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In this Note we prove that the subdiscriminants of a symmetric matrix are
sums of squares. This generalizes a result of [2] stating that the discriminant
of a symmetric is a sum of squares and is inspired by its proof. A different,
less explicit proof that the discriminant of a symmetric is a sum of squares also
apear in [3]. As a consequence, we obtain an algebraic proof of the fact that all
the roots of the characteristic polynomial of a symmetric matrix are real.

1 Discriminants and subdiscriminants

We consider an ordered field K, a real closed field R containing K and C = RJ¢]
its algebraic closure.
The k-subdiscriminant of a monic polynomial P € K[X) of degree p is defined

as follows. Let x1,...,x, be the multiset of roots of P in C, counted with
multiplicities. The k-subdiscriminant of P , 0 < j < p — 1, is by definition
SubDlSCk(P) = Z H(j,f)eI,Z>j (J,‘j — .’L'Z)Q.

Ic{1,...p}.#(I)=p—k

Note that SubDisc,_1(P) = p. Subdiscriminants generalize the classical notion
of discriminant which is the 0-th subdiscriminant:

SubDiscy(P) = Disc(P) = I,>jse>1(z; — 20)?.

Subdiscriminants turn out to be determinants of matrices with entries the
Newton nums of P. Denoting by N;(P) the Newton sum 37,_, a7, let the
Hermite matrix Herg(P) be the (p — k) x (p — k)-matrix with z, j-th entry
Niyj—2(P)i,j=1,...p—k.

Proposition 1
SubDiscy (P) = det(Hery(P))

The proof uses the classical Cauchy-Binet formula
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Proposition 2 Let A be a n X m matriz and B be a m X n matriz. For every
I C {1,,m} of cardinality n, denote by Ay the nxn matriz obtained by extracting
from A the columns with indices in I. Similarly let BT be the n x n matriz
obtained by extracting from B the rows with indices in I.

det(AB) = > det(A;) det(BT).
Ic{1, m},#(I)=n

Proof of Proposition 1: Define
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It is clear that V},V}! = Hery(P). Now apply Binet-Cauchy formula, noting that,
det(VkI) = H(j,[)ej,g>]‘(1’j — l’[).
O

Let A is a symmetric p X p matrix with coefficients in a ring A. We define
the k-th subdiscriminant of A as the determinant of the matrix Herg(A) whose
(i,4)-th entry is Tr(A*T7=2) 4,5 =1,...p—k. When A is with entries in a field
K, the k-th subdiscriminant of A coincides with the k-th subdiscriminant of its
characteristic polynomial P. Indeed, the Newton sum N;(P) of A is Tr(A?), the
trace of the matrix A%,

2 Orthogonal basis of symmetric matrices

We define a linear basis E;, of the space Sym(p) of symmetric matrices of size
p as follows. First define F}, as the matrix having all zero entries except 1 at
(4,£). Then take E;; = Fjj,E;¢ = 1/V2(Fj ¢+ Fij),£ > j . Define E as the
ordered set ;o p > £ > j > 0, indices being taken in the order

(1,1),...,(p,p), (1,2),...,(1,p),...,(p—1,p).

For simplicity, we index elements of E pairs (j,¢), £.

It is immediate to check that the map associating to (A, B) € Sym(p) X
Sym(p) the value Tr(AB) is a scalar product on Sym(p) with orthogonal basis
E.

Let By, be the (p—k) x p(p+1)/2 matrix with (4, (j, £))-th entry the (j, £)-th
component of A*~! in the basis E.

Proposition 3

Herk(A) = Bk X B]tC

Proof : Immediate since Tr(A**7) is the scalar product of A* by A7 in the basis
E. U



3 Subdiscriminants of symmetric matrices are
sums of squares

We consider a generic symmetric matrix A = [ai, j| whose entries are p(p+1)/2
independant variables a; ¢, > j. We are going to give an explicit expression of
SubDiscg(A) as a sum of products of powers of 2 by squares of elements of the
ring Zla; ¢.

Let By, be the (p—k) x p(p+1)/2 matrix with (7, (4, £))-th entry the (j, £)-th
component of A*~! in the basis E.

Proposition 4 SubDisci(A) is the sum of squares of the (p—k) x (p—k) minors
Of Bk.

Proof : Use Proposition 3 and Binet-Cauchy formula. (]

Noting that a (p — k) x (p — k) minor of By, is a power of 2 multiplied by a
square of an element of Z[a; ¢], we obtain an explicit expression of SubDisc(A)
as a sum of products of powers of 2 by squares of elements of the ring Z[a; ¢].

As a consequence the k-th subdiscriminant of a symmetric matrix with co-
efficients in a ring A is a sum of products of powers of 2 by squares of elements
in A.

Let us take a simple example and consider

A= {au a12] .

a12  A22

The characteristic polynomial of A is X2 — (a11 4+ a22) X + ar1a22 — a%Q, and its
discriminant is (a1; + a22)2 —4(a11a92 — a%z). On the other hand the sum of the
squares of the 2 by 2 minors of

aell L

air aze V2 ag

(aze — a11)? + (V2a12)% + (V2a12)%.

It is easy to check the statement of Proposition 4 in this particular case.

4 Characteristic polynomials of symmetric ma-
trices are hyperbolic

By definition, a polynomial P € R[X) is hyperbolic if all its roots are in R.
We give an algebraic proof of the classical theorem.

Proposition 5 The characteristic polynomial of a symmetric matrixz is hyper-
bolic.



Proof : We denote by P the characteristic polynomial of a matrix A.

First note that, by Proposition 4 SubDisc;(A) = 0 if only if the rank of B;
is less than n — 4. It follows that SubDiscg(A) > 0 implies SubDisc;(A) > 0
for every n — 1 > i > k, and SubDisc,_1(A) = 0 implies SubDisc;(A) = 0 for
every 0 < i < k. In other words, for every symmetric matrix A, there exists
k,n —1 >k > 0 such that the signs of the subdiscriminants of A are

(/\pflziZkSubDiSCi (A) >0A /\0§i<kSUbDiSCZ‘ (A) = 0)

So the number of roots of the characteristic polynomial P of A is p — k, using
Proposition (relation between subresultants and subdiscriminants) and Proposi-
tion (counting numb er of real roots in terms of permanencies minus variations)
of [1], while the number of distinct roots of P is p — k using Proposition (sub-
resultants give degree of ged). O

Since it is clear that every hyperbolic polynomial is the characteristic poly-
nomial of a diagonal symmetric matrix with entries in R, Proposition 5 imples
that the set of hyperbolic polynomials is characterized by

\/k:p_l,‘_,70(/\p_12i2kSubDisci(P) >0A /\Q§i<kSHbDiSCi(P) = 0)
On the other hand, the sign condition
SubDisc,_2(P) > 0 A ... A SubDisco(P) > 0

does not imply that P is hyperbolic: the polynomials X% + 1 has no real root
(its four roots are ++/2/24iv/2/2), and it is immedate to check uthat is satisties
SubDiscy(P) = SubDisc; (P) = 0, SubDisco(A) > 0.

In fact, the set of hyperbolic polynomials the closure of the set defined by

SubDisc,_2(P) > 0 A ... A SubDiscy(P) > 0,
but does not coincide with the set defined by
SubDisc,_2(A4) > 0 A ... A SubDisco(4) > 0.
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