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Abstract

In this paper, I present a new decision procedure for the ideal membership problem for polyno-
mial rings over principal domains using discrete valuation domains. As a particular case, I solve a
fundamental algorithmic question in the theory of multivariate polynomials over the integers called
“Kronecker’s problem”, that is the problem of finding a decision procedure for the ideal membership
problem for Z[X1, . . . , Xn]. The techniques utilized are easily generalizable to Dedekind domains.
In order to avoid the expensive complete factorization in the basic principal ring, I introduce the
notion of “dynamical Gröbner bases” of polynomial ideals over a principal domain. As application,
I give an alternative dynamical solution to “Kronecker’s problem”.
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Introduction

The concept of Gröbner basis was originally introduced by Buchberger in his Ph.D. thesis (1965)
in order to solve the ideal membership problem for polynomial rings over a field [4]. The ideal
membership problem has received considerable attention from the constructive algebra community
resulting in algorithms that generalize the work of Buchberger. Our goal is to use dynamical methods
in order to give a decision procedure for the ideal membership problem for polynomial rings over a
principal domain. The case where the basic ring is Z is called “Kronecker’s problem” and has been
treated by many authors [1, 2, 8, 9, 11].

Recall that the notion of “dynamical proofs” comes from the work of Coste, Lombardi, and Roy in
[5] and was inspired by the notion of dynamical evaluation introduced in computer algebra by Duval
and Reynaud [7].

Our starting point is the method explained in [1, 11]. Let us recall the strategy of this method.
Begin by noting that for a principal domain R with field of fractions F, a necessary condition so that
f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn] is: f ∈ 〈f1, . . . , fs〉 in F[X1, . . . , Xn].
Suppose that this condition is fulfilled, that is there exists d ∈ R \ {0} such that

d f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn]. (0)

Since the basic ring R is principal and a fortiori factorial, we can write d = upn1
1 · · · pn`

` , where the pi

are distinct irreducible elements in R, u is invertible in R, and ni ∈ N. Another necessary condition
so that f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn] is: f ∈ 〈f1, . . . , fs〉 in RpiR[X1, . . . , Xn] for each 1 ≤ i ≤ `.
Write:

di f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn] for some di ∈ R \ piR. (i)

Since gcd(d, d1, . . . , d`) = 1, by combining equalities asserting (0), (1), . . . , (`) using a Bezout identity
between d, d1, . . . , d`, we can find an equality asserting that f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn]. Thus,
the necessary conditions are sufficient and it suffices to treat the problem in case the basic ring is a
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discrete valuation domain. The notions of Gröbner basis and S-polynomials, originally introduced by
Buchberger, have been adapted in [11] to discrete valuation domains.

This method raises the following question:

How to avoid the expensive problem of factorizing an element in a factorial domain into a finite
product of irreducible elements ?

The fact that the method developed in [11] is based on gluing “local realizability” appeals to the
use of dynamical methods and more precisely, as will be explained later in this paper, the use of a
new notion of Gröbner basis, namely the notion of “dynamical Gröbner basis” [12]. Our goal is to
mimic dynamically as much as we can the method used in [11]. A key fact is that for any two nonzero
elements a and b in a principal domain R, writing a = (a ∧ b)a′, b = (a ∧ b)b′, with a′ ∧ b′ = 1, then a
divides b in Ra′ and b divides a in Rb′ , where for any nonzero x ∈ R, Rx denotes the localization of
R at the multiplicative subset Sx generated by x. Moreover, note that the two multiplicative subsets
Sa′ and Sb′ are comaximal, that is, for any x ∈ Sa′ and y ∈ Sb′ , the ideal 〈x, y〉 contains 1. Of course,
this precious fact will enable us to go back from the leaves to the root of the evaluation tree produced
by our dynamical method. In other words, this will make the gluing of “local realizability” possible.

The undefined terminology is standard as in [6] and [10].

1 Gröbner basis over a valuation domain

Definitions 1. Let R be a ring, f =
∑

α aαXα a nonzero polynomial in R[X1, . . . , Xn], E a non
empty subset of R[X1, . . . , Xn], and > a monomial order.

(i) The Xα (resp. the aαXα) are called the monomials (resp. the terms) of f .
(ii) The multidegree of f is mdeg(f) := max{α ∈ Nn : aα 6= 0}.
(iii) The leading coefficient of f is LC(f) := amdeg(f) ∈ R.
(iv) The leading monomial of f is LM(f) := Xmdeg(f).
(v) The leading term of f is LT(f) := LC(f) LM(f).
(vi) LT(E) := {LT(g), g ∈ E}.
(vii) 〈LT(E)〉 := 〈LT(g), g ∈ E〉 (ideal of R[X1, . . . , Xn]).

Definitions 2. Let R be a valuation domain, f, g ∈ R[X1, . . . , Xn] \ {0}, I = 〈f1, . . . , fs〉 a nonzero
finitely generated ideal of R[X1, . . . , Xn], and > a monomial order.

(i) If mdeg(f) = α and mdeg(g) = β then let γ = (γ1, . . . , γn), where γi = max(αi, βi) for each i.
The S-polynomial of f and g is the combination:

S(f, g) = Xγ

LM(f)f −
LC(f)
LC(g)

Xγ

LM(g)g if LC(g) divides LC(f).

S(f, g) = LC(g)
LC(f)

Xγ

LM(f)f− Xγ

LM(g)g if LC(f) divides LC(g) and LC(g) does not divide LC(f).

(ii) G = {f1, . . . , fs} is said to be a Gröbner basis for I if 〈LT(I)〉 = 〈LT(f1), . . . , LT(fs)〉.
(iii) As in the classical division algorithm in F[X1, . . . , Xn] (F field) (see [6], page 61), for each

polynomials h, h1, . . . , hm ∈ R[X1, . . . , Xn], there exist q1, . . . , qm, r ∈ R[X1, . . . , Xn] such that

h = q1h1,+ · · ·+ qmhm + r,

where either r = 0 or r is a sum of terms none of which is divisible by any of LT(h1), . . . ,LT(hm).
The polynomial r is called a remainder of h on division by H = {h1, . . . , hm} and denoted r = h

H .

Lemma 1. Let R be a valuation domain and I = 〈aαXα, α ∈ A〉 an ideal of R[X1, . . . , Xn] generated
by a collection of terms. Then a term bXβ lies in I if and only if Xβ is divisible by Xα and b is
divisible by aα for some α ∈ A.
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Lemma 2 (Dickson’s Lemma for discrete valuation domains). Let R be a discrete valuation
domain and I = 〈aαXα, α ∈ A〉 an ideal of R[X1, . . . , Xn] generated by a collection of terms. Then
there exist α1, . . . , αs ∈ A such that I = 〈aα1X

α1 , . . . , aαsX
αs〉.

Using Lemma 1 and Lemma 2, we generalize some classical results about the existence of Gröbner
basis for ideals in polynomial rings over discrete valuations domains.

Theorem 1. Let R be a discrete valuation domain, I a nonzero ideal of R[X1, . . . , Xn], and fix a
monomial order >. Then, I has a Gröbner basis G, and for each f ∈ R[X1, . . . , Xn], f ∈ I if and
only if the remainder on division of f by G is zero.

The following lemma will be of big utility since it is the missing key for the characterization of
Gröbner bases by means of S-polynomials (see [6], page 82).

Lemma 3. Let R be a valuation domain, > a monomial order, and f1, . . . , fs ∈ R[X1, . . . , Xn]
such that mdeg(fi) = γ for each 1 ≤ i ≤ s. If mdeg(

∑s
i=1 aifi) < γ for some a1, . . . , as ∈ R, then∑s

i=1 aifi is a linear combination with coefficients in R of the S-polynomials S(fi, fj) for 1 ≤ i, j ≤ s.
Furthermore, each S(fi, fj) has multidegree < γ.

Theorem 2. Let R be a valuation domain , I = 〈g1, . . . , gs〉 an ideal of R[X1, . . . , Xn], and fix a
monomial order >. Then, G = {g1, . . . , gs} is a Gröbner basis for I if and only if for all pairs i 6= j,
the remainder on division of S(gi, gj) by G is zero.

Buchberger’s Algorithm for discrete valuation domains. Let R be a discrete valuation domain,
I = 〈g1, . . . , gs〉 a nonzero ideal of R[X1, . . . , Xn], and fix a monomial order >. Then, a Gröbner basis
for I can be computed in a finite number of steps by the following algorithm:

Input: g1, . . . , gs

Output: a Gröbner basis G for 〈g1, . . . , gs〉 with {g1, . . . , gs} ⊆ G

G := {g1, . . . , gs}
REPEAT
G′ := G

For each pair f 6= g in G′ DO

S := S(f, g)
G′

If S 6= 0 THEN G := G′ ∪ {S}
UNTIL G = G′

A natural question arising is :

For a valuation domain R, is it always possible to compute a Gröbner basis for each finitely
generated nonzero ideal of R[X1, . . . , Xn] by Buchberger’s Algorithm in a finite number of steps ?

In fact, for a discrete valuation domain, what makes Buchberger’s Algorithm work in a finite
number of steps is the fact that the totally ordered group ( = Z) corresponding to this valuation is
well-ordered (note that, conversely, a well-ordered group is isomorphic to Z). Unfortunately, if the
totally ordered group corresponding to the valuation is not archimedian, Buchberger’s Algorithm does
not always work in a finite number of steps as can be seen by the following example.

Example 1. Let V be a valuation domain with a corresponding valuation v and group G. Suppose
that G is not archimedian, that is there exist a, b ∈ V such that:

v(a) > 0, and ∀ n ∈ N∗, v(b) > nv(a).

Denote by I the ideal of V[X] generated by g1 = aX + 1 and g2 = b.
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Since S(g1, g2) = ( b
a)g1 − Xg2 = b

a and b
a is not divisible by b, then one must add g3 = b

a when
executing Buchberger’s Algorithm .
In the same way, S(g1, g3) = ( b

a2 )g1−Xg3 = b
a2 and b

a2 is not divisible by b nor by b
a . Thus, one must

add g4 = b
a2 , and so on, we observe that Buchberger’s Algorithm does not terminate.

Taking the particular case G = Z×Z equipped with the lexicographic order, a = (0, 1), and b = (1, 0).
We can prove 〈LT(I)〉 is not finitely generated despite that I is finitely generated and that clearly
〈LC(I)〉 = 〈a〉 (there is no such example in the literature).

As a consequence of this example, keeping the notations above, we know that a necessary condition
so that Buchberger’s Algorithm terminates is that the group G is archimedian (this is in fact equivalent
to dimV ≤ 1, see for example Proposition 8 page 116 in [3]). Moreover, we already know that a
sufficient condition is that G is well-ordered (this is in fact equivalent to that V is a discrete valuation
domain). This encourages us to set the following three conjectures :

Conjecture 1. Let V be a valuation domain with corresponding valuation group G, n ∈ N∗, and fix
a monomial order > in V[X1, . . . , Xn]. Then the following assertions are equivalent:

(i) It is always possible to compute a Gröbner basis for each finitely generated nonzero ideal of
V[X1, . . . , Xn] by the generalized version of Buchberger’s Algorithm for valuation domains in a
finite number of steps.
(ii) G is archimedian (⇔ dimV ≤ 1).

Conjecture 2. Let V be a valuation domain (Prüfer domain) with a corresponding valuation group G,
n ∈ N∗, and fix a monomial order > in V[X1, . . . , Xn]. Then the following assertions are equivalent:

(ii) dimV ≤ 1 (⇔ G is archimedian ).
(iii) For each finitely generated ideal I of V[X1, . . . , Xn], the ideal {LT(f), f ∈ I} of V[X1, . . . , Xn]
is finitely generated.

Conjecture 3. Let V be a valuation domain (Prüfer domain), n ∈ N∗, and fix a monomial order >
in V[X1, . . . , Xn]. Then for each finitely generated ideal I of V[X1, . . . , Xn], the ideal {LC(f), f ∈ I}
of V is finitely generated.

2 The ideal membership problem and Gröbner basis over a principal
domain

2.1 The ideal membership problem over a principal domain

As explained in the introduction, if R is a principal domain with field of fractions F, to answer the
question Q:

f ∈ ? 〈f1, . . . , fs〉 in R[X1, . . . , Xn],

one should first answer the question Q0:

f ∈ ? 〈f1, . . . , fs〉 in F[X1, . . . , Xn].

If the answer to Q0 is negative then so is the answer to Q. If positive, there exists d ∈ R \ {0} such
that

d f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn]. (0)

Since the basic ring is principal and a fortiori factorial, we can write d = upn1
1 · · · pn`

` , where the pi are
distinct irreducible elements in R, u is invertible in R, and ni ∈ N. The answer to the question Q is
positive if and only if for all 1 ≤ i ≤ `, the answer to the question Qpi :

f ∈ ? 〈f1, . . . , fs〉 in RpiR[X1, . . . , Xn],

is positive.
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In case of positive answers, for each 1 ≤ i ≤ `, write:

di f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn] for some di ∈ R \ piR. (i)

Since gcd(d, d1, . . . , d`) = 1, by combining equalities asserting (0), (1), . . . , (`) using a Bezout identity
between d, d1, . . . , d`, we can find an equality asserting that f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn].

As a conclusion, solving the ideal membership problem Q amounts to the resolution of a finite number
of ideal membership problems Q0,Qp1 , . . . , Qp`

over localizations of the basic ring R.

2.2 What is a Gröbner basis over a principal domain ?

Let R be a principal domain with field of fractions F, and I = 〈f1, . . . , fs〉 an ideal of R[X1, . . . , Xn].
We have seen that the first step to solve the ideal membership problem over R[X1, . . . , Xn] is to solve
it over F[X1, . . . , Xn].
Let G0 = {g1, . . . , gm} be a Gröbner basis for 〈f1, . . . , fs〉 in F[X1, . . . , Xn]. For each 1 ≤ j ≤ m,
write gj = hj

c and LC(gj) = cj

c , where c, cj ∈ R \ {0} and hj ∈ R[X1, . . . , Xn]. Denoting by p1, . . . , p`

the distinct irreducible elements in R dividing one of c, c1, . . . , cm, it is easy to see p1, . . . , p` are the
only irreducible elements in R that may appear as factors of the denominators of the quotients of the
division of a polynomial in R[X1, . . . , Xn] by G0. Let Gp1 , . . . , Gp`

be Gröbner bases for 〈f1, . . . , fs〉
respectively in RpiR[X1, . . . , Xn], 1 ≤ i ≤ `, as explained in the first section. From the survey made
previously, it is natural to suggest that the finite set G = {G0, Gp1 , . . . , Gp`

} will be called a Gröbner
basis for I = 〈f1, . . . , fs〉 in R[X1, . . . , Xn]. An element f ∈ R[X1, . . . , Xn] belongs to I if and only
if all the remainders r0, r1, . . . , r` on division of f respectively by G0, Gp1 , . . . , Gp`

are zero (the set
r = {r0, r1, . . . , r`} will be called the remainder on division of f by G).

2.3 An example

Example 2. This example illustrates the simplicity of our method. Let consider the ideal member-
ship problem

f = 5X3Y + 2X2 + 3XY 2 + 4Y − 7 ∈? 〈f1 = 3XY + 4, f2 = 2X2 + 3〉 in Z[X, Y ].

Let fix the lexicographic order as monomial order with X > Y . By executing Buchberger’s Algorithm
in Q[X, Y ], G0 = {f1, f2,

4
3X − 3

2Y, 9
8Y 2 + 4

3} is a Gröbner basis for 〈f1, f2〉. The response to the ideal
membership problem in Q[X, Y ] is positive. One obtains:

f = (
5
3
X2 + Y )f1 − 7

3
f2.

By clearing the denominators, one gets:

3f = (5X2 + 3Y )f1 − 7f2. (1)

It remains only to execute Buchberger’s Algorithm in Z(3)[X, Y ] as explained in this paper. One
obtains G3 = {f1, f2, 4X − 9

2Y, 27
8 Y 2 + 4} as a Gröbner basis for 〈f1, f2〉 in Z(3)[X, Y ].

Thus, G = {{f1, f2,
4
3X− 3

2Y, 9
8Y 2 + 4

3}, {f1, f2, 4X− 9
2Y, 27

8 Y 2 +4}} is a Gröbner basis for I = 〈f1, f2〉
in Z[X, Y ].

The response to the ideal membership problem in Z(3)[X,Y ] is positive. One obtains:

f = (Y − 5
2
)f1 + (

5
2
XY + 1)f2.

By clearing the denominators, one gets:
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2f = (2Y − 5)f1 + (5XY + 2)f2. (2)

A Bezout identity between 2 and 3 is

3− 2 = 1.

Thus, (1)− (2) ⇒ f = (5X2 + Y + 5)f1 + (−5XY − 9)f2, a complete positive answer.

3 The ideal membership problem and Gröbner basis over a
Dedekind domain

All what is made in this paper for principal domains can easily be generalized to Dedekind domains
(see [10] for a constructive study of Dedekind domains).
In order to avoid repetition, we keep the notations of the introduction, just suppose that R is a
Dedekind domain. The factorization d = pn1

1 · · · pn`
` , is replaced by a decomposition of the principal

ideal 〈d〉 into a finite product of nonzero prime ideals pi of R, say

〈d〉 =
∏̀

i=1

pni
i .

Of course, all the rings Rpi are discrete valuation domains in which the techniques of Section 1 apply.
In case of positive answers in the rings Rpi , for each 1 ≤ i ≤ `, one can find di ∈ R \ pi such that

di f ∈ 〈f1, . . . , fs〉 in R[X1, . . . , Xn].

Since no prime of R contains the ideal 〈d, d1, . . . , d`〉, we infer that 1 ∈ 〈d, d1, . . . , d`〉. Moreover, since
all the ideals of R are detachable (see [10], page 331), we can find explicitly an equality αd + α1d1 +
· · ·+ α`d` = 1, αi ∈ R, asserting that 1 ∈ 〈d, d1, . . . , d`〉, and so on exactly as in the principal domain
case.

For the notion of Gröbner basis for an ideal in polynomial ring over a discrete Dedekind domain,
it is the same as in the principal domain case, just for an element a ∈ R \ {0}, replace the irreducible
factors of a by the prime ideals of R appearing in the decomposition of the principal ideal 〈a〉 into a
finite product of nonzero prime ideals of R.

4 Dynamical Gröbner basis over a principal domain

Definition 1 Let R be an integral ring, f, g ∈ R[X1, . . . , Xn], f 6= 0, f 6= 0, I = 〈f1, . . . , fs〉 a
nonzero finitely generated ideal of R[X1, . . . , Xn], and > a monomial order.

1) If mdeg(f) = α and mdeg(g) = β then let γ = (γ1, . . . , γn), where γi = max(αi, βi) for each i.
If LC(g) divides LC(f) or LC(f) divides LC(g), the S-polynomial of f and g is the combination:

S(f, g) = Xγ

LM(f)f −
LC(f)
LC(g)

Xγ

LM(g)g if LC(g) divides LC(f).

S(f, g) = LC(g)
LC(f)

Xγ

LM(f)f − Xγ

LM(g)g if LC(f) divides LC(g) and LC(g) does not divide
LC(f).

2) As in the classical division algorithm in F[X1, . . . , Xn] (F field) (see [6], page 61), for each poly-
nomials h, h1, . . . , hm ∈ R[X1, . . . , Xn], there exist q1, . . . , qm, r ∈ R[X1, . . . , Xn] such that

h = q1h1,+ · · ·+ qmhm + r,

where either r = 0 or r is a sum of terms none of which is divisible by any of LT(h1), . . . , LT(hm).
The polynomial r is called a remainder of h on division by H = {h1, . . . , hm} and denoted r = h

H .
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3) For g1, . . . , gt ∈ R[X1, . . . , Xn], G = {g1, . . . , gt} is said to be a Gröbner basis for I if
I = 〈g1, . . . , gt〉, the set {LC(g1), . . . , LC(gt)} is totally ordered under division, and for each i 6= j,
S(gi, gj)

G
= 0.

4) S is said to be a multiplicative subset of a ring R if

S ⊂ R, 1 ∈ S and ∀x, y ∈ S, xy ∈ S.

If S is a multiplicative subset of a ring R, the localization of R at S is the ring S−1R = {x
s , x ∈ R, s ∈

S} in which the elements of S are forced into being invertible.
If S1, . . . , Sk are multiplicative subsets of R, we say that S1, . . . , Sk are comaximal if

∀s1 ∈ S1, . . . , sn ∈ Sn, ∃ a1, . . . , an ∈ R such that
n∑

i=1

aisi = 1.

5) If x ∈ R, the localization of R at the multiplicative subset Sx = {xk, k ∈ N} generated by x is denoted
by Rx. Moreover, by induction, for each x1, . . . , xk ∈ R, we define Rx1.x2.....xk

:= (Rx1.x2.....xk−1
)xk

.
For x1, . . . , xk ∈ R, the notation Gx1.x2.....xk

(I), or simply Gx1.x2.....xk
, will be utilized to denote a

Gröbner basis for 〈f1, . . . , fs〉 in Rx1.x2.....xk
.

For f, g ∈ Rx1.x2.....xk
[X1, . . . , Xn], the notation S(x1.x2.....xk)(f, g) instead of S(f, g) means that S(f, g)

is first computed in Rx1.x2.....xk
[X1, . . . , Xn]. If its remainder r on division by the already constructed

part of the Gröbner basis is nonzero, we must add it and it will be denoted by r(x1.x2.....xk).

6) G = {G1, . . . , Gk}, where Gi = {g1,i, . . . , gni,i} and gj,i ∈ R[X1, . . . , Xn], is said to be a dynamical
Gröbner basis for I if there exist S1, . . . , Sk multiplicative comaximal subsets of R such that in each
localization (S−1

i R)[X1, . . . , Xn], Gi is a Gröbner basis for 〈f1, . . . , fs〉.

Proposition 2
Let R be a principal domain, I = 〈f1, . . . , fs〉 a nonzero finitely-generated ideal of R[X1, . . . , Xn],
f ∈ R[X1, . . . , Xn], and fix a monomial order. Suppose that G = {g1, . . . , gt} is a Gröbner basis for I

in R[X1, . . . , Xn]. Then, f ∈ I if and only if f
G = 0.

Theorem 3 (Dynamical gluing)
Let R be a principal domain, I = 〈f1, . . . , fs〉 a nonzero finitely-generated ideal of R[X1, . . . , Xn],
f ∈ R[X1, . . . , Xn], and fix a monomial order. Suppose that G = {G1, . . . , Gk} is a dynamical
Gröbner basis for I in R[X1, . . . , Xn], where each Gi is a Gröbner basis for 〈f1, . . . , fs〉 in a lo-
calization (S−1

i R)[X1, . . . , Xn]. Then, f ∈ I if and only if f
Gi = 0 in (S−1

i R)[X1, . . . , Xn] for each
1 ≤ i ≤ k.

4.1 How to construct a dynamical Gröbner basis ?

Let R be a principal domain, I = 〈f1, . . . , fs〉 a nonzero finitely-generated ideal of R[X1, . . . , Xn], and
fix a monomial order >. The purpose is to construct a dynamical Gröbner basis G for I.

Dynamical version of Buchberger’s Algorithm

This algorithm works like Buchberger’s Algorithm for discrete valuation domains. The only difference
is that it may be blocked if it has to handle two non comparable (under division) elements a, b in R.
In this situation, one should compute d = a ∧ b, factorize a = da′, b = db′, with a′ ∧ b′ = 1, and then
open two branches : the computations are pursued in Ra′ and Rb′ .

Comments

1) Of course, any localization of a principal domain is a principal domain.

2) This algorithm must terminate after a finite number of steps since so does Buchberger’s Algorithm
for discrete valuation domains [11].
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3) At the end of this tree, all the obtained bases are in localizations of R of type Rx1.x2.....xk
,

x1, . . . , xk ∈ R. Of course, together, all the considered multiplicative subsets of R are comaximal
(this is due to the fact that if one needs to break the current ring Ri, this is done by considering the
rings (Ri)a′ and (Ri)b′ , with a′ ∧ b′ = 1). Thus, by Theorem 3, all the obtained Gröbner bases at the
leaves of the constructed “evaluation tree” form together a dynamical Gröbner basis for 〈f1, . . . , fs〉
in R[X1, . . . , Xn].

4) This algorithm may produce many redundancies due to the fact that if Gi is a Gröbner ba-
sis for 〈f1, . . . , fs〉 in Rx1.x2.....xk

[X1, . . . , Xn], then it is also a Gröbner basis for 〈f1, . . . , fs〉 in
Ry1xσ(1).y2xσ(2).....ykxσ(k)

[X1, . . . , Xn] for each permutation σ of {1, . . . , k} and y1, . . . , yk ∈ R.

5) The condition in Definition 1.2) that for a Gröbner basis Gi = {g1, . . . , gt} for 〈f1, . . . , fs〉 in
Rx1.x2.....xk

[X1, . . . , Xn], the set {LC(g1), . . . ,LC(gt)} must be totally ordered under division can be
managed at the end of the algorithm by adding artificially new branches to the ring Rx1.x2.....xk

and
keeping the same Gröbner basis Gi for each new branch. In fact, this is not really necessary, since if
one faces the situation treated in the proof of Proposition 2 when considering an ideal membership
problem f ∈?〈f1, . . . , fs〉, he can then open just the necessary new branches with the same Gröbner
basis kept at each new branch.

6) Of course, it may exist a shortcut when constructing a dynamical Gröbner basis. For example if
one computes a finite number of Gröbner bases over localizations of the basic ring at multiplicative
subsets which are comaximal without dealing with all the leaves of the evaluation tree.

4.2 An example

a) Suppose that we want to construct a dynamical Gröbner basis for I =
〈f1 = 10XY + 1, f2 = 6X2 + 3〉 in Z[X, Y ].

Let fix the lexicographic order as monomial order with X > Y . By executing by hand the dynamical
version of Buchberger’s Algorithm in Z[X, Y ], we find as a dynamical Gröbner basis for I:

G = {G5.2, G5.3, G3.2},
where

G5.2 = {f1, f2, f
(5)
3 = 3

5X − 3Y, f
(5.2)
4 = 3Y 2 + 3

50},
G5.3 = {f1, f2, f

(5)
3 = 3

5X − 3Y, f
(5.3)
4 = 2Y 2 + 1

25 , f
(5.3)
5 = − 3

25X2 + 3Y 2},
G3.2 = {f1, f2, f

(3)
3 = X − 5Y, f

(3)
4 = 50Y 2 + 1, f

(3.2)
5 = 25Y 2 + 1

2}.
The dynamical evaluation of the problem of constructing a Gröbner basis for I produces the following
evaluation tree:

Z
↙ ↘
Z5 Z3

↙↘ ↙↘
Z5.2 Z5.3 Z3.2

b) Suppose that we have to deal with the ideal membership problem:

f = 62X3Y + 11X2 + 10XY 2 + 56XY + Y + 8 ∈? 〈10XY + 1, 6X2 + 3〉 inZ[X,Y ].

The responses to this ideal membership problem in the rings Z5.2[X, Y ],Z5.3[X, Y ],Z3.2[X, Y ] are all
positive. One obtains:

5f = (31X2 + 5Y + 28)f1 + 4f2, and

6f = (6Y + 15)f1 + (62XY + 11)f2.
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Together with the Bezout identity 6− 5 = 1, one obtains:

f = (−31X2 + Y − 13)f1 + (62XY + 7)f2, a complete positive answer.
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