
Towards a Verified Enumeration
of All Tame Plane Graphs

Gertrud Bauer, Tobias Nipkow

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

www.in.tum.de/~bauerg, www.in.tum.de/~nipkow

Abstract. We contribute to the fully formal verification of Hales’ proof
of the Kepler Conjecure by analyzing the enumeration of all tame plane
graphs. We sketch a formalization of plane graphs, tameness and Hales’
enumeration procedure in Higher Order Logic. The correctness of the
enumeration is partially verified (which uncovered a small mismatch be-
tween Hales’ definition of tameness and his enumeration procedure). By
executing the enumeration in ML we confirm that a list of plane graphs
provided by Hales (the archive) contains all tame plane graphs (although
it also contains much redundancy).

1 Introduction

In 1611, Kepler proposed that the cubic close packing (see fig. 1) the and hexag-
onal close packing (both of which have maximum densities of π

3
√

2
≈ 74.048%)

are the densest possible sphere packings.

Fig. 1. Face centered cubic packing

Theorem (Kepler Conjecture).
The face-centered cubic packing of unit spheres has optimal density.

In 1998, Thomas C. Hales announced to have found a proof of the Kepler
conjecture using a computer program [2]. After 5 years the referees stated that

Dagstuhl Seminar Proceedings 05021
Mathematics, Algorithms, Proofs
http://drops.dagstuhl.de/opus/volltexte/2006/434

www.in.tum.de/~bauerg
www.in.tum.de/~nipkow

2 G. Bauer, T. Nipkow

they were 99% certain of the correctness of the proof. Hence Hales initiated the
flyspeck project with the aim to produce a formal proof of the Kepler Conjecture.

Hales’ proof relies on a notion of tame plane graphs and a (finite) list of all
tame plane graphs, the archive.

Proof Structure of Kepler Conjecture (by contradiction)
1. Assume there is a counterexample.
2. Associate a plane graph (‘contravening graph’) to every counterexample.
3. Theorem. Every contravening graph is tame.
4. Theorem 1. Every tame plane graph is isomorphic to a graph in the
archive.
5. For every graph in the archive show that it is not contravening (using
linear programs and more).

Qed.

The aim of our work is the verification of Theorem 1, that is a proof of the
theorem

Theorem g ∈ Planes =⇒ tame g =⇒ ∃ h ∈ archive. g ∼= h

Hales created the archive from the output of a Java program he wrote for
generating all tame plane graphs. Hence the crux of the proof of this theorem is
the completeness of his Java program (modulo graph isomorphism).

Our contributions are

– A Higher Order Logic version (enum) of Hales’ Java program, generating all
tame plane graphs.

– A partial proof of completeness of enum.
– A confirmation of Theorem 1 by executing enum and checking that its output

is contained in the archive.
– A reduced archive.

All formalizations and proofs are carried out in Higher Order Logic (HOL) with
the theorem prover Isabelle [5].

As a ‘side effect’ of the verification it turned out that the definition of tame
graphs in the proof of the Kepler conjecture needs to be changed a bit (see §4.4).
However, the correctness of the Kepler conjecture is not affected by this change.

Notations We use the following Isabelle/HOL notations for Lists and Sets: Given
a list xs, hd xs is the first element in xs, last xs is the last element xs, rev xs is
the reverted list, x#xs appends an element x in front of xs, xs[[i]] is element at
position i in xs, |xs| is the length of xs, [x ∈ xs. P x] the list of all elements of
xs that obey property P, replicate n x is the list containing n times the element
x, set xs is the set of elements in xs, [0 ..< int n] is the list of integers from 0 to
n − 1, {f x | x . x ∈ xs} is the set of all elements f x with x ∈ xs.

Structure of this paper The structure of this paper is as follows: In §2 we
introduce the data structures and some functions for faces and graphs in Is-

Towards a Verified Enumeration of All Tame Plane Graphs 3

abelle/HOL. In §3 we show the definition of plane graphs and their implemen-
tation in Isabelle/HOL. In §4 we recall the definition of tameness and show its
translation to Isabelle/HOL. In §5 we show the proof structure of the complete-
ness theorem induced by a set of refinement steps of the enumeration algorithm.
In §6 we show the definition of graph isomorphism and an executable isomor-
phism test.

2 Graphs

In this section we define plane graphs in terms of sets of faces.
A face f is a finite set of vertices Vf , of cardinality at least 3, together with

a cyclic permutation v 7→ f ·v on them. Consequently, f ·v 6= v for all v ∈ Vf .

2f v

3f v4f v

5f v

v

f

f v

.

.

.

. .

Fig. 2. Example: A Face of length 6

When we want to draw graphs we need a convention in which orientation
faces are to be drawn. We draw faces in clockwise orientation (see fig. 2).

An unoriented edge is a two-element set {v, w} of vertices such that f ·v = w
for some face f . The vertices v and w are then said to be adjacent. An (oriented)
edge is a pair (v, w) such that f ·v = w for some face f .

A plane graph g is a nonempty finite set of faces with the following properties:

1. If f ·v = w then there is a unique face f ′ in g, with f ′·w = v. Hence associated
to each vertex v in a graph g there is an automorphism of the faces of g that
contain v. We write f 7→ (g, v)·f = f ′ for this function. Hence v = (g, v)·f ·w.
Moreover, each edge occurs in exactly two faces of g with opposite orienta-
tion. That is, for a face f and an edge in e there is exactly one face f ′ that
contains the edge with opposite orientation.

w = f v
f’

fv = f’ w.

.

2. For each vertex, the function f 7→ (g, v)·f is a cyclic permutation of the set
of faces containing v.

4 G. Bauer, T. Nipkow

3. Euler’s formula holds, relating the number of vertices V, the number of edges
E and the number of faces F

V − E + F = 2

Note that properties 1 and 2 together with the convention of drawing the
vertices in a face in clockwise orientation imply that f 7→ (g, v)·f permutes the
faces around a vertex v in counterclockwise orientation.

.(g,v) f

4 .(g,v) f
3 .(g,v) f

2 .(g,v) f

f

The length |f | is the number of vertices in a face f . A face of length 3 is
called triangle, a face of length 4 is called quadrilateral, faces of length at least 5
are called exceptional. The degree of a vertex is the number of faces containing
the vertex. tri(v) is the number of triangles containing a vertex v. quad(v) is
the number of quadrilaterals containing a vertex v. except(v) is the number
of exceptionals containing a vertex v. The type of a vertex is a triple (p, q, r),
where p is the number of triangles, q the number of quadrilaterals, and r is the
number of exceptional faces containing the vertex. We write type(v) = (p, q) for
type(v) = (p, q, 0).

Two graphs g1 and g2 are called properly isomorphic, if there is a bijection
of vertices, inducing a bijection of faces. For each graph g there is an opposite
graph gop obtained by reversing the cyclic order in each face. A graph g1 is called
isomorphic to a graph g2 (g1

∼= g2), if g1 is properly isomorphic to g2 or gop
2 .

For the construction of plane graphs we distinguish two different kinds of
faces: A face is marked either final or nonfinal (we use the terminology of the
Java program, whereas in Hales’ paper [3] faces are called complete/incomplete).
In our figures we draw final faces white and nonfinal faces (except a nonfinal face
at the outside of a graph) grey.

Final faces are those that occur in the terminal graph, nonfinal faces can be
further refined by adding new faces.

2.1 Representation of Faces

We use integers as identifiers for vertices.

types vertex = int

We represent faces by lists of (distinct) vertices and a face type. The type of
a face is either final or nonfinal.

datatype facetype = Final | Nonfinal

Towards a Verified Enumeration of All Tame Plane Graphs 5

datatype face = Face (vertex list) facetype

final :: ′a ⇒ bool

final (Face vs f) = (case f of Final ⇒ True | Nonfinal ⇒ False)

The set of vertices Vf in a face f is denoted by set (vertices f) where

vertices :: ′a ⇒ vertex list

vertices (Face vs f) = vs

The function nextVertex (written as f ·v), is based on findNext, which returns
the successor of an element in a list.

findNext :: ′a list ⇒ ′a ⇒ ′a ⇒ ′a
findNext [] b c = c
findNext (a#as) b c =

(case as of [] ⇒ c
| (d#ds) ⇒ if a = b then d else findNext as b c)

nextVertex :: face ⇒ vertex ⇒ vertex

f · v ≡ let vs = vertices f in findNext vs v (hd vs)

Note that the function nextVertex will also return a value if v is not a vertex
of f, because in Isabelle/HOL all functions have to be total. But during the
generation the function is only called on vertices of f. For the verification of this
function a precondition is introduced.

The inverse face f−1 of a face f is obtained by reversing the cyclic order in
f . We define the permutation function f−1 · v of the inverse face f−1.

prevVertex :: face ⇒ vertex ⇒ vertex

f−1 · v ≡ (let vs = vertices f in findNext (rev vs) v (last vs))

2.2 Representation of Graphs

A graph g is implemented as a datatype with the following components:

– vertices g, the list of vertices in g.
– faces g, the list of faces in g.
– countVertices g, the number of vertices in g.
– faceListAt g, an incidence list of face lists, assigning each vertex v a list of

faces in g containing v.
– heights g, a list of integers, assigning each vertex an integer height.
– baseVertex g, one of the vertices.

Note that for efficiency reasons of the enumeration algorithm, the represen-
tation is highly redundant, for example vertices g could be calculated from faces
g, countVertices g could be calculated from vertices g, and faceListAt g could be

6 G. Bauer, T. Nipkow

calculated from faces g. The last two components are only used for optimization
of the generation process.

Moreover it allows graphs that are not well-formed (inconsistent). Well-
formedness is guaranteed by the inductive definition of plane graphs.

types faces = face list list
types heights = int list

datatype graph = Graph (vertex list) (face list) int faces heights (vertex option)

vertices (Graph vs fs n f h b) = vs

faces :: graph ⇒ face list
faces (Graph vs fs n f h b) = fs

countVertices :: graph ⇒ int
countVertices (Graph vs fs n f h b) = n

faceListAt :: graph ⇒ faces
faceListAt (Graph vs fs n f h b) = f

facesAt :: graph ⇒ vertex ⇒ face list
facesAt g v ≡ faceListAt g [[v]]

heights :: graph ⇒ heights
heights (Graph vs fs n f h b) = h

height :: graph ⇒ vertex ⇒ int
height g v ≡ heights g [[v]]

baseVertex :: graph ⇒ vertex option

baseVertex (Graph vs fs n f h b) = b

A graph is final if all faces are final.

finals :: graph ⇒ face list
finals g ≡ [f ∈ faces g . final f]

nonFinals :: graph ⇒ face list
nonFinals g ≡ [f ∈ faces g . ¬ final f]

final g ≡ (nonFinals g = [])

A vertex is final if all incident faces are final.

nonFinalsAt :: graph ⇒ vertex ⇒ face list
nonFinalsAt g v ≡ [f ∈ facesAt g v . ¬ final f]

finalVertex :: graph ⇒ vertex ⇒ bool
finalVertex g v ≡ (nonFinalsAt g v = [])

Towards a Verified Enumeration of All Tame Plane Graphs 7

2.3 Counting the Number of Faces at a Vertex

degree :: graph ⇒ vertex ⇒ int
degree g v ≡ |facesAt g v |

tri :: graph ⇒ vertex ⇒ int
tri g v ≡ |[f : facesAt g v . final f ∧ |vertices f | = 3]|

quad :: graph ⇒ vertex ⇒ int
quad g v ≡ |[f : facesAt g v . final f ∧ |vertices f | = 4]|

except :: graph ⇒ vertex ⇒ int

except g v ≡ |[f : facesAt g v . final f ∧ 5 ≤ |vertices f |]|

A vertex v is called incident with a face f , if v is contained in f , i.e.
v ∈ set (vertices f).

An edge (a, b) is contained in face f, if b is the successor of a in f .

edges :: ′a ⇒ (vertex × vertex) set

edges (f ::face) ≡ {(a, f · a)|a. a ∈ set (vertices f)}
edges (g ::graph) ≡

S
f ∈ set (faces g). edges f

The function nextFace (written as f 7→ (g, v)·f) permutes the faces at a
vertex v.

nextFace :: graph × vertex ⇒ face ⇒ face
(g ,v) · f ≡ (let fs = (facesAt g v) in

(case fs of [] ⇒ f
| g#gs ⇒ findNext fs f (hd fs)))

3 Plane Graphs

We use an inductive definition of (connected) plane graphs.
We start the construction with initial graphs (seed graphs): Note that the set

of faces allways contains also the outer face. Hence initial graphs consist of two
faces, one final inner and one nonfinal outer, where the final one is the inverse
of the nonfinal one.

We modify a graph g by adding a new final face in a nonfinal face f of g.
This is performed by applying a patch for f at an edge e of f . A patch p is a
partial graph with at least 2 faces, one final face f2 (the final face we want to
add to the graph), one nonfinal face f1 (the inverse face of f) and 0 or more
nonfinal faces, uniquely determined by f and f2, filling the ’gap’ between the
old nonfinal face f and the new final face f2 (see example in fig. 3).

We apply a patch by replacing f in g by p − {f1}. The new nonfinal faces
complete the new graph such that again every edge is contained in exactly two
faces (in opposite directions).

Ultimately, we define a partial plane graph inductively as follows:

8 G. Bauer, T. Nipkow

Fig. 3. All patches for a face of length 6 with final face of length 3

(initial) Every initial graph is a partial plane graph.
(add face) Given a partial plane graph, the graph obtained by adding one final

face is a partial plane graph.

A final graph is one in which every face is final. Every final plane graph can
be identified with a plane graph.

It is easy to show that every graph generated using this inductive definition
is plane. This can be verified by induction over the generation, using Euler’s
formula. On the other hand it must be shown that we can reach every plane
graph using this construction.

Theorem.
Every plane graph can be reached using the construction described above.
Proof.
Let g be any plane graph. We can choose any face as initial graph. Let h be a
nonempty connected subset of g and h′ a partial plane graph, reachable by the
inductive definition, such that the set of faces of h is the set of final faces of h′.
Then g can be reached from h′. The proof is by induction on the cardinality of
the difference of set of faces in g and the set of final faces in h′. We show that
we can always add a new final face to h′: If h′ is nonempty, there is a nonfinal
face f in h′, that shares an edge with one of the final faces in h′. In g there is
exactly one face f2 that shares this edge with one of the final faces in h. We can
add the final face f2 to h′ with a patch for the nonfinal face f with final face f2.
The thorem follows by the induction hypothesis.
Qed.

We refine the process of generating graphs by successively generating graphs
with maximum face length n, starting from n = 3, 4, . . . (see fig.4). We can get
the set of all plane graphs with maximum face length n by starting with an
initial graph with face length n and in every step adding only new faces with
length between 3 and n.

3.1 Construction of Seed Graphs

An initial graph is a graph with one final face of length n and one nonfinal face
of length n (in opposite direction).

It is constructed by the function graph n.

graph :: nat ⇒ graph
graph n ≡

Towards a Verified Enumeration of All Tame Plane Graphs 9

Fig. 4. Trees of generated plane graphs, with maximal face length 3, 4, 5, . . .

(let vs = [0 ..< int n];
fs = [Face vs Final , Face (rev vs) Nonfinal];
b = (if n < 5 then None else Some (hd vs))

in (Graph vs fs (int n) (replicate n fs) (replicate n 0) b))

Example. An initial triangle graph has one final face containing the vertices [0 ,
1 , 2] and one nonfinal face containing the vertices [2 , 1 , 0]. The set of vertices
is [0 , 1 , 2] and for each vertex in the graph, the list of adjacent faces contains
both faces. The values for the heights of the vertices are initially 0.

graph 3 =
Graph [0 , 1 , 2]

[Face [0 , 1 , 2] Final , Face [2 , 1 , 0] Nonfinal]
3
[[Face [0 , 1 , 2] Final , Face [2 , 1 , 0] Nonfinal],
[Face [0 , 1 , 2] Final , Face [2 , 1 , 0] Nonfinal],
[Face [0 , 1 , 2] Final , Face [2 , 1 , 0] Nonfinal]]
[0 , 0 , 0]
None

0

1

2

3.2 Generation of the Tree of Plane Graphs

For the definition of plane graphs, we first define a generic tree function, induc-
tively as the reachability relation induced by a given successor function succs.
An intuitive definition of the set of graphs reachable from a start graph g is the
following: g is reachable from g (rule root). If g′ is reachable from g and g′′ is
one of the successors of g′ then g′′ is reachable from g (rule succs).

We define a constant Tree :: (graph ⇒ graph list) ⇒ graph ⇒ graph set by
the following two clauses:

g ∈ Tree succs g

g ′ ∈ Tree succs g =⇒ g ′′ ∈ set (succs g ′) =⇒ g ′′ ∈ Tree succs g

10 G. Bauer, T. Nipkow

We aim at a definition of plane graphs for which we can generate executable
ML code. But the ML code generated from this first definition of Tree does
not terminate even if the defined set is finite. The reason is the depth-first
evaluation strategy of inductive definitions [1]. When all elements of a finite set
are enumerated, the generated function can still recursively call itself, whereas
the termination condition is never reached.

For this reason we need to change the order in which one step and n steps
are performed in the induction step. Then the evaluation is stopped as soon
as set (succs g) is empty. This does not allow us to treat the start graph as a
constant in the definition, hence we need to define trees as a binary relation of
graphs rather than a function from graphs to a list of graphs. We end up with
the following definition (see fig. 5):

g

g’

g’’

Fig. 5. Inductive definition of graph trees.

We define a constant tree :: (graph ⇒ graph list) ⇒ (graph ∗ graph) set by
the following two clauses:

(g , g) ∈ tree succs

g ′ ∈ set (succs g) =⇒ (g ′, g ′′) ∈ tree succs =⇒ (g , g ′′) ∈ tree succs

Then we define the set of all terminal (final) graphs in a tree, generated by
a given parameter param, and with given seed and succs functions.

terminalsTreeParam :: ′parameter ⇒ (′parameter ⇒ graph) ⇒
(′parameter ⇒ graph ⇒ graph list) ⇒ graph set

terminal : (seed param, g) ∈ tree (succs param) =⇒ final g =⇒
g ∈ terminalsTreeParam param seed succs

The set of all terminal graphs is then the set of all graphs generated by any
parameter

terminalsTree ::
(′parameter ⇒ graph) ⇒ (′parameter ⇒ graph ⇒ graph list) ⇒ graph set

param: g ∈ terminalsTreeParam param seed succs =⇒
g ∈ terminalsTree seed succs

We can show that both definitions tree and Tree are equivalent.

Lemma tree-eq : ((g , g ′) ∈ tree succs) = (g ′ ∈ Tree succs g)

Towards a Verified Enumeration of All Tame Plane Graphs 11

3.3 The Definition of Plane Graphs

For the definition of plane graphs it is sufficient to start the generation with a
seed graph consisting of a single face of arbitrary length and restrict the length
of new faces to the length of the initial face.

Every seed graph is represented by a parameter, an integer value of the set
{3, . . .}, the size of the final face.

planeparameter = {i ::int . 3 ≤ i}

The successor function successorsList param g calculates all patches for a
graph g for all nonfinal faces f in g at all edges given by a vertex v in f, with
a new final face of length i between 3 and the maximum face length given by
the parameter param. The function Seed param constructs a seed graph for the
parameter param. Using these functions , we finally define plane graphs.

Planes :: graph set
Planes ≡ terminalsTree (Seed ::planeparameter ⇒ graph) successorsList

PlanesParam :: planeparameter ⇒ graph set
PlanesParam param ≡

terminalsTreeParam param (Seed ::planeparameter ⇒ graph) successorsList

PlanesTree :: planeparameter ⇒ graph set

PlanesTree param ≡ Tree (successorsList param) (Seed param)

This definition of plane graphs contains infinitely many trees and each tree
has infinitely many elements.

4 Tame Plane Graphs

In this section we first recall the definition of tame plane graphs according to [3]
and then show how they can be defined in Isabelle/HOL.

First we need to define some constants and functions: The constant 14.8 is
called the target.

a : N → R is defined by

a(n) =

14.8 n = 0,1,2,
1.4 n = 3,
1.5 n = 4,
0 otherwise

12 G. Bauer, T. Nipkow

b : N×N → R is defined by the following table (where x=14.8), otherwise
the result is 14.8.

b(p,q) q=0 1 2 3 4
p=0 x x x 7.135 10.649
1 x x 6.95 7.135 x
2 x 8.5 4.756 12.981 x
3 x 3.642 8.334 x x
4 4.139 3.781 x x x
5 0.55 11.22 x x x
6 6.339 x x x x

c : N → R is defined by

c(n) =

1 n = 3,
0 n = 4,
-1.03 n = 5,
-2.06 n = 6,
-3.03 otherwise

d : N → R is defined by

d(n) =

0 n = 3,
2.378 n = 4,
4.896 n = 5,
7.414 n = 6,
9.932 n = 7,
10.916 n = 8,
14.8 otherwise

A set of vertices V is called a separated set of vertices, if

1. For every vertex in V there is an exceptional face containing it.
2. No two vertices in V are adjacent.
3. No two vertices in V lie on a common quadrilateral.
4. Each vertex in V has degree 5.

A weight assignment is a function w : G → R+
0 . A weight assignment is

admissible, if

1. d(|f |) ≤ w(f).
2. If v has type (p, q), then b(p, q) ≤

∑
v∈f

w(f).

3. Let V be any set of vertices of type (5,0).
If the cardinality of V is k ≤ 4, then 0.55k ≤

∑
V ∩f 6=∅

w(f).

4. Let V be any separated set of vertices.
Then

∑
v∈V

a(tri(v)) ≤
∑

V ∩f 6=∅
(w(f)− d(|f |)).

Towards a Verified Enumeration of All Tame Plane Graphs 13

Definition. A plane graph is called tame if it satisfies the following condi-
tions.

1. The length of each face is (at least 3 and) at most 8.
2. Every 3-circuit is a face or the opposite of a face.
3. Every 4-circuit surrounds one of the cases illustrated in fig. 6.

Fig. 6. Tame 4-circuits

4. The degree of every vertex is (at least 2 and) at most 6.
5. If a vertex is contained in an exceptional face, then the degree of the vertex

is at most 5.
6. ∑

f

c(|f |) ≥ 8.

7. There exists an admissible weight assignment of total weight
∑
f

w(f) less

than the target, 14.8.

4.1 Constants

In the following we show the implementation of these definitions in Isabelle/HOL.
The names of the defined constants correspond to the numbers of properties in
the definition, e.g. tame3 corresponds to property 3 of tame.

The implementation is quite close to the mathematical description for the
conditions of tameness that can be expressed in set theoretic formulas. Other
conditions, like that all quadrilaterals surround a certain set of configurations
must be modeled explicitely.

We multiply all constants by 1000 in order to calculate with integer values,
since no higher precision ever occurs in the program.

squanderTarget :: int
squanderTarget ≡ 14800

excessTCount :: int ⇒ int
a t ≡ if t < 3 then squanderTarget

else if t = 3 then 1400
else if t = 4 then 1500
else 0

14 G. Bauer, T. Nipkow

squanderVertex :: int ⇒ int ⇒ int
b p q ≡ if p = 0 ∧ q = 3 then 7135

else if p = 0 ∧ q = 4 then 10649
else if p = 1 ∧ q = 2 then 6950
else if p = 1 ∧ q = 3 then 7135
else if p = 2 ∧ q = 1 then 8500
else if p = 2 ∧ q = 2 then 4756
else if p = 2 ∧ q = 3 then 12981
else if p = 3 ∧ q = 1 then 3642
else if p = 3 ∧ q = 2 then 8334
else if p = 4 ∧ q = 0 then 4139
else if p = 4 ∧ q = 1 then 3781
else if p = 5 ∧ q = 0 then 550
else if p = 5 ∧ q = 1 then 11220
else if p = 6 ∧ q = 0 then 6339
else squanderTarget

scoreFace :: int ⇒ int
c n ≡ if n = 3 then 1000

else if n = 4 then 0
else if n = 5 then −1030
else if n = 6 then −2060
else if n = 7 then −3030
else if n = 8 then −3030
else −3030

getSquanderFace :: int ⇒ int
d n ≡ if n = 3 then 0

else if n = 4 then 2378
else if n = 5 then 4896
else if n = 6 then 7414
else if n = 7 then 9932
else if n = 8 then 10916
else squanderTarget

4.2 Separation

separated1: For each vertex in V there is an exceptional face containing it:

separated1 :: graph ⇒ vertex set ⇒ bool

separated1 g V ≡ ∀ v ∈ V . except g v 6= 0

separated2: No two vertices in V are adjacent:

separated2 :: graph ⇒ vertex set ⇒ bool

separated2 g V ≡ ∀ v ∈ V . ∀ f ∈ set (facesAt g v). f · v /∈ V

separated3: No two vertices lie on a common quadrilateral:

separated3 :: graph ⇒ vertex set ⇒ bool

Towards a Verified Enumeration of All Tame Plane Graphs 15

separated3 g V ≡
∀ v ∈ V . ∀ f ∈ set (facesAt g v). |vertices f | ≤ 4 −→ set (vertices f) ∩ V = {v}

preSeparated :: graph ⇒ vertex set ⇒ bool

preSeparated g V ≡ separated2 g V ∧ separated3 g V

separated4: Every vertex in V has degree 5.

separated4 :: graph ⇒ vertex set ⇒ bool
separated4 g V ≡ ∀ v ∈ V . degree g v = 5

separated :: graph ⇒ vertex set ⇒ bool
separated g V ≡

separated1 g V ∧ separated2 g V ∧ separated3 g V ∧ separated4 g V

4.3 Admissibility

admissible0: A weight assignment assigns every face a non-negative value.

admissible0 :: (face ⇒ int) ⇒ graph ⇒ bool

admissible0 w g ≡ ∀ f ∈ set (faces g). 0 ≤ w f

admissible1: d(|f |) ≤ w(f).

admissible1 :: (face ⇒ int) ⇒ graph ⇒ bool

admissible1 w g ≡ ∀ f ∈ set (faces g). d |vertices f | ≤ w f

admissible2: If v has type (p, q), then b(p, q) ≤
∑
v∈f

w(f).

admissible2 :: (face ⇒ int) ⇒ graph ⇒ bool
admissible2 w g ≡

∀ v ∈ set (vertices g). b (tri g v) (quad g v) ≤
P

f ∈ facesAt g v w f

admissible3: Let V be any set of vertices of type (5,0).
If the cardinality of V is k ≤ 4, then 0.55k ≤

∑
V ∩ f 6=∅

w(f).

admissible3 :: (face ⇒ int) ⇒ graph ⇒ bool
admissible3 w g ≡

∀V . card V ≤ 4 −→
V ⊆ {v . v ∈ set (vertices g) ∧ tri g v = 5 ∧ quad g v = 0} −→P

f ∈ [f ∈ faces g . V ∩ set (vertices f) 6= {}] w f ≤ 550 ∗ int (card V)

16 G. Bauer, T. Nipkow

admissible4: Let V be any separated set of vertices.
Then

∑
v∈V

a(tri(v)) ≤
∑

V ∩ f 6=∅
(w(f)− d(|f |)).

admissible4 :: (face ⇒ int) ⇒ graph ⇒ bool
admissible4 w g ≡

∀V . separated g (set V) −→
set V ⊆ set (vertices g) −→

(
P

v∈V a (tri g v))
+ (

P
f ∈[f ∈faces g . ∃ v ∈ set V . f ∈ set (facesAt g v)] d |vertices f |)

≤
P

f ∈[f ∈faces g . ∃ v ∈ set V . f ∈ set (facesAt g v)] w f

admissible :: (face ⇒ int) ⇒ graph ⇒ bool
admissible w g ≡

admissible0 w g ∧ admissible1 w g ∧ admissible2 w g ∧ admissible3 w g
∧ admissible4 w g

4.4 Tameness

In the algorithm of generating all tame plane graphs a graph is neglected if it
contains two adjacent vertices of type (4, 0) (see fig. 7). During the verification

Fig. 7. Two adjacent vertices of type (4, 0)

it turned out that the original definition of tame graphs by Hales in fact allows
graphs that are not generated by the algorithm:

These graphs are of the following form: two adjacent vertices of type (4, 0),
bounded by a 4-circuit. On the outside one of the tame configurations of fig. 6,
discarding any that give fewer than 8 triangles.

Hales [private communication] suggested that we strengthen the notion of
tameness to match the algorithm because it can be shown that all counterexam-
ples must satisfy the stronger notion. Therefore we extend the definition of tame
by a new restriction tame8 that no two adjacent vertices of type (4, 0) occur in
a tame graph. Properties tame1 to tame7 correspond to properties 1 to 7 of the
original definition.

tame1: The length of each face is (at least 3 and) at most 8:

tame1 :: graph ⇒ bool

tame1 g ≡ ∀ f ∈ set (faces g). 3 ≤ |vertices f | ∧ |vertices f | ≤ 8

Towards a Verified Enumeration of All Tame Plane Graphs 17

tame2: Every 3-circuit is a face or the opposite of a face:

A face given by a vertex list vs is contained in a graph g, if it is isomorphic
to one of the faces in g. The notation f ∈∼= F means ∃ f ′∈ F . f ∼= f ′, where ∼=
is the equivalence relation on faces (see §6).

A 3-circuit in a graph g is a path of length 3 along any faces of g.

triangle :: vertex ⇒ vertex ⇒ vertex ⇒ graph ⇒ bool
triangle a b c g ≡

(∃ f ∈ set (faces g). (a, b) ∈ edges f)
∧ (∃ f ∈ set (faces g). (b, c) ∈ edges f)
∧ (∃ f ∈ set (faces g). (c, a) ∈ edges f)

tame2 :: graph ⇒ bool
tame2 g ≡

∀ a b c. triangle a b c g −→
(Face [a, b, c] Final) ∈∼= set (faces g) ∨
(Face [c, b, a] Final)∈∼= set (faces g)

tame3 : Every 4-circuit surrounds one of the following configurations:

A 4-circuit in a graph g is a path of length 4 along any faces of g.

quadrilateral :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ graph ⇒ bool
quadrilateral a b c d g ≡

(∃ f ∈ set (faces g). (a, b) ∈ edges f)
∧ (∃ f ∈ set (faces g). (b, c) ∈ edges f)
∧ (∃ f ∈ set (faces g). (c, d) ∈ edges f)
∧ (∃ f ∈ set (faces g). (d , a) ∈ edges f)

tameConf1 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf1 a b c d ≡ {Face [a, b, c, d] Final}

tameConf2 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf2 a b c d ≡ {Face [a, b, c] Final , Face [a, c, d] Final}

tameConf3 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf3 a b c d e ≡

{Face [a, b, e] Final , Face [b, c, e] Final , Face [a, e, c, d] Final}

tameConf4 :: vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ face set
tameConf4 a b c d e ≡

{Face [a, b, e] Final , Face [b, c, e] Final , Face [c, d , e] Final ,

Face [d , a , e] Final}

18 G. Bauer, T. Nipkow

Given a fixed 4-circuit, and using the convention of drawing faces clockwise,
a tame configuration can occur in the ’interior’ or on the outside of the 4-circuit.
For configuration 2 there are two possible arrangements of the triangles, for
configuration 3 there are 4. The notation F 1 ⊆∼= F 2 means ∀ f ∈ F 1. f ∈∼= F 2.

Note that our definition only assures the existence of certain faces in the
graph, not the fact that no other faces of the graph may lie in the interior or on
the outside. Hence it is slightly weaker than the definition in Hales paper.

tame4circuit :: graph ⇒ vertex ⇒ vertex ⇒ vertex ⇒ vertex ⇒ bool
tame4circuit g a b c d ≡

∃ e. tameConf1 a b c d ⊆∼= set (faces g)
∨ tameConf2 a b c d ⊆∼= set (faces g)
∨ tameConf2 b c d a ⊆∼= set (faces g)
∨ tameConf3 a b c d e ⊆∼= set (faces g)
∨ tameConf3 b c d a e ⊆∼= set (faces g)
∨ tameConf3 c d a b e ⊆∼= set (faces g)
∨ tameConf3 d a b c e ⊆∼= set (faces g)
∨ tameConf4 a b c d e ⊆∼= set (faces g)

tame3 :: graph ⇒ bool
tame3 g ≡ ∀ a b c d . quadrilateral a b c d g −→

tame4circuit g a b c d ∨ tame4circuit g d c b a

tame4: The degree of every vertex is (at least 2 and) at most 6:

tame4 :: graph ⇒ bool

tame4 g ≡ ∀ v ∈ set (vertices g). 2 ≤ degree g v ∧ degree g v ≤ 6

tame5: If a vertex is contained in an exceptional face, then the degree of the
vertex is at most 5:

tame5 :: graph ⇒ bool
tame5 g ≡

∀ f ∈ set (faces g). ∀ v ∈ set (vertices f). 5 ≤ |vertices f | −→ degree g v ≤ 5

tame6: 8 ≤
∑
f

c(|f |):

tame6 :: graph ⇒ bool

tame6 g ≡ 8000 ≤
P

f ∈ faces g c |vertices f |

Note that this property implies that there are at least 8 triangles in a tame
graph.

tame7: There exists an admissible weight assignment of total weight less than
the target:

tame7 :: graph ⇒ bool

tame7 g ≡ ∃w . admissible w g ∧
P

f ∈ faces g w f < squanderTarget

Property tame7 assures that the set of tame plane graphs is finite.

Towards a Verified Enumeration of All Tame Plane Graphs 19

tame8: We formalize the additional restriction (compared with the original def-
inition) that tame graphs do not contain two adjacent vertices of type (4, 0).

vertexHas40 :: graph ⇒ vertex ⇒ bool
vertexHas40 g v ≡

finalVertex g v ∧ tri g v = 4 ∧ quad g v = 0 ∧ except g v = 0

neighbours :: graph ⇒ vertex ⇒ vertex list
neighbours g v ≡ map (λf . f · v) (facesAt g v)

hasAdjacent40 :: graph ⇒ bool
hasAdjacent40 g ≡

∃ v ∈ set (vertices g). vertexHas40 g v ∧
(∃w ∈ set (neighbours g v). vertexHas40 g w
∧ remlist (neighbours g v) (w#(neighbours g w)) 6= [])

tame8 :: graph ⇒ bool
tame8 g ≡ ¬ hasAdjacent40 g

tame :: graph ⇒ bool
tame g ≡

tame1 g ∧ tame2 g ∧ tame3 g ∧ tame4 g ∧ tame5 g ∧ tame6 g ∧ tame7 g
∧ tame8 g

5 Refinements

Starting from the definition we obtain a first algorithm to enumerate all tame
plane graphs: Enumerate all plane graphs and remove all graphs that are demon-
strably not tame. It is not necessary to remove all graphs that are not tame, its
sufficient to generate a set of plane graphs that contains all tame plane graphs.
However, this first algorithm is not terminating, since the set of all plane graphs
is not finite.

To overcome this problem, we use the following approach: We start with the
set of all plane graphs (Ref0 = Planes in fig.8). We gradually reduce the gener-
ated set of graphs, imposing the restrictions of tameness to it (Ref1, . . . , Ref4),
such that the generated set of graphs eventually becomes finite, is efficiently
enumerable and still contains all tame graphs (and maybe some graphs that are
not tame) (Ref5 = enum).

There are two different reasons why a graph g can be neglected:

(I) if all final graphs generated by g are not tame.
(II) if for every final graph generated by g an isomorphic graph will be generated

by another path in the tree.

5.1 Ref1: Fixed face and edge

In the definition of plane graphs successors for all edges in all nonfinal faces
are calculated. The first refinement step is to fix one nonfinal face and one

20 G. Bauer, T. Nipkow

 Ref 0 = plane graphs

 Ref 5

 Ref 4

 Ref 1

= enum

Fig. 8. Proof structure

edge in this face, where the possible successors are calculated. We denote the
generated set of graphs by Ref 1

′. This does not reduce the set of generated
graphs modulo isomorphism, only some graphs are left out, when isomorphic
graphs are generated by another path in the tree. (This is an optimization of
type (I).) Hence this is still a definition for plane graphs. The completeness proof
is by induction on the generation of a graph. It is sufficient to show that modulo
graph isomorphism it does not matter which nonfinal face we treat first.

For the verification it does not matter which of the faces and which of the
vertices we select.

5.2 Ref2: Restriction to graphs with maximum face size 8

Since all tame graphs have maximum face sizes 8, we can exclude all seed graphs
with face size greater than 8. Every graph generated from these seeds will contain
a face of size greater than 8 and hence not be tame. This is an optimization of
type (II).

We restrict the set of seed parameters to the finite set {3, . . . , 8}.

5.3 Ref3: Complex Seed Graphs

As the next refinement step we replace the first two seed graphs (consisting of
a final triangle, a final quadrilateral, resp.) by a new finite set of complex seed
graphs (see fig.9). Every new seed graph has one final vertex v, and it consists
of t final triangles and q final quadrilaterals all incident with v and one nonfinal
face.

Towards a Verified Enumeration of All Tame Plane Graphs 21

The first step is an equivalent definition to the previous one separating the set
of parameters in two groups, quad parameter {3, 4} and exceptional parameter
{5, . . . , 8}.

In the second step we replace the two quad seed graphs

by an (infinite) set of complex seed graphs (vertex seed graphs) with one final
vertex v (of degree at least 2), each seed graph is represented by a vertex param-
eter, a list of quad parameters (of the length of the degree of v), the sizes of the
faces incident with v in cyclic order.

From the set of vertex seed graphs every seed graph with 14.8 ≤ b(p, q)
can be excluded, since every graph generated from these graphs will not be
tame: it contains a vertex v with 14.8 ≤ b(p, q) and for every admissible weight
assignment w, 14.8 ≤ b(p, q) ≤

∑
f∈facesg wf . This violates properties (tame7)

and (admissible2).
Hence we make a list of all types (p, q) with 14.8 < b(p, q) and create all seed

graphs (up to isomorphism) of this type. This results in a list of 17 seed graphs
shown in fig. 9. We impose a fixed order on these seed graphs by assigning each
graph an index out of the set {0, . . . , 16}. Every graph is represented by this
index as parameter.

[3,3,3,3,4][3,3,3,3][3,3,4,4] [4,3,4,3] [3,3,3,4]

[3,4,3,4,4][3,3,4,4,4] [3,3,3,3,3,4] [4,4,4,4] [3,3,4] [3,3,3,4,4]

[3,3,3,3,3,3][4,4,4][3,4,4,4][3,4,4][3,3,4,3,4]

[3,3,3,3,3]

Fig. 9. Seed for quad parameter

We can neglect all plane graphs g generated by a seed s, that contain a vertex
of same type as the final vertex in one earlier seed graph s′. The graph g has
already been generated by another path starting from this earlier seed graph
(see fig. 10)

This refinements avoids generation of isomorphic copies of tame plane graphs
and improves the efficiency of the generation.

22 G. Bauer, T. Nipkow

s

g’

s’

s’ g

Fig. 10. neglect graphs that contain earlier seed graphs

5.4 Ref4: Neglectable nonfinal graphs

We can neglect nonfinal graphs by the following refinements:

– The successor function can be simplified such that it replaces all nonfinal
triangles by final ones. (property tame2)

– The successor function can be further simplified. If a graph contains a nonfi-
nal quad, it can be replaced by all configurations that are allowed by property
tame3.

– A new generated (nonfinal) graph can be neglected if an enclosed vertex is
created. This would contradict property tame2.

– We calculate a lower bound for
∑
f

w(f) for a nonfinal graph. A graph can

be neglected if a lower bound of
∑
f

w(f) exceeds 14.8.

5.5 Ref5 = enum: Neglectable Final Graphs

– We calculate a lower bound for
∑
f

w(f) for a nonfinal graph. A graph can

be neglected if a lower bound of
∑
f

w(f) exceeds 14.8.

– A graph can be neglected if
∑
f

c(|f |) < 8 (tame6).

– A graph can be neglected if it contains vertices whose degree is too high
(tame4, tame5).

– A graph can be neglected if it contains some forbidden configurations,

like (tame8) or (tame3, tame6).

So far, this part is formally proved in Isabelle.

Towards a Verified Enumeration of All Tame Plane Graphs 23

6 Plane Graph Isomorphism

Plane graph isomorphism has already been defined informally in §2 and is re-
ferred to in justifying a number of the refinement steps in §5. This section pro-
vides both a formal definition and an executable implementation of plane graph
isomorphism, and it uses the implementation to remove redundancies from Hales’
archive of tame plane graphs (see §1).

We work with two simple representations of plane graphs:
′a Fgraph = ′a list set
′a fsgraph = ′a list list

A face is a list of nodes (of type ′a), and plane graph is either a set (Fgraph)
or a list (fsgraph) of faces: lists are used instead of sets whenever we need exe-
cutability.

Two faces are considered equivalent if one can be obtained from the other by
rotation. This is formalized as the equivalence relation EqF on faces. Note that
A // R is the quotient of a set A by an equivalence R.

The notion of a proper homomorphism and isomorphism is defined both on
the set and list representation of plane graphs.

is-pr-Hom :: (′a ⇒ ′b) ⇒ ′a Fgraph ⇒ ′b Fgraph ⇒ bool
is-pr-Hom ϕ Fs1 Fs2 ≡ (map ϕ ‘ Fs1)//EqF = Fs2 // EqF

is-pr-Iso :: (′a ⇒ ′b) ⇒ ′a Fgraph ⇒ ′b Fgraph ⇒ bool
is-pr-Iso ϕ Fs1 Fs2 ≡ is-pr-Hom ϕ Fs1 Fs2 ∧ inj-on ϕ (

S
F ∈ Fs1. set F)

is-pr-hom :: (′a ⇒ ′b) ⇒ ′a fsgraph ⇒ ′b fsgraph ⇒ bool
is-pr-hom ϕ Fs1 Fs2 ≡ is-pr-Hom ϕ (set Fs1) (set Fs2)

is-pr-iso :: (′a ⇒ ′b) ⇒ ′a fsgraph ⇒ ′b fsgraph ⇒ bool
is-pr-iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ (set Fs1) (set Fs2)

6.1 An Executable Isomorphism Test

In a stepwise development (which we cannot detail here) we arrive at an ex-
ecutable isomorphism test based on a representation of morphisms as lists of
pairs. Function test checks if two morphisms are compatible:

test :: (′a × ′b)list ⇒ (′a × ′b)list ⇒ bool
test I I ′ ≡

list-all (λxy . list-all (λxy ′. (fst xy = fst xy ′) = (snd xy = snd xy ′)) I ′) I

and merge merges two compatible morphisms:

merge :: (′a × ′b)list ⇒ (′a × ′b)list ⇒ (′a × ′b)list
merge [] I = I
merge (xy#xys) I = (let (x ,y) = xy in

if list-all (λ(x ′,y ′). x 6= x ′) I then xy # merge xys I

else merge xys I)

24 G. Bauer, T. Nipkow

Note that fst/snd is the first/second component of a pair and function list-all/
list-ex checks if all/some element of a list satisfies a given test.

The actual isomorphism test tries to pair faces of the same length and iterates
over all rotations of one of the two faces. If the current isomorphism I can be
extended with I ′ (the result of pairing the two new faces), then the search
continues, otherwise it fails:

iso-test :: (′a × ′b)list ⇒ ′a fsgraph ⇒ ′b fsgraph ⇒ bool
iso-test I [] Fs2 = (Fs2 = [])
iso-test I (F 1#Fs1) Fs2 =

list-ex (λF 2. length F 1 = length F 2 ∧
list-ex (λn. let I ′ = zip F 1 (rotate n F 2) in

if test I ′ I then iso-test (merge I ′ I) Fs1 (remove1 F 2 Fs2) else False)

[0 ..< length F 2]) Fs2

The correctness theorem is littered with many preconditions which simply
express that two representations are indeed those of proper plane graphs, e.g.
all nodes in a face are distinct:

[[∀F∈set Fs1. distinct F ; ∀F∈set Fs2. distinct F ; [] /∈ set Fs2;
distinct Fs1; inj-on (λxs.{xs}//EqF) (set Fs1);
distinct Fs2; inj-on (λxs.{xs}//EqF) (set Fs2)]] =⇒

iso-test [] Fs1 Fs2 = (∃ϕ. is-pr-iso ϕ Fs1 Fs2)

To obtain acceptable performance, we need to test right away if the two
graphs have the same number of faces (which is easy) and nodes. For the latter
test we pair each graph with the number of its nodes in order not to have to
recompute this all the time:

iso-test2 :: (nat × ′a fsgraph) ⇒ (nat × ′b fsgraph) ⇒ bool
iso-test2 (n1,Fs1) (n2,Fs2) ≡

n1 = n2 ∧ length Fs1 = length Fs2 ∧ iso-test [] Fs1 Fs2

Finally we move from proper isomorphisms to isomorphisms where by allow-
ing the orientation of all faces in one of the graphs to be reversed:

is-Iso :: (′a ⇒ ′b) ⇒ ′a Fgraph ⇒ ′b Fgraph ⇒ bool
is-Iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ Fs1 Fs2 ∨ is-pr-Iso ϕ Fs1 (rev ‘ Fs2)

is-iso :: (′a ⇒ ′b) ⇒ ′a fsgraph ⇒ ′b fsgraph ⇒ bool

is-iso ϕ Fs1 Fs2 ≡ is-Iso ϕ (set Fs1) (set Fs2)

where f ‘ A is the image of a set A under a function f. The executable version is
obvious

iso :: (nat × ′a fsgraph) ⇒ (nat × ′b fsgraph) ⇒ bool

iso g1 g2 ≡ iso-test2 g1 g2 ∨ iso-test2 g1 (fst g2, map rev (snd g2))

and its correctness theorem is very similar to the one for iso-test.

6.2 A Reduced Archive

Hales published both his Java programs that enumerate all tame plane graphs
and a set of files containing all tame plane graphs [2]. The latter files are re-

Towards a Verified Enumeration of All Tame Plane Graphs 25

ferred to as the archive and are found in subdirectory JavaKep02/graph00/
src/graph/archive/. Upon examining the archive we found that it contains
not just the enumerated tame plane graphs but also junk, i.e. isomorphic copies
of graphs or graphs that never show up in the enumeration.

We have exported function iso to ML [1] and have used it filter out those
graphs in the archive that are not isomorphic to one in the enumeration enum.
It turns out that of the 5128 graphs in the archive, only 2872 remain, the rest
are redundant. A reduced archive is now found here [4].

Note that Hales never claims that his archive is free of junk. The advantage
of our reduced archive is that it reduces the computation time (and potentially
also the cleverness) of subsequent proof steps.

7 Conclusion

Now, collecting all completeness theorems of §5, we can finally prove Theorem 1:

Theorem g ∈ Planes =⇒ tame g =⇒ ∃ h ∈ Ref 1. g ∼= h

Theorem g ∈ Ref 1 =⇒ tame g =⇒ ∃ h ∈ Ref 2. g ∼= h

...

Theorem g ∈ Ref 4 =⇒ tame g =⇒ ∃ h ∈ enum. g ∼= h

we finally obtain the result:

Theorem g ∈ Planes =⇒ tame g =⇒ ∃ h ∈ enum. g ∼= h

Generating ML code from the definition of enum, executing it and checking
that for every generated graphs there is an isomorphic graph in the archive yields
a confirmation of Theorem 1.

References

1. S. Berghofer and T. Nipkow. Executing Higher Order Logic. In P. Callaghan, Z. Luo,
J. McKinna, and R. Pollack, editors, Types for Proofs and Programs (TYPES 2000),
volume 2277 of Lect. Notes in Comp. Sci., pages 24–40. Springer-Verlag, 2002.

2. T. Hales. The Kepler Conjecture, 2002. http://www.math.pitt.edu/~thales/

kepler02/javakep02.tar.
3. T. Hales. A Proof of the Kepler Conjecture. http://www.math.pitt.edu/~thales/

kepler04/fullkepler.pdf, 2004.
4. T. Nipkow. Reduced Archive of Tame Plane Graphs, 2005. http://www.in.tum.

de/~nipkow/Flyspeck/.
5. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci. Springer-Verlag,
2002. http://www.in.tum.de/~nipkow/LNCS2283/.

JavaKep02/graph00/src/graph/archive/
JavaKep02/graph00/src/graph/archive/
http://www.math.pitt.edu/~thales/kepler02/javakep02.tar
http://www.math.pitt.edu/~thales/kepler02/javakep02.tar
http://www.math.pitt.edu/~thales/kepler04/fullkepler.pdf
http://www.math.pitt.edu/~thales/kepler04/fullkepler.pdf
http://www.in.tum.de/~nipkow/Flyspeck/
http://www.in.tum.de/~nipkow/Flyspeck/
http://www.in.tum.de/~nipkow/LNCS2283/

	Towards a Verified Enumeration of All Tame Plane Graphs
	Gertrud Bauer, Tobias Nipkow

