σi r {b}))
}

.

Then, by (52) and (53),

[
πi(σ) + πj(σ)

] − [
πi(σ̂) + πj(σ̂)

]
= sb

[
(f(σj)− f(σi r {b})) (W − l(hb))

+
∑

Ω∈P (σi∩σj)

(
lΩ(hΩ)− lΩ∪{b}(hΩ∪{b})

)
s(Ω) (f(σj r Ω)− f ((σi r {b})r Ω))

+
∑

B′∈P (σjr(σir{b}))

(
lB′(hB′)− lB′∪{b}(hB′∪{b})

)
s(B′)f(σj rB′)

+
∑

B′∈P (σjr(σir{b}))

∑

Ω∈P (σi∩σj)

(
lB′∪Ω(hB′∪Ω)− lB′∪Ω∪{b}(hB′∪Ω∪{b})

)

×s(B′ ∪ Ω)f
(
σj r (B′ ∪ Ω)

)

+
∑

A′∈P ((σir{b})rσj)

(
lA′∪{b}(hA′∪{b})− lA′(hA′)

)
s(A′)f

(
(σi r {b})rA′

)

+
∑

A′∈P ((σir{b})rσj)

∑

Ω∈P (σi∩σj)

(
lA′∪Ω∪{b}(hA′∪Ω∪{b})− lA′∪Ω(hA′∪Ω)

)

×s(A′ ∪ Ω)f
(
(σi r {b})r (A′ ∪ Ω)

) ]
. (54)

Let X ⊆ E represent any set of SPs (even empty). Then,

¦ f(X), s(X) ≥ 0 (as probabilities);

¦ f(σj rX)− f ((σi r {b})rX) > 0 (follows from |σi| > |σj |+ 1);

¦ W ≥ l(hb) (since σ ∈ NE, by Claim 4.3(i));

¦ lX(hX) ≥ lX∪{b}(hX∪{b}) (since X ⊆ X ∪ {b});
¦ from the choice of b, for all e ∈ σi r σj , l(he) ≤ l(hb)
⇒ for all Y ∈ P (σi r σj) (and, in particular, for Y ∈ P ((σi r {b})r σj)),
lY ∪X∪{b}(hY ∪X∪{b}) = lY ∪X(hY ∪X).
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Therefore, we finally get
[
πi(σ) + πj(σ)

]− [
πi(σ̂) + πj(σ̂)

] ≥ 0. ¤

Proof of Claim 5.4: For agent i, the inequality holds because σ is the Nash equilib-
rium strategy profile, satisfying πi(σ) ≤ πi(σ1, . . . , σ̂i, . . . , σn), for all σ̂i ∈ Σi. For other
agents, the inequality follows from the fact that the addition of SP e to the agent i’s
strategy increases the congestion of this SP and does not change the congestion of the
others. Then, the disutility of any agent using SP e increases, and the disutility of any
agent that does not use this SP is the same. ¤

Proof of Proposition 5.5: First we prove that the combination of strategies σ de-
scribed above is a Nash equilibrium strategy profile. Let i be an agent playing σi = E.
We want to show that for any σ̂i ∈ Σi, πi(σ) ≤ πi(σ1, . . . , σ̂i, . . . , σn).

The disutility of agent i for σ is

πi(σ) = Wf(E) +
∑

A∈P (E)

lA(hσ
A)s(A)f(E rA) (55)

= Wfm + l(h∗∗)
∑

A∈P (E)

s(A)f(E rA) = Wfm + l(h∗∗)(1− fm).

The disutility of agent i for σ̂i is

πi(σ1, . . . , σ̂i, . . . , σn) = Wf q + l(h∗∗)(1− f q),

where q = |σ̂i| (0 ≤ q ≤ m).

Then, πi(σ1, . . . , σ̂i, . . . , σn)− πi(σ) = Wf q + l(h∗∗)(1− f q)−Wfm + l(h∗∗)(1− fm)

= (f q − fm) (W − l(h∗∗)) ≥ 0. (56)

Let j be an agent playing σj = ∅. We want to show that πj(σ) ≤ πj(σ1, . . . , σ̂j , . . . , σn),
for any σ̂j ∈ Σj .

πj(σ1, . . . , σ̂j , . . . , σn)− πj(σ) = Wf q + l(h∗∗ + 1)(1− f q)−W

= (1− f q) (l(h∗∗ + 1)−W ) ≥ 0. (57)

By (56) and (57), σ is a Nash equilibrium combination of strategies. By Claims 5.3
and 5.4, this is the worst equilibrium strategy profile. ¤
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