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The Flyspeck project [3] has as its goal the complete formalization of Hales’
proof [2] of the Kepler conjecture. The formalization has to be carried out within
a mechanical theorem prover. For our work described in this paper, we have cho-
sen the generic proof assistant Isabelle, tailored to Higher-Order Logic (HOL) [4].
In the following, we will refer to this environment as Isabelle/HOL.

An important step in Hales’ proof is the maximization of about 105 real linear
programs. The size of these linear programs (LPs) varies, the largest among them
consist of about 2000 inequalities in about 200 variables. The considered LPs
have the important property that there exist a priori bounds on the range of the
variables. The situation is further simplified by our attitude towards the linear
programs: we only want to know wether the objective function of a given LP is
bounded from above by a given constant K.

Under these assumptions, Hales describes [1] a method for obtaining an ar-
bitrarily precise upper bound for the maximum value of the objective function
of an LP. This method still works nicely in the context of mechanical theorem
provers. The burden of calculating the upper bound is delegated to an LP solver
that needs not to be trusted. Instead, the LP solver delivers a small certificate
to Isabelle/HOL that can be checked cheaply. Furthermore, there is no need to
delve into the details of the actual method of optimizing an LP, which is usually
the Simplex method. These details just do not matter for the theorem prover.

The method can be described conveniently using matrices. In order to reason
with and about matrices in Isabelle/HOL, we have invented the notion of finite
matrices, and use finite matrices to represent linear programs. Finite matrices
can be fitted into the system of numeric axiomatic type classes in Isabelle/HOL
via the algebraic concept of lattice-ordered rings [8, 9]. The hierarchy of type
classes in Isabelle/HOL that organize numerical theories [5] had to be changed
for this.

Checking the certificate from the external LP solver is basically a calculation
involving finite matrices, and the matrices we have to deal with coming from our
Flyspeck background are sparse, therefore we present a sparse matrix representa-
tion of finite matrices and formalize operations like sparse matrix multiplication.
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Using a rewriting oracle that is based on the ideas found in [7], these operations
can be performed so quickly that it is projected that the linear programs arising
in the proof of the Kepler conjecture can be bounded in about 10 days on a
3Ghz Pentium 4.
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