Henselian Local Rings: Around a Work in Progress

Mariemi Alonso¹, Henri Lombardi², Hervé Perdry³

¹ Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Algebra. m_alonso@mat.ucm.es
² Université de Franche-Comté, U. F. R. des Sciences et Techniques, Département de Mathématiques pures et appliqués. henri.lombardi@univ-fcomte.fr
³ Università di Pisa, Dipartimento di Matematica L. Tonelli. perdry@mail.dm.unipi.it

Abstract. An introduction to the theme of local rings and Henselian local rings is given through numerous examples. We outline an elementary and effective construction of the Henselization of a local ring and an effective proof of about a classical result in Henselian local rings. This paper anounces a joint work of the three authors.

Keywords. Local rings, Henselian local rings.

Introduction

This paper gives an short insight of a work in progress [1] on a constructive and elementary treatment of the theory of local rings. We will sketch here the construction of the Henselization of a local ring. A similar construction for valued fields can be found in [3], [4], [5].

An excellent reference for the topic of Henselian local rings is the book by Jean–Pierre Lafon, [2], which we used a lot in our work.

1 Rings and Local Rings

Here we give some basic definitions. In the whole paper, all the rings are commutative with a unity.

1.1 Radicals

Definition 1. The Jacobson radical of a ring A is

 $\mathcal{J}_A = \{ x \in A : \forall y \in A \ 1 + x \cdot y \in A^{\times} \}.$

In classical mathematics, \mathcal{J}_A is the intersection of all maximal ideals of A.

Definition 2. A ring A is local if, and only if,

$$\forall x \in A, x \in A^{\times} \text{ or } (1+x) \in A^{\times}.$$

We have the following classical result:

Lemma 1. If A is a local ring, then $\mathcal{J}_A = A \setminus A^{\times}$, and it is the unique maximal ideal of A. We denote it by \mathfrak{m}_A or simply by \mathfrak{m} .

Definition 3. The residue field of local ring A with maximal ideal \mathfrak{m} is $\mathbf{k} = A/\mathfrak{m}$. If \mathbf{k} is discrete (ie we can decide effectively whether $x \in \mathbf{k}$ is zero or not, or equivalently if some $x \in A$ is in \mathfrak{m} or not), A will be called residually discrete.

The field \mathbb{R} of real number is not a discrete field, but it verifies $\forall x \in \mathbb{R}, x \in \mathbb{R}^{\times}$ or $1 + x \in \mathbb{R}^{\times}$. Now the ring A defined by $A = S^{-1}\mathbb{R}[T]$, where S is the set of polynomials g with $g(0) \in \mathbb{R}^{\times}$, is indeed a local ring: the statement $\forall x \in A, x \in A^{\times}$ or $(1 + x) \in A^{\times}$ holds. The residue field of A is \mathbb{R} , and the quotient map $A \longrightarrow \mathbb{R}$ is given by $f/g \mapsto f(0)/g(0)$. This provides an example of local ring A which is not residually discrete.

In this article, from now on, we are going to deal with residually discrete local rings.

1.2 Examples of local rings

Our first example is a recipe to build a local ring from any ring with a prime ideal.

1. Localization in a prime ideal Let R be a commutative ring, and \mathfrak{P} a prime ideal in R. Then $S = R \setminus \mathfrak{P}$ is a multiplicative part of R: if $x, y \in S$, then $x \cdot y \in S$.

We fit the set $R \times S$ with the following laws:

$$\begin{array}{ll} (r,s) + (r',s') &=& (rs' + r's,ss') \\ (r,s) \times (r',s') &=& (rr',ss') \\ (r,s) \sim (r',s') \Leftrightarrow \exists s'' \,:\, (rs' - r's)s'' = 0 \end{array}$$

The relation \sim is an equivalence relation, compatible with the two laws + and \times ; the quotient $R \times S / \sim$ fitted with the corresponding quotient laws is a local ring, denoted by $R_{\mathfrak{P}}$, the *localization of* R in \mathfrak{P} .

There is a canonical map from R to $R_{\mathfrak{P}}$, given by $x \in R \mapsto (x,1) \in R_{\mathfrak{P}}$ (where $\overline{(r,s)}$ is the class of (r,s) modulo \sim). The maximal ideal of $R_{\mathfrak{P}}$ is the image of \mathfrak{P} under this map.

In the special case where R is an domain and F is its fraction field, then $R_{\mathfrak{P}}$ is a subring of F:

$$R_{\mathfrak{P}} = S^{-1}R = \left\{\frac{r}{s} : r \in R, s \notin \mathfrak{P}\right\}.$$

Now we use the recipe to give various examples.

2. Example Let $p \in \mathbb{Z}$ be a prime number. The localization of \mathbb{Z} in $\langle p \rangle$, denoted by $\mathbb{Z}_{(p)}$, is the ring

$$\mathbb{Z}_{(p)} = \left\{ \frac{a}{b} : b \not\equiv 0 \text{ modulo } p \right\}$$

of elements of \mathbb{Q} which are "defined modulo p". The maximum ideal of $\mathbb{Z}_{(p)}$ is the ideal of the fractions a/b with $b \neq 0$ modulo p and $a \equiv 0$ modulo b, the residue field is $\mathbb{F}_p = \mathbb{Z}/p \cdot \mathbb{Z}$, and the quotient map $\mathbb{Z}_{(p)} \longrightarrow \mathbb{F}_p$ is the evaluation modulo p.

3. Other example Let \mathfrak{P} the ideal of $\mathbb{Q}[X]$ generated by X, $\mathfrak{P} = \langle X \rangle$. The localization of $\mathbb{Q}[X]$ in \mathfrak{P} is the ring

$$A = \mathbb{Q}[X]_{\mathfrak{P}} = \left\{ \frac{f}{g} : g(0) \neq 0 \right\} \subset \mathbb{Q}(X).$$

It is a local ring (and even a valuation ring), with maximal ideal

$$\mathfrak{m} = \left\{ \frac{f}{g} : f(0) = 0 \right\}.$$

The residue field of A is \mathbb{Q} , and the quotient map $A \longrightarrow \mathbb{Q} = A/\mathfrak{m}$ is given by the evaluation in X = 0.

4. Power Series The ring of power series $\mathbb{Q}[[X]]$ is the ring of formal series

$$Q[[X]] = \{a_0 + a_1 X + a_2 \cdot X^2 + \dots : k \in \mathbb{Z}, \ \forall i, \ a_i \in \mathbb{Q}\}$$

with the classical and natural addition and multiplication laws on it. It is a local ring; its maximal ideal is generated by X: it is the set of series $\sum a_i \cdot X^i$ with constant term $a_0 = 0$. Its residue field is \mathbb{Q} and the quotient map $\mathbb{Q}[[X]] \longrightarrow \mathbb{Q}$ is the evaluation in X = 0.

There is a natural injection $A = \mathbb{Q}[X]_{\langle X \rangle} \longrightarrow \mathbb{Q}[[X]]$, which is a morphism of local rings (it sends the maximal ideal of A in the maximal ideal of $\mathbb{Q}[[X]]$).

Remark We are not being very fair with these examples. The experienced reader will remark that these are very special local rings, namely *valuation rings*. In these rings, given two element x or y, either x divides y or y divides x.

5. An example with two variables Let A be the ring $\mathbb{Q}[X, Y]$ localized in the prime ideal $\langle X, Y \rangle$. The A is a local ring but is not a valuation ring. Its residue field is \mathbb{Q}

Very similarly to the ring $A = Q[X]_{\langle X \rangle}$ of example 3, this ring can be embedded in the bigger local ring Q[[X, Y]], the ring of formal series in two variables.

6. An example from algebraic geometry Let $f(X,Y) \in Q[X,Y]$, with f(0,0) = 0. Let $R = Q[X,Y]/\langle f \rangle$, the ring of polynomial functions on the curve f(X,Y) = 0. Let \mathfrak{P} be the ideal of R generated by x and $y \pmod{f}$. It is the prime ideal of functions which are 0 on the point (0,0).

4 M. E. Alonso, H. Lombardi, H. Perdry

The local ring $A = R_{\mathfrak{P}}$ is the ring of rational functions on the curve which are defined on the point (0,0). The residue field of A is \mathbb{Q} , and the quotient map $A \longrightarrow \mathbb{Q}$ is given by the evaluation in (0,0).

This local ring reflects local properties of the curve at the point (0,0) (one may localize in an other point). One very well-known property is that this local ring is a valuation ring if, and only if, the point (0,0) is regular.

This gives a wide class of local rings which are not valuation rings. If we consider for example the singular cubic $Y^2 = X^3 + X^2$ drawn here, which is singular in (0,0), the ring A constructed as above is a local ring which is not a valuation ring.

2 Henselian Local Rings

2.1 Definition and examples

Definition 4. Let A be a local ring with maximal ideal \mathfrak{m} . We say that A is Henselian if all monic polynomial $f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in A[X]$ with $a_1 \in A^{\times}$ and $a_0 \in \mathfrak{m}$ has a root in \mathfrak{m} .

This property is known under the name of *Hensel's Lemma*: a Henselian local ring is a local ring in which Hensel's Lemma holds.

It is easy to show that if $f(X) = X^n + \cdots + a_1 \cdot X + a_0$ with $a_1 \in A^{\times}$ and $a_0 \in \mathfrak{m}$ has a root in \mathfrak{m} , then this root is unique: let $\alpha \in \mathfrak{m}$ be such a root; write $f(X) = g(X) \cdot (X - \alpha)$ with $g(X) = X^{n-1} + \cdots + b_1 \cdot X + b_0 \in A[X]$, and $b_0 - \alpha \cdot b_1 = a_1 \in A^{\times}$, so that $b_0 \in A^{\times}$. If $\beta \in \mathfrak{m}$, then $g(\beta) \in A^{\times}$, and $f(\beta) = 0 \Rightarrow \beta = \alpha$.

Examples The ring $A = Q[X]_{\langle X \rangle}$ is not Henselian, but the ring Q[[X]], which is a complete discrete valuation ring, is Henselian.

More precisely, Q[[X]] is complete for the absolute value $|a| = 2^{-v(a)}$ where $v\left(\sum a_i \cdot X^i\right) = \min\{i : a_i \neq 0\}$; if f(X) verifies the condition of the definition, it is easy to verify that the sequence defined by $u_0 = 0$ and $u_{n+1} = u_n - f(u_n)/f'(u_n)$ is Cauchy and converges to an $\alpha \in \mathfrak{m}$ which is a root of f.

2.2 A simple property of Henselian local rings

In this section, A will be a Henselian residually discrete local ring with maximal ideal \mathfrak{m} and residue field \mathbf{k} . We denote by $a \in A \mapsto \overline{a} \in \mathbf{k}$ the quotient map, and extend it to a map $A[X] \longrightarrow k[X]$ by setting $\overline{\sum_i a_i \cdot X^i} = \sum \overline{a_i} \cdot X^i$.

We are going to show that a polynomial $f(X) = a_n \cdot X^n + \cdots + a_1 \cdot X + a_0$ with $a_1 \in A^{\times}$ and $a_0 \in \mathfrak{m}$ has a (unique) root in \mathfrak{m} : in the definition 4, one may drop the hypothesis "f is monic". It seems clear that this kind of result should be the consequence of some variable change; and it is indeed the case — but it seems that this variable change is absent from the classical literature, where this result is derived from a general result of structure of étale algebras on a Henselian local ring.

Here is the change of variable we propose. The proof is elementary, nevertheless it is a bit tedious.

Lemma 2. Let $f(X) = a_n \cdot X_n + \cdots + a_1 \cdot X + a_0$, with $a_1 \in A^{\times}$ and $a_0 \in \mathfrak{m}$. There exists a monic polynomial $g(X) \in A[X]$, $g(X) = X^n + \cdots + b_1 \cdot X + b_0$, with $b_1 \in A^{\times}$ and $b_0 \in \mathfrak{m}$, such that the following equality holds in A(X):

$$-a_0 \cdot g(X) = (X+1)^n \cdot f\left(\frac{-a_0 \cdot a_1^{-1}}{X+1}\right)$$

Proof. Let $h(X) = (X+1)^n \cdot f\left(\frac{-a_0 \cdot a_1^{-1}}{X+1}\right) \in A(X)$. It is easy to check that h(X) is in fact a polynomial of degree n. We write $h(X) = c_n \cdot X^n + \dots + c_1 \cdot X + c_0$.

We have

$$c_{n-k} = a_0 \cdot \left(\binom{n}{k} + \sum_{j=1}^k (-1)^j \cdot a_j \cdot a_0^{j-1} \cdot a_1^{-j} \cdot \binom{n}{j} \right) = a_0 \cdot b_{n-k},$$

where b_{n-k} is in A. Of course we let $g(X) = \sum_i b_i \cdot X^i$, and the desired equality is verified.

Now it is easy to check that $c_n = a_0$, so that $b_n = 1$. We have $c_0 = h(0)$, hence

$$c_0 = f\left(-\frac{a_0}{a_1}\right) = a_0^2 \cdot \left(a_n \cdot \left(\frac{a_0}{a_1}\right)^{n-2} + a_{n-1} \cdot \left(\frac{a_0}{a_1}\right)^{n-3} + \dots + a_2\right) = a_0^2 \cdot u,$$

with $u \in A$, so that $b_0 = a_0 \cdot u \in \mathfrak{m}$.

Writing

$$h'(x) = n \cdot (X+1)^{n-1} f\left(\frac{-a_0 \cdot a_1^{-1}}{X+1}\right) + a_0 \cdot a_1^{-1} \cdot (X+1)^{n-2} f'\left(\frac{-a_0 \cdot a_1^{-1}}{X+1}\right),$$

we get $c_1 = h'(0) = n \cdot a_0^2 \cdot u + a_0 \cdot a_1^{-1} \cdot f'(a_0 \cdot a_1^{-1})$. We have $f'(a_0 \cdot a_1^{-1}) - a_1 \in \mathfrak{m}$, so that $b_1 = n \cdot a_0 \cdot u + (1 + \mu)$ with $\mu \in \mathfrak{m}$, and $b_1 \in A^{\times}$.

It is now easy to conclude.

Proposition 1 (Hensel's Lemma II). Let $f(X) = a_n \cdot X_n + \cdots + a_1 \cdot X + a_0$, with $a_1 \in A^{\times}$ and $a_0 \in \mathfrak{m}$. Then f has a (unique) root in \mathfrak{m} .

Proof. Let g(X) be the polynomial associated to f by the previous lemma, and $\alpha \in \mathfrak{m}$ its root. Then $(1 + \alpha) \in A^{\times}$; we put $\beta = \frac{-a_0 \cdot a_1^{-1}}{\alpha + 1}$, and we have $-a_0 \cdot g(\alpha) = (\alpha + 1)^n \cdot f(\beta)$, so that $f(\beta) = 0$.

And the proof of the following proposition is very easy; it is left to the reader.

Proposition 2. Let $f(X) = a_n \cdot X_n + \cdots + a_0 \in A[X]$ such that $\overline{f}(X) \in \mathbf{k}[X]$ has a simple root $a \in \mathbf{k}$. Then there exists a (unique) root $\alpha \in A$ of f, such that $\overline{\alpha} = a$.

3 Henselization of a local ring

3.1 The Henselization; some examples

Remember the example of the non-Henselian ring $A = Q[X]_{\langle X \rangle}$ embedded in the Henselian local ring Q[[X]]; let B be the ring of elements of Q[[X]] which are root of a polynomial with coefficients in A.

It can be checked that B is a Henselian local ring, and moreover that if C is a Henselian local ring and $\phi: A \longrightarrow C$ is a morphism of local rings (ie, it sends the maximal ideal of A in the maximal ideal of C), then there exists a unique morphism of local rings $\phi: B \longrightarrow C$ such that the following diagram commutes:

$$\begin{array}{ccc} A & \stackrel{\phi}{\longrightarrow} & C \\ & & \swarrow \\ B & & & & \\ \end{array}$$

In other words, ϕ , which is defined on A, can be extended to the whole ring B. We say that B is a Henselization of A.

More generally, this property defines the Henselization of any local ring A; a consequence is that the Henselization of A is unique up to *unique* isomorphism.

An other example Now turn to our example from algebraic geometry: let R be the ring $Q[X,Y]/\langle X^3 + X^2 - Y^2 \rangle = Q[x,y]$ (x and y are the class of X and Y modulo $X^3 + X^2 - Y^2$) and $A = R_{\langle x,y \rangle}$ be its localization in (0,0). It is a local ring which is not a valuation ring (this reflects the fact that (0,0) is a singular point of the cubic).

The Henselization reflects other properties of the curve in (0,0). Locally, this curve looks like the cross of two lines; nevertheless A is not isomorphic to $B = (Q[U,V]/\langle UV \rangle)_{\langle u,v \rangle}$, the local ring of the curve UV = 0 in (0,0). But we have a good surprise: its Henselization A^h its isomorphic to B^h (which can be seen as a subring of Q[[u,v]], similarly to what happens in the previous example). The Henselization "separates" the two branches. We are going to sketch the construction of homomorphism between these two rings.

Let $\alpha \in \mathfrak{m}_{A^h} \subset A^h$ be the root of $T^2 + 2 \cdot T - x$, whose existence is predicted by Hensel's Lemma. Hence $1 + \alpha$ is a unit, and $(1 + \alpha)^2 = 1 + x$. Let $\phi_0: B \longrightarrow A^h$ the morphism defined by

$$\phi_0 : B \longrightarrow A^h
 u \longmapsto y + x \cdot (1+\alpha)
 v \longmapsto y - x \cdot (1+\alpha)$$

One can check that ϕ_0 is a well defined morphism of local rings; note in particular that $\phi_0(u) \cdot \phi_0(v) = y^2 - x^2(1+x) = 0 = \phi_0(uv)$, which is a key point. Now ϕ_0 can be extended to a morphism $\phi : B^h \longrightarrow A^h$.

We are going to define the inverse morphism. Let $\beta \in \mathfrak{m}_{B^h}$ the root of $(u-v) \cdot T^3 + (3 \cdot (u-v) + 2) \cdot T^2 + (3 \cdot (u-v) + 4) \cdot T + (u-v)$ whose existence is predicted by Hensel's Lemma (the non-monic case); we define $\psi_0 : A \longrightarrow B^h$ by

$$\begin{aligned} \psi_0 : & A \longrightarrow B^h \\ & x \longmapsto (u-v) \cdot (1+\beta)/2 \\ & y \longmapsto (u+v)/2 \end{aligned}$$

Note again that $\psi_0(x)^3 + \psi_0(x)^2 = \psi_0(y)^2$, which is an important point to show that the application is well defined (this time the verification is a bit longer, but using a lot uv = 0 this can be done in a pretty reasonable time) (of course the equation defining β was build from $\left[\frac{1}{2}(u-v)\cdot(1+T)\right]^3 + \left[\frac{1}{2}(u-v)\cdot(1+T)\right]^2 = \frac{1}{4}(u^2+v^2)$). Now ψ_0 can be extended to a morphism $\psi : A^h \longrightarrow B^h$. Checking that ψ

Now ψ_0 can be extended to a morphism $\psi : A^h \longrightarrow B^h$. Checking that ψ and ϕ are inverse of each other is again a tedious but easy computation.

3.2 Construction of the Henselization

In this section, A is again a residually discrete local ring with maximal ideal \mathfrak{m} . We give only a sketch of the construction.

Definition 5. Let $f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in A[X]$ a monic polynomial with $a_1 \in A^{\times}$ and $a_0 \in \mathfrak{m}$. Then we denote by A_f the ring defined as follows: if $B = A[X] = A[X]/\langle f(X) \rangle$ (where x is the class of X in the quotient ring), let $S \subseteq B$ be the multiplicative part of B defined by

$$S = \{g(x) \in B : g(X) \in A[X], g(0) \in A^{\times}\};\$$

then A_f is B localized in S, that is $A_f = S^{-1} \cdot B$.

We fix a polynomial $f(X) \in A[X]$ such as in the above definition.

Lemma 3. The canonical map $A \longrightarrow A_f$ is an injection. The ring A_f is a residually discrete local ring. Its maximal ideal is $\mathfrak{m} \cdot A_f$.

Proof. See [1].

As a consequence, we can identify A with its image in A_f , and write $A \subseteq A_f$. The elements of A_f can be written formally as fractions r(x)/s(x) with $r, s \in A[X]$ and $s(0) \in A^{\times}$.

8 M. E. Alonso, H. Lombardi, H. Perdry

Lemma 4. Let B, \mathfrak{m}_B be a local ring and $\phi : A \longrightarrow B$ a morphism of local rings (ie $\phi(\mathfrak{m}) \subseteq \mathfrak{m}_B$). Let $f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in A[X]$ be a monic polynomial with $a_1 \in A^{\times}$ and $a_0 \in \mathfrak{m}$.

If $\phi(f) = X^n + \cdots + \phi(a_1) \cdot X + \phi(a_0) \in B[X]$ has a root μ in \mathfrak{m}_B , then there exists a unique morphism of local rings $\psi : A_f \longrightarrow B$ such that the following diagram commutes:

The morphism ψ sends the root $x \in \mathfrak{m} \cdot A_f$ on μ .

Proof. The proof is easy.

We now define an inductive system. Let S be the smallest family of local rings $(B, \mathfrak{m} \cdot B)$ such that

- (1) $(A, \mathfrak{m}) \in \mathcal{S};$
- (2) if $(B, \mathfrak{m}_B) \in \mathcal{S}$, $f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in B[X]$ with $a_1 \in B^{\times}$ and $a_0 \in \mathfrak{m}_B$, then $B_f, m_B \cdot B_f$ is in \mathcal{S} .

It is easy to see that S is an inductive system. The ring A is canonically embedded in each local ring (B, \mathfrak{m}_B) in S, and $\mathfrak{m}_B = \mathfrak{m} \cdot B$.

Now we define the Henselization of A by

$$A^h = \lim_{\longrightarrow} B \in \mathcal{S}^B.$$

We have the following theorem.

Theorem 1. The ring A^h is a Henselian local ring with maximal ideal $\mathfrak{m} \cdot A_h$. If (B, \mathfrak{m}_B) is a Henselian local ring and $\phi : A \longrightarrow B$ a morphism of local rings, there exists a unique morphism of local ring ψ such that the following diagram commutes:

$$\begin{array}{ccc} A, \mathfrak{m} & \stackrel{\phi}{\longrightarrow} & B, \mathfrak{m}_B \\ & & & \swarrow \\ A^h, \mathfrak{m} \cdot A^h \end{array}$$

Proof. The proof is easy, by induction on the family S.

References

- 1. Maria Emiliana ALONSO, Henri LOMBARDI, Hervé PERDRY. Elementary Theory of Henselian Local Rings. Draft.
- 2. Jean-Pierre LAFON, Algèbre Locale, 2002 Hermann (Paris).
- Franz-Viktor KUHLMANN et Henri LOMBARDI. Construction du henslisé d'un corps valué. In Journal of Algebra, vol. 228 (2000), pages 624–632.
- 4. Hervé PERDRY. Aspects constructifs de la théorie des corps valués. Thèse doctorale. Université de Franche-Comté, Besançon, 2001.
- 5. Hervé PERDRY. Henselian Valued Fields: A Constructive Point of View. Submitted Paper.