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Abstract. An interpolated ring is a particular kind of Brouwerian ex-
ample in which the ring you are dealing with may be one of two given
rings that are related by a homomorphism, often an inclusion. We are
interested here in when all interpolated rings inherit some property com-
mon to the two given rings. An enabling condition is a condition on the
homomorphism that guarantees that the property is inherited.
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1 Introduction

Let ¢ : A — B be a homomorphism of commutative rings. If P is any proposition,
then the P-interpolation of ¢ is the disjoint union

C=Au{beB:P}

modulo the condition that @ = ¢ (a) for all a € A if P holds. If ¢ is the injection
map A C B, then C'is simply the union AU{b € B : P}, which is a subring of B.
This is the case of most interest when dealing with discrete rings. Interpolated
rings are used to construct Brouwerian examples. For example, the interpolated
rings of Z C Q provide a Brouwerian example of a discrete ring C' and a finitely
generated ideal I of C for which the assertion “1 € I or 1 ¢ I” cannot be
justified. If, in this example, P states that a certain binary sequence contains a
1, then C' is countable.

Of course we need not restrict ourselves to rings. The same idea applies to
other mathematical structures as well. Jesper Carlstrom pointed out that the
P-interpolation C' of the map ¢ : {0,1} — {0}, together with the natural map
from {0,1} onto C' is the Goodman-Myhill example showing that the axiom of
choice implies the law of excluded middle [1].

2 A categorical formulation

We could define an interpolated object in a category C to be a functor F' from
the poset of propositions (or subsets of {0}) to C with the property that if G
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is another such functor, with F'(1) = G (L) and F (T) = G(T), then there is
a unique natural transformation « : F' — G that is the identity on F' (L) and
on F (T). This transformation « need not be an isomorphism. For example, set
G (P) = F (——P).

Interpolated objects always exist in any category of (finitary) relational
structures: rings, modules over a fixed ring, posets. Given a homomorphism
p: A — B, define FF(L)=Aand F(T) = B and F(L — T) = ¢. Then let
C = F (P) be the disjoint union of A and {b € B : P}, modulo a = ¢ (a), and
define ¢ on C' in the obvious way. Set

Fc(cl,...,cm)—{FA(CI""’Cm) ifallc; € A

I's (pc1, ...y 0Cm) if P.

3 Enabling and disabling conditions

Suppose we want to prove that any interpolated ring of A C B is, say, a unique
factorization domain. Then certainly A and B must be unique factorization
domains. However, if the P-interpolation C' of the pair Z C Q were a unique
factorization domain, then we could determine whether the element 2 € C' was
a unit or not, so we could determine which of P or =P holds. The problem
here is that there are primes in Z that are not primes in Q. The same problem
arises, in a more substantial way, when interpolating the pair of polynomial rings
Q[X?] c Q[x].

Now suppose we take A C B to be unique factorization domains, and add the
condition that every prime in A is also a prime in B. Then the P-interpolation
C of A C B is indeed a unique factorization domain. Given a nonzero element
c € C, either ¢ € A or P. If ¢ € A, then either ¢ is a unit in A, a prime in A
or a product of primes in A. Because units and primes of A are also units and
primes of B, the same alternatives hold in C'. On the other hand, if P holds,
then C = B is a unique factorization domain.

Conversely, suppose some prime p in A is not a prime in B, so either p is a
unit in B or p factors nontrivially in B. If C' were a unique factorization domain,
then we could determine whether or not p is a prime in C, so we could determine
which of =P or P holds. So if C' were a unique factorization domain for all P,
then the law of excluded middle would hold. That, of course, is the essence of a
Brouwerian example.

We say that the condition that primes in A remain prime in B is an en-
abling condition for interpolating unique factorization domains. Note that
this enabling condition has real classical content: it’s not just something that
necessarily holds from a classical point of view, but may not admit a construc-
tive proof. Contrast this to the fact that, from a classical point of view, there are
only two interpolated rings for A C B, and they are both unique factorization
domains.

The condition that there is a prime in A that is not a prime in B is called a
disabling condition for interpolating unique factorization domains.
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Definition 1. Let C be a class of rings. A condition on a homomorphism ¢ :
A — B is said to be an enabling condition for interpolating rings of C if
it implies that every interpolated ring of ¢ is in C. It is called a disabling
condition if, when it holds, and every interpolated ring of ¢ is in C, then some
omniscience principal (like the law of excluded middle) holds.

Informally, we will say that an enabling condition is exact if the natural
positive formulation of its classical negation is a disabling condition. That is the
connection between the condition that primes in A remain prime in B, and the
condition that there is a prime in A that is not a prime in B. The enabling
conditions of most interest are the exact ones. An exact enabling condition for
interpolating discrete rings is that the homomorphism ¢ be one-to-one. So if C
consists of discrete rings, we will assume that ¢ is an inclusion.

We have shown that the property that every prime in A is a prime in B is
an exact enabling condition for interpolating unique factorization domains. One
instance of this is for the class C of factorial fields. The enabling condition is that
A be algebraically closed in B. That’s so because to say that a (discrete) field A
is factorial is to say that A[X] is a unique factorization domain, and primes are
preserved in going from A[X] to B[X] if and only if A is algebraically closed in
B.

The pair consisting of an enabling condition and a disabling condition is
somewhat analogous to Bishop’s notion of a complemented set. Usually
the corresponding disabling condition stands out: It is essentially a sort of
strong negation that reduces to negation when dealing with propositions
satisfying the law of excluded middle. We extend to more complicated
formulas by = (PV Q) = P A—-Q and = (P A Q) = =PV =Q. Quanti-
fiers are negated analogously. Also = (P = Q) = P A =@, but there is
a problem with implication in that the strong negation is not of order
two. Maybe that’s not important.

The condition that ¢ be one-to-one provides an example of this problem.
That condition says that ¢ (z) = 0 implies z = 0 for all . The strong
negation for that is that there exists  such that ¢ (x) = 0 and x # 0.
But the negation of that negation is ¢ (z) # 0 or z = 0 for all x.

For an example using abelian groups instead of rings, let C,, be the class
of abelian groups A such that nA is detachable from A, and let E, be the
property of a pair of abelian groups A C B that nA = ANnB. (We say that A
is pure in B if F, holds for all n.) More generally, let F,, be the property of a
homomorphism ¢ : A — B that ¢! (nB) = nA. To show that F,, is an exact
enabling condition for interpolating groups in C,,, we have to show two things:

1. If =1 (nB) = nA, then every interpolated group C for ¢ has the property
that nC' is detachable from C.

2. If there exists a € ¢~!(nB) such that a ¢ nA, and every interpolated
group C for ¢ has the property that nC' is detachable from C, then some
omniscience principle holds.
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To show (1), let C be the P-interpolation of ¢ and let ¢ € C. Either ¢ € A or
P holds. If ¢ € A, then either ¢ (¢) € nB, in which case ¢ € nA, hence ¢ € nC,
or ¢ (c) ¢ nB, in which case ¢ ¢ nC. If P holds, then C is isomorphic to B, so
nC' is detachable from C.

To show (2), suppose that there exists a € ¢! (nB) such that a ¢ nA.
Suppose also that the P-interpolated group C of ¢ has the property that nC
is detachable from C. Then, as an element of C, either a € nC or a ¢ nC. In
the former case, a = nc for some element of C. Either ¢ € A or P holds, but ¢
cannot be in A because a ¢ nA, so P holds. In the latter case, P cannot hold
lest C' = B in which case a € nC.

4 Classes closed under interpolation

There are many cases where no enabling condition is necessary. In such a case
we say that the class of rings is closed under interpolation. In what follows, C'
denotes the P-interpolation of A — B.

Noetherian rings (ACC) are closed under interpolation, that is, they re-
quire no enabling condition. Suppose I; C Iy C --- is a chain of finitely generated
ideals. Using countable choice we can construct a sequence of finitely enumer-
able sets G1 C G C --- such that G,, generates I,,, and an ascending binary
sequence A, such that if A\, = 0, then G,, C A, while if A,, = 1, then P holds.
Let J, be the ideal in A generated by G, if A, = 0, and J, = A if A\, = 1.
To eliminate countable choice, use the ascending tree condition [6] instead of
ACC. Look at the tree of triples (G, n, A), where G is a finitely enumerable set
of generators of I, and A € {0, 1} is such that if A =0, then G C A and if A =1,
then P holds. Set (G,n,\) < (G',n+1,\)if G C G’ and X\ < X. At the node
(G,n, \) we attach the ideal of A generated by G, if A =0, and A if A = 1. The
same thing can be done starting with a tree of finitely generated ideals instead
of a chain.

We now consider a certain kind of class of rings that requires no enabling
condition. A functorial n-ary predicate in the category of rings (say) is a functor
I" from the category of set maps {1,2,...,n} — A to propositions. The functor
I is an interpolating predicate if

I'c(ay,...,an) = La(a1,...,an) VP

whenever aq,...,a, € A. (Is that automatic?)

For a fixed polynomial f in Z[Xq,..., X,,], the predicate f(ai,...,a,) =0
is interpolating. So is the predicate “a is nilpotent”. For modules over a fixed
ring R, the predicate Ir # 0 : ra = 0 is interpolating.

A class that is specified by a statement of the form Vx : ¢(x) = Jy p(x,y),
where ¢ and p are functorial predicates and ¢ is interpolating, is closed under
interpolation. Here each of x and y represent a number of variables that range
over elements, or finite sets of elements, of the structures in question. These are
the only such variables in the statement.

Here are some specific examples of this kind of class:
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— Bezout rings. For all z,y, there exist s,t,u,v such that = u (sz + ty)
and y = v (sx + ty). Here ¢ = T while x = (z,y) and y = (s,t,u,v).

— Fields. For all x there exists y such that if  # 0, then xy = 1.

— Flat R-modules. For all a4,...,a,, € C and ry,...,7, € R, if Y r;a; =0,
then there exist by,...,b, € C and t;; € R such that a; = ) t;;b; and
Zriti,j = 0.

— Local rings. For all z, there exists s such that either st =1ors (1 —z) = 1.

— Upper Krull dimension m. That is, dim C' < m. For all z1,...,z,, € C,
there exists n and aq,...,a,, € C such that
plarxy, ..., 0mTm, x7, ... xn) =0,

where p is a polynomial with integer coefficients (see [3]).

5 Examples of enabling conditions

In this section we examine a few properties of rings together with their enabling
conditions.

Seidenberg’s Condition P. This is a property of a field k that is required
for primary decomposition of finitely generated ideals in polynomial rings over k
(see [5]). One formulation of this property is that if p is a prime that is equal to 0
in k, then any finitely generated kP-subspace of k is finite-dimensional. The exact
enabling condition is that AP-independent subsets of A are also independent
over BP. That’s the same as saying that B is separable over A (see [4, 198
201]). If the independent subset in question consists of two elements, then we
get the condition BP N A = AP, as in our abelian groups example. The disabling
condition is that there exists a finite subset of A that is independent over AP
but dependent over BP.

Strongly discrete. Every finitely generated ideal is detachable. The en-
abling condition is that every ideal of A is contracted. In fact, if I is the ideal of
the P-interpolation C that is generated by ci,...,c,, and ¢y € C, then either P
holds or all the ¢; are in A. In the former case we test to see if cg € Bey+- - -+ Bey,.
In the latter, we test to see if ¢g € Acy + -+ + Ac,,. If not, then ¢ ¢ I because
Acy + - - - + Ac, is contracted. The disabling condition is that there is a finitely
generated ideal I of A such that BI N A contains an element a that is not in 1.
In that case, a € C1T if and only if P.

Coherent. Every finitely generated ideal is finitely presented. The exam-
ple of a noncoherent ring in [5] is the P-interpolated ring C' between the ring
k[X,Y]/(X,Y)? and the subring k[X]. Map C' — C by taking 1 to X and sup-
pose the kernel of this map is finitely generated. Note that XY = 0 in B. If the
generators of the kernel involve Y, then P holds. If not, then =P holds.

The enabling condition here is that B be a flat A-module. To see that this
enables coherence, we have to show that the kernel of any map C™" — C is
finitely generated. We may assume that the generators of C™ go into A, giving
us a map A" — A which when tensored with C' gives our map C" — C. If B
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is flat over A, then C' is flat over A (from the general theorem) so the kernel of
C" — (' is finitely generated.

The exact condition we need is that if the sequence 0 — K — A" — A,
so is the sequence 0 — BK — B™ — B. Now K is the relation module of
ai,...,a, over A and we want BK to be the relation module of a4, ..., a, over
B. That says that if )" b;a; = 0, then we can find elements ¢;; € A such that
> i@ijai = 0 and by = >, B;gi;. This is the definition of flatness. How does
the disabling part go? Suppose we have a B-relation > b;a; = 0 on ay,...,a,
with (by,...,b,) ¢ BK. Now the C-relations on ay, ..., a, are finitely generated.
Either the generators are all A-relations, or P holds. If the generators are all
A-relations (that is, in K), then P cannot hold because if it did, then C' would
be B and (b1,...,b,) € BK.

Swedish Noetherian rings are coherent, strongly discrete rings whose
finitely generated ideals are well founded under reverse inclusion [2]. (I am in-
debted to Peter Schuster for this terminology, although I'm not sure he expected
me to take it seriously.) So part of the enabling condition is that every ideal of
A is contracted and that B is a flat A-module. We will show that no further
enabling condition is required to get the well foundedness.

Suppose A C B are Swedish Noetherian, that every ideal of A is contracted,
and that C' is the P-interpolated ring. We want to show that if I is a finitely
generated ideal of C, then IBNC = I. Either I = [,C for some finitely generated
ideal Iy of A, or P holds. If P holds, then C = Bso IBNC =INB=1.1f
I = IyC, suppose Y g;b; = ¢ € C where the g; are a finite number of generators
of Iy and b; € B. Either ¢ € A or P holds. In the second case, > ¢;b; € I. In the
first case, ce [(BNA=1, C I.

Thus the poset of finitely generated ideals of C' is embedded in the poset of
finitely generated ideals of B, that is, IB C JB if and only if I C J. So the
former poset is also well founded under reverse inclusion.

Lower Krull dimension. For dim R > n, there doesn’t seem to be a pretty
enabling condition. That dim R > 0 needs an enabling condition is illustrated
by the inclusion Z C Q[X]. The problem in this example is that the witnessing
element for dim A > 0 need not (in fact, cannot) be a witness that dim B > 0.
The property in question is that there exists © € R such that 1 ¢ Rz + (0 : ).
Alternatively, (1 +rz)z™ # 0 for all r and n, that is, 2™ ¢ Rz"*!. An enabling
condition is that some witness to the fact that dim A > 0 must also witness
the fact that dim B > 0. That is not a particularly attractive or enlightening
condition. Perhaps one could formulate a more interesting enabling condition,
even if it is not exact.

6 What is a UFD?

One unexpected outcome of this investigation was the discovery that the treat-
ment of unique factorization domains in [5] is flawed. The issue is whether prin-
cipal ideals are detachable, which is not required by the definition in [5]. Equiv-
alently, given two primes, either they are associates or not. Clearly the latter is
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implied by the former. The converse is reasonably clear also, but a little fussy.
Should this condition be included in the definition of a UFD or, alternatively, is
it a consequence of the weaker definition of a UFD in [5]?

In [5, Theorem IV.2.3] it is claimed without proof that every UFD is a
bounded GCD-domain. In a UFD that is a GCD-domain, the condition above
holds because, given primes p and ¢, one simply checks to see if ged (p, q) is a
unit or not. Conversely, if the condition holds, then the UFD is a GCD-domain
for the usual reason.

What would an interpolated-rings counterexample look like? The enabling
condition for a UFD is that primes in A remain primes in B. The disabling
condition for principal ideals being detachable is that some element of B is in
the quotient field of A but not in A. It seems to be a nontrivial classical question
whether these two conditions are compatible.
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