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Abstract. For dealing with computational effects in computer science,
it may be helpful to use several logics: typically, a logic with implicit
effects for the language, and a more classical logic for the user. Hence,
the study of computational effects should take place in a framework
where distinct logics can be related. In this paper, such a framework
is presented: it is a category, called the category of propagators. Each
propagator defines a kind of logic, called a diagrammatic logic, which is
endowed with a deduction system and a sound notion of models. Mor-
phisms of propagators provide the required relationships between dia-
grammatic logics. The category of propagators has been introduced by
Duval and Lair in 2002, it is based on the notion of sketches, which is
due to Ehresmann in the 1960’s. Then, the paper outlines how Duval
and Reynaud in 2004 used the category of propagators for dealing with
the computational effect of raising and handling ezceptions. Another ap-
plication of diagrammatic logic is presented by Dominguez et al. in the
same conference.

1 Introduction

It is known from the pioneering work of Lawvere and Ehresmann in the 1960’s
that logic can be based on category theory. One major result of categorical logic
is that simply typed lambda-calculus is equivalent, in some sense, to cartesian
closed categories [11]. Similarly, many other results can be stated as “some logic
is equivalent to some family of categories”.

For dealing with computational effects, such as exceptions, overloading,
state,. .., it may be helpful to use several logics — schematically, at least, a logic
(with implicit effects) for the language, and another logic (where the effects are
made explicit) for the user. Thus, a category of logics is needed. In section 2, the
category of diagrammatic logics is presented. In section 3, an application to ez-
ceptions, involving two morphisms of diagrammatic logics, is outlined. Moreover,
diagrammatic logics are also used in [3].
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2 The category of diagrammatic logics

Let us begin with a well-known notion.

Definition 1. A (directed multi-)graph is made of a set of points, a set of
arrows, and source and target maps, both from the arrows to the points. An
arrow [ with source X and targetY is denoted f: X =Y or X Ly.

Example 1. The following graph illustrates a signature of groups, with one sort
g, a binary operation + : g2 — g, where g2 stands for the list of sorts gg, a
constant 0 : u — g, where u stands for the empty list of sorts, and a unary
operation —: g =+ g.
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Example 2. Let us now look at a “meta” example: the definition of graphs can
itself be illustrated by the following graph Sg;:

source

Point Arrow

-~ OO O OO OO o
target

Definition 2. A category is a graph where each point X has an identity arrow
X% x , each pair of consecutive arrows X i) Y % Z has a composed arrow
x % 7 , with the usual associativity and unitarity axioms.

A fundamental reference for category theory is [12]. Some basic categories
are:

— Set: points are sets and arrows are maps.
— Gr: points are graphs and arrows are morphisms of graphs.
— Cat: points are categories and arrows are functors.

Ezample 3. The definition of categories can also be illustrated by a graph Scat,o:

source first
. e ———— .
Point Arrow _ Consecutive
target second
selld comp

However, this graph illustrates only part of the definition. For instance, it does
not mention the fact that the point Consecutive stands precisely for the set of
pairs of consecutive arrows. This will be improved later.

Let us now introduce an intermediate notion between graphs and categories.

Definition 3. A compositive graph is a graph where some points X have an
identity arrow X I x , some pairs of consecutive arrows X Ly % 7 have a
composed arrow X °f 7.



The compositive graphs with their morphisms form another category Comp,
which is “between” the categories Gr and Cat, in the sense that every category
is a compositive graph and every compositive graph is a graph.

Example 4. The definition of compositive graphs can also be partially illustrated
by a graph SComp,03

source first
. < .
Point __ Arrow _ Consecutive
target second
ip ic
i . selld comp
IdentityPoint Composable

The notion of compositive graphs is now enriched, in order to get a better
illustration of the categories Cat and Comp.

Definition 4. A projective sketch is a compositive graph together with some
distinguished cones (or potential limits).

Ezample 5. The definition of categories can be illustrated by the projective
sketch Scar made of the graph Scat,0 as above, together with one distinguished
cone, which states that the point Consecutive stands precisely for the set of pairs
of consecutive arrows:

Consecutive

ﬁr/s_t/ %ond
Arrow Arrow
ta@ . %ce
Point

and with several equalities involving identities and composed arrows:
source o selld = idpeiys , target o selld = idpgint ,

source o comp = source o first , target o comp = target o second , ...

Similarly, distinguished cones and equalities of arrows can be added to the com-
positive graph Scomp,0, in order to get a projective sketch Sgomp Which illustrates
the definition of compositive graphs.

Of course, the graph Sg; is a projective sketch.

Definition 5. The realizations of a projective sketch S are the morphims from
S to Set, they form a category Real(S).

Ezample 6. Real(Sg;) = Gr and (up to equivalence) Real(Scomp) = Comp and
Real(Scat) = Cat.

The projective sketches with their morphisms form a category, and every
morphism of projective sketches M : & — &’ gives rise to a functor Uy, :
Real(S’') — Real(S), called the omitting (or forgetful) functor with respect to
M. The following major theorem is due to Ehresmann [7].



Theorem 1. The functor Upr : Real(S') — Real(S) has a left adjoint Far :
Real(S) — Real(S'), called the freely generating functor with respect to M.

Fum
Real(S) __ " Real(§')
Um

This theorem implies that there is natural bijection, for all I" in S and A in S":
Homg (F, UA) = Homg: (FF, A) .

Ezxample 7. The enrichment from Sg; to Scat is a morphism of projective
sketches:
Sar = Scat

which gives rise to an adjunction pair:

F
—_— T

Gr___ "~ Cat
U

such that:
HomGr(F, UA) = Homcat (FF7 A) .

The omitting functor maps each category to its underlying graph, and the freely
generating functor maps each graph to its freely generated category. It is worth
noting that, for most graphs I" and categories A:

UFI' 21 and FUA 2 A

Ezample 8. The enrichment from Sg; to Scat can be decomposed in two mor-
phisms of projectives sketches:

SGr — SCOmp — SCat

The morphism from Sa; t0 Scomp is the enrichment, while the morphism Poomp
from Scomp t0 Scat maps both Point and IdentityPoint to Point and ¢p to idpgint,
and similarly it maps both Consecutive and Composable to Consecutive and i¢
to idconsecutive- These morphisms give rise to two adjunction pairs:

FI FII
I —_— A
Gr____ _Comp_  ~Cat
UI UII

Moreover, for every graph I' and every category A:
UFTI=>=TI and F'U"A= A

This property of compositive graphs is an instance of the decomposition the-
orem, which is stated now, and which is proved in an effective way in [5,4].



Theorem 2. Let M : S — S be a morphism of projective sketches. There are
a projective sketch S and two morphisms D : Sy — S and P: S — S, such that
(up to equivalence) M = P o D and both functors Up o Fp and Fp o Up are
identities.

The morphisms like P : S — S in this theorem, play a basic role in the
definition of diagrammatic logics. Such a P describes a logic: roughly speaking,
the projective sketch & describes the syntax for expressing the specifications
(i.e., the sets of axioms), while the morphism P corresponds to the rules of the
logic, and the projective sketch S states the properties that have to be satisfied
by the theories generated from the specifications (i.e., by the sets of theorems),
and by the models. The fact that Fp o Up ensures that every theorem that has
been proved from the axioms can be added to the specification without changing
its meaning. For this reason, such morphisms are given a name.

Definition 6. A propagator is a morphism of projective sketches P : S — S
such that (up to equivalence) the functor Fp o Up is the identity of Real(S).

Ezample 9. The morphism Pcomp : Scomp — Scat is a propagator. In this basic
example, the “axioms” are simply operations, and the “theorems” are the terms
which are generated from the operations. The propagator Pcomp can be enriched
in order to give rise to the equational logic [4]; then the axioms are equations
and the theorems are all the equations in the congruence which is generated
from the axioms.

Propagators can be described by the following result [9].

Theorem 3. A propagator consists (up to equivalence) of adding inverses to
arrows.

Now, it is quite easy to define the diagrammatic logic which is associated to
a propagator.

Definition 7. Let P: S — S be a propagator.

— The category of P-specifications is the category of realizations of S:
Spec(P) = Real(S).

— The category of P-domains is the category of realizations of S : Dom(P) =
Real(S).

— The P-deduction rules are the arrows in S.

— The P-entailments are the morphisms of P-specifications o such that Fp(o)
is an isomorphim of P-domains.

— The set of P-models of a P-specification X with values in a P-domain A is
(using the bijection that comes from the adjunction):

Mod(X, A) = Hom(I, UpA) = Hom(FpIl, A) .



From the theorem above, the deduction rules are of two kinds: the passive
ones are simply the arrows of S, while the active ones are inverses of arrows of S.
For instance, with respect to the propagator Pcomp, there is a passive deduction
rule which states that both elements in a consecutive pair are terms, and there
is an active deduction rule which states that every consecutive pair gives rise to
a composed term. Clearly, the active rules are the most important ones.

An active deduction rule % can be illustrated as follows, where the continuous

arrow is an arrow in S and in S, while the dashed arrow is an arrow in S only:

r=s"1

— A
s

H

C

The Yoneda contravariant morphism of a projective sketch is defined in
[10]. With respect to S, the Yoneda morphism Ys maps each point in S to
a P-specification and each arrow in & to a morphism of P-specifications, in
a contravariant way. With respect to S, the Yoneda morphism Yz maps each
point in S to a P-domain and each arrow in S to a morphism of P-domains,
in a contravariant way. An active rule, as above, gives rise to a morphism of
P-specifications Ys(s), which becomes an isomorphism between the generated
P-domains, with inverse Y5(r) (as in D-algebras [2]):

YE(’I'):YS (s)_1

— ~

A

Ys(H) Ys(C)

Ys (8)
Hence, Ys(s) is an entailment.

Example 10. The rule for composition in categories is illustrated as follows:

G(#Y—g>Z>P G(Q/ngD
gof

The next result derives easily from the definitions, it states that every dia-
grammatic logic is sound.

Theorem 4. If o is a P-entailment, and A is a P-domain, then Mod(c, A) is
a bijection.

Clearly, entailments can be composed. The elementary entailments are the
deduction steps, which are obtained from the deduction rules, as explained now.

Definition 8. Let P be a propagator, and r = s~' : H — C an active P-
deduction rule. Let X be a P-specification and let x € Y (H). The P-deduction
step associated to the rule r applied to x is the morphism 75(x) in the pushout



of Y(s) and x:

I

It can be proved that Fp(7s(z)) is an isomorphism, as required:
Theorem 5. FEach deduction step is an entailment.

In the introduction, we claimed that we were able to build some “category
of logics”. The objects of this category are the diagrammatic logics, i.e., the
propagators. The morphisms are now quite easy to define.

Definition 9. Let P, : S = S1 and Py : So = Sy be two propagators. A
morphism of propagators P, — P is a pair (o, @) of morphisms of projective
sketches such that the following diagram is commutative:

Py
81 - >

Si
.
P

S ———
The next result derives immediately from the definitions.

Theorem 6. The propagators together with their morphisms form o category.

3 An application to exceptions

The opportunity of building easily non-trivial morphisms between logics is now
applied to the issue of formalizing the exceptions mechanism. The details can
be found in [6]. Previous work include algebraic specifications and monads [13].
However, as quoted from [14]:

“Fvident futher work is to consider how other operations such as those for
handling exceptions should be modelled. That might involve going beyond
monads, as Moggi has suggested to us.”

Our approach is influenced by the monads approach, although quite different. In
the treatment of computational effects, three denotational semantics can be con-
sidered, according to [8]: the naive, direct and monadic semantics. We introduce
three diagrammatic logics for dealing with exceptions: the basic, decorated and



explicit logic, linked by two morphisms. Each logic corresponds to a denotational
semantics, according to the following scheme:

Pyeco: decorated logic
direct semantics

undecoray wnsion
b X

Pyasic: basic logic Pepi: explicit logic
naive semantics monadic semantics

The decorated logic is the most important one among the three logics. Its
syntax is the syntax of a language with exceptions (here in an ML style): so,
the keywords raise and handle are defined in this logic. Its deduction rules
correspond to the computations with exceptions, and its models provide the
required meaning of the exceptions mechanism. But it is an unusual kind of
logic. On the contrary, the basic logic and the explicit logic are quite usual ones,
without exceptions.

The basic logic provides a simplified view of the syntax, but its models are
wrong.

The explicit logic has the right models, but it makes the exceptions totally
explicit, so that the interesting part of the exceptions mechanism is lost: the
type of exceptions has to appear explicitly, so that the composition cannot any
more be easily written.

Example 11. The running example is over the naturals, which are defined from
z (for 0) and s (for successor), with the sum Nat = 1+ Nat and the coprojections
z: 1 — Nat and s : Nat — Nat. The type 1 is the “product of no type”, i.e.,
a terminal object; it is often called Unit or Void. In the category of sets, 1 is
interpreted as a singleton.

The aim is to define a predecessor p, such that the computation of p(0) first
raises an exception e, and then handles this exception in order to return O:

Exception e
p(x) = case x of [ s(y)=>y | z=>raise(e) ] handle [ e=>z ]

The basic logic has sum types, but no exceptions.

Example 12. In the basic logic, the predecessor p cannot be defined as above,
since there are no exceptions. But the following pg, which maps directly 0 to 0,
can be defined.

pO(x) = case x of [ s(y)=>y | z=>z ]
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Let us look closer at the case construction in the basic logic, since it plays a
major role in the exceptions mechanism. It is based on the extensivity property
of sums [1]. Here we study the binary case, this would easily be generalized to
the n-ary case for any n. The extensivity property states that, from each sum
(j1,72) and each term u such that the type of u is the vertex of the sum, there
is an inverse image of (j1,J2) by u, in the sense of the diagram below, and that
this sum is unique up to equivalence:

i Xy w—>Y
- i
L P R L
J1 ~ , J1
X u——>Y X u———>Y
Tl J2 L= v J2
Y, X uzs—> Y,

In the basic logic, the case construction is defined as follows:
t(x) = case u(x) of [ ji(y)=>ti(x,y) | j2(y)=>t2(x,y) ]
means that:

t(x) = [ i1(y)=>t1(x,y) | i2(y)=>t2(x,y) ]

where the sum (i1,42) is the inverse image of the sum (51, j2) by u:

X L’u/ﬁ%case u of[j; =1;] _ 7

io "

In the decorated logic, the terms are decorated, which means that they are
classified, either as values or as computations. This idea is due to Moggi [13], but
we go somewhat further, by decorating also the terms in the deduction rules.
In this way, the main features of the exception mechanism appear as several
way of decorating the rules for extensivity. The decorations are represented as
superscripts, —? for values and —¢ for computations. They may be omitted when
there is no ambiguity about them. They do not appear in usual programming
languages, since they can easily be recovered as follows: every term which involves
some exception is a computation, the other terms are values.

Let us consider an exception declaration;



Exception e

For simplicity, here, the exception is a constant, which means that it does not
depend on any parameter. We consider that such a declaration builds a compu-
tation:

e°

1———0

The context of e is 1, since here the exception e is a constant. The type of e is
0, which denotes the “sum of no type”, i.e., an initial object; in the category of
sets, 0 is interpreted as the empty set. The reason for choosing 0 as the type of
exceptions can be explained as follows. In a language with exceptions, a term
f : X — Y, when applied to an argument of type X, either returns a value
of type Y or raises an exception. So, when Y = 0, such a term must raise an
exception; and clearly, an exception does satisfy this property.

If the decoration of e is forgotten, we are left with a term e : 1 — 0, which
should be interpreted, in any set-valued model, as a map from a singleton to the
empty set: such a map does not exist.

Now, we present on our example the way the keywords raise and handle
are introduced.

Example 13. The starting point is a specification of naturals, similar to the basic
one, where the terms z and s are values z¥ and s”. As explained above, the
declaration:

Exception e

adds to the specification a constant computation:
1—0

Let us define the computation p; as follows:

pl(x) = case x of [ s(y)=>y | z=>raise(e) ]

This case construction has the form “case u(z) of ...” where u(z) = z, so

that u is a value. Because u is a value, the construction is quite similar to the
case construction in the basic logic, it uses the following decorated version of
the extensivity property:

R . 61 uy—>Y]
- - - - i _ -
» J1 o > & J1
X w—=Y X w—>Y
N ~. N
J2 o = w2
Y, Xo uy; —— Y5




This case construction in the decorated logic can be illustrated as:

s id?

Nat 21 Nat

<.
¥ T raise”

where raise (or raisen,t) is the unique value from 0 to Nat:
raise” = [|{, : 0 = Nat .

Now, the computation p can be defined as follows:
p(x) = pl(x) handle [ e=>z ]

We consider that the handle construction is made of two different case construc-
tions. Roughly speaking, the first case (which is written case®) tests whether
p1(z) raises an exception, and when this happens, the second case (which is
written case®) tests which one is this exception. With the notations from [6],
this is written as:

p(x) = case® pi(z) of [ = z | raise = w] where w = case® e of [e = 2]

and where the case® and case® constructions correspond to variants of the basic
case construction, which differ in the way the rules are decorated. The case®
construction has the form “case® u(z) of ...” where u is a computation, not
a value (here, u = pq). This construction uses the following decorated version
of the extensivity property, which means (because u; is a value and uy is a
computation) that X; stands for the set of z’s such that u(z) does not raise
an exception, while X5 stands for the set of z’s such that u(z) does raise an
exception:

Y X1 uy——==Y
PN 31 _
J1 £ & = I
X —w——sY Xt—uw——y
J2 = J2
v




Then, in the decorated logic, it is easily proved that:
pP=[s=>id|z=u] and v’ =2z,
which finally proves that, as expected:
P=Dpo .

More generally, in the decorated logic, as in any diagrammatic logic, proofs
can be made and models can be defined, although there is no canonical interest-
ing domain of sets.

The morphism 0§ : Pyeco — Phasic i simply the undecoration: the decorations
are forgotten, so that all the meaningful interpretations of the computations are
lost.

The explicit logic is similar to the basic logic, but with a distinguished type
E for exceptions: “exceptions are explicit”.

The ezpansion morphism X : Pyeco — Pexpl makes the exceptions explicit, in
the way that can be guessed:

— A valuet’ : X - Y becomes aterm ¢t: X — Y.

— A computation t¢ : X — Y becomes aterm t: X - Y + E.

— The composition of these terms propagates the exceptions; this means that
it is done in the Kleisli way, as in the monads approach.

For example, an exception e¢ : 1 — 0 becomes e : 1 — E. So, our notion
of morphisms between diagrammatic logics allows to distinguish the decorated
and the explicit points of view, and to give a precise status to the relationship
between both.

Let Ygeco be a decorated specification, and let Yexp1 be the explicit specifica-
tion which is freely generated by Xgeco, With respect to the expansion morphism
X- The meaning of Ygeco can be given either by a set-valued model of Yeyp, or
by a model of Ygeco- Both coincide, thanks to the adjunction which is associated
to x.

4 Conclusion

This paper corresponds to a talk given at the MAP conference in Dagstuhl, in
january, 2005. Its subject is related to the three keywords of the MAP project:

— Mathematics: we use mathematical tools like categories, adjunction,
sketches,. ..

— Algorithms: we can formalize algorithms, even when they are written in a
non-functional way.

— Proofs: diagrammatic logic could become a framework for proofs of programs
using computational effects.
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