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In this Note we prove that the subdiscriminants of a symmetric matrix are
sums of squares. This generalizes a result of [2] stating that the discriminant
of a symmetric is a sum of squares and is inspired by its proof. A different,
less explicit proof that the discriminant of a symmetric is a sum of squares also
apear in [3]. As a consequence, we obtain an algebraic proof of the fact that all
the roots of the characteristic polynomial of a symmetric matrix are real.

1 Discriminants and subdiscriminants

We consider an ordered field K, a real closed field R containing K and C = R[i]
its algebraic closure.

The k-subdiscriminant of a monic polynomial P ∈ K[X) of degree p is defined
as follows. Let x1, . . . , xp be the multiset of roots of P in C, counted with
multiplicities. The k-subdiscriminant of P , 0 ≤ j ≤ p− 1, is by definition

SubDisck(P ) =
∑

I⊂{1,...,p},#(I)=p−k

Π(j,`)∈I,`>j(xj − x`)2.

Note that SubDiscp−1(P ) = p. Subdiscriminants generalize the classical notion
of discriminant which is the 0-th subdiscriminant:

SubDisc0(P ) = Disc(P ) = Πp≥j>`≥1(xj − x`)2.

Subdiscriminants turn out to be determinants of matrices with entries the
Newton nums of P . Denoting by Ni(P ) the Newton sum

∑
i=1,...,p xj

i , let the
Hermite matrix Herk(P ) be the (p − k) × (p − k)-matrix with i, j-th entry
Ni+j−2(P ) i, j = 1, . . . p− k.

Proposition 1
SubDisck(P ) = det(Herk(P ))

The proof uses the classical Cauchy-Binet formula
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Proposition 2 Let A be a n×m matrix and B be a m× n matrix. For every
I ⊂ {1, , m} of cardinality n, denote by AI the n×n matrix obtained by extracting
from A the columns with indices in I. Similarly let BI be the n × n matrix
obtained by extracting from B the rows with indices in I.

det(AB) =
∑

I⊂{1,,m},#(I)=n

det(AI) det(BI).

Proof of Proposition 1: Define

Vk =


1 1 . . . . 1
x1 x2 . . . . xp

. . . . . . .

xp−k−1
1 xk−1

2 . . . . xp−k−1
p

 .

It is clear that VkV t
k = Herk(P ). Now apply Binet-Cauchy formula, noting that,

if I ⊂ {1, , p},#(I) = p− k

det(VkI) = Π(j,`)∈I,`>j(xj − x`).

�

Let A is a symmetric p × p matrix with coefficients in a ring A. We define
the k-th subdiscriminant of A as the determinant of the matrix Herk(A) whose
(i, j)-th entry is Tr(Ai+j−2), i, j = 1, . . . p− k. When A is with entries in a field
K, the k-th subdiscriminant of A coincides with the k-th subdiscriminant of its
characteristic polynomial P . Indeed, the Newton sum Ni(P ) of A is Tr(Ai), the
trace of the matrix Ai.

2 Orthogonal basis of symmetric matrices

We define a linear basis Ej,` of the space Sym(p) of symmetric matrices of size
p as follows. First define Fj,` as the matrix having all zero entries except 1 at
(j, `). Then take Ej,j = Fj,j , Ej,` = 1/

√
2(Fj,` + F`,j), ` > j . Define E as the

ordered set Ej,` p ≥ ` ≥ j ≥ 0 , indices being taken in the order

(1, 1), . . . , (p, p), (1, 2), . . . , (1, p), . . . , (p− 1, p).

For simplicity, we index elements of E pairs (j, `), `.
It is immediate to check that the map associating to (A,B) ∈ Sym(p) ×

Sym(p) the value Tr(AB) is a scalar product on Sym(p) with orthogonal basis
E.

Let Bk be the (p−k)×p(p+1)/2 matrix with (i, (j, `))-th entry the (j, `)-th
component of Ai−1 in the basis E.

Proposition 3

Herk(A) = Bk ×Bt
k.

Proof : Immediate since Tr(Ai+j) is the scalar product of Ai by Aj in the basis
E. �
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3 Subdiscriminants of symmetric matrices are
sums of squares

We consider a generic symmetric matrix A = [ai, j] whose entries are p(p+1)/2
independant variables aj,`, ` ≥ j. We are going to give an explicit expression of
SubDisck(A) as a sum of products of powers of 2 by squares of elements of the
ring Z[aj,`].

Let Bk be the (p−k)×p(p+1)/2 matrix with (i, (j, `))-th entry the (j, `)-th
component of Ai−1 in the basis E.

Proposition 4 SubDisck(A) is the sum of squares of the (p−k)×(p−k) minors
of Bk.

Proof : Use Proposition 3 and Binet-Cauchy formula. �

Noting that a (p− k)× (p− k) minor of Bk is a power of 2 multiplied by a
square of an element of Z[aj,`], we obtain an explicit expression of SubDisck(A)
as a sum of products of powers of 2 by squares of elements of the ring Z[aj,`].

As a consequence the k-th subdiscriminant of a symmetric matrix with co-
efficients in a ring A is a sum of products of powers of 2 by squares of elements
in A.

Let us take a simple example and consider

A =
[
a11 a12

a12 a22

]
.

The characteristic polynomial of A is X2− (a11 + a22)X + a11a22− a2
12, and its

discriminant is (a11 +a22)2−4(a11a22−a2
12). On the other hand the sum of the

squares of the 2 by 2 minors of

B0 =
[

1 1 0
a11 a22

√
2 a22

]
is

(a22 − a11)2 + (
√

2a12)2 + (
√

2a12)2.

It is easy to check the statement of Proposition 4 in this particular case.

4 Characteristic polynomials of symmetric ma-
trices are hyperbolic

By definition, a polynomial P ∈ R[X) is hyperbolic if all its roots are in R.
We give an algebraic proof of the classical theorem.

Proposition 5 The characteristic polynomial of a symmetric matrix is hyper-
bolic.
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Proof : We denote by P the characteristic polynomial of a matrix A.
First note that, by Proposition 4 SubDisci(A) = 0 if only if the rank of Bi

is less than n − i. It follows that SubDisck(A) > 0 implies SubDisci(A) > 0
for every n − 1 ≥ i ≥ k, and SubDisck−1(A) = 0 implies SubDisci(A) = 0 for
every 0 ≤ i < k. In other words, for every symmetric matrix A, there exists
k, n− 1 ≥ k ≥ 0 such that the signs of the subdiscriminants of A are

(∧p−1≥i≥kSubDisci(A) > 0 ∧ ∧0≤i<kSubDisci(A) = 0).

So the number of roots of the characteristic polynomial P of A is p − k, using
Proposition (relation between subresultants and subdiscriminants) and Proposi-
tion (counting numb er of real roots in terms of permanencies minus variations)
of [1], while the number of distinct roots of P is p − k using Proposition (sub-
resultants give degree of gcd). �

Since it is clear that every hyperbolic polynomial is the characteristic poly-
nomial of a diagonal symmetric matrix with entries in R, Proposition 5 imples
that the set of hyperbolic polynomials is characterized by

∨k=p−1,...,0(∧p−1≥i≥kSubDisci(P ) > 0 ∧ ∧0≤i<kSubDisci(P ) = 0).

On the other hand, the sign condition

SubDiscp−2(P ) ≥ 0 ∧ . . . ∧ SubDisc0(P ) ≥ 0

does not imply that P is hyperbolic: the polynomials X4 + 1 has no real root
(its four roots are ±

√
2/2±i

√
2/2), and it is immedate to check uthat is satisties

SubDisc2(P ) = SubDisc1(P ) = 0,SubDisc0(A) > 0.
In fact, the set of hyperbolic polynomials the closure of the set defined by

SubDiscp−2(P ) > 0 ∧ . . . ∧ SubDisc0(P ) > 0,

but does not coincide with the set defined by

SubDiscp−2(A) ≥ 0 ∧ . . . ∧ SubDisc0(A) ≥ 0.
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