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Abstract. An element or an ideal of a commutative ring is nilregular
if and only if it is regular modulo the nilradical. We prove that if the
ring is Noetherian, then every nilregular ideal contains a nilregular el-
ement. In constructive mathematics, this proof can then be seen as an
algorithm to produce nilregular elements of nilregular ideals whenever
the ring is coherent, Noetherian, and discrete. As an application, we
give a constructive proof of the Eisenbud-Evans-Storch theorem that
every algebraic set in n—dimensional affine space is the intersection of
n hypersurfaces. The input of the algorithm is an arbitrary finite list of
polynomials, which need not arrive in a special form such as a Grébner
basis. We dispense with prime ideals when defining concepts or carrying
out proofs.
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1 Introduction

With this paper we contribute to a partial realisation of Hilbert’s programme in
commutative algebra. Any talk of complexity aside, our method differs in spirit
from computational approaches such as the one based on the concept of Grobner
basis (see, for example, [1]). One difference is that the algorithms which can be
read from our constructive proofs (that is, proofs done with intuitionistic logic
[12]) can essentially be run on the objects of customary mathematics; they do
not expect their data to be of a special form. For instance, a finitely generated
polynomial ideal may be given by an arbitrary finite list of generators, which
need not be (transformed into) a Grébner basis.

Our objective is to reveal the constructions hidden in abstract algebra. Also,
we aim at constructive proofs carried out at the same type level at which the

* The original article will appear in Arch. Math. (Basel). Birkhauser-Verlag has kindly
permitted the earlier publication of this enriched version.
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theorems are formulated. To this end we make prime ideals unnecessary wherever
they occur only as tools, to define concepts or to carry out proofs. Prime ideals
are subsets of the given ring; whence their type level is in general higher than the
one of (finite sequences of) ring elements. As we eventually want to transform a
finite list of polynomials into another one (Theorem 3), it makes sense to keep
away from arbitrary (prime) ideals on the way to this result.

How can one do without prime ideals when dealing with commutative rings?
A simple example is the nilradical, which should rather be defined as the set
of all nilpotent ring elements than as the intersection of all (minimal) prime
ideals. A less trivial example is the concept of Krull dimension, which is usually
defined as the greatest possible length of a chain of prime ideals. It equals the
Krull dimension of the Zariski spectrum: that is, the greatest possible length of
a chain of inhabited irreducible closed subspaces.

A recently given inductive characterisation of Krull dimension without primes
[5] is equally intuitive, but more effective than Krull’s. Tt carries over to the al-
gebraic setting the inductive concept of dimension for topological spaces which
is due to Brouwer, Menger, and Urysohn. The idea is that a topological space
is zero—dimensional if and only if each point has a basis of neighbourhoods
with empty boundaries, while for n > 0 a topological space has dimension < n
precisely when each point has a basis of neighbourhoods with boundaries of di-
mension < n — 1. This inductive characterisation made possible an elementary
constructive proof [2] of a theorem due to Kronecker whose geometric interpre-
tation is that every algebraic subset of n—dimensional space is the intersection
of n + 1 hypersurfaces.

Moreover, the new characterisation of Krull dimension enables us to perform
the task of this paper, to give a constructive proof of the theorem of Eisenbud—
Evans and Storch. As this is the ideal-theoretic version of the statement that
every algebraic subset of of n—dimensional space is in fact the intersection of n
hypersurfaces, it improves on Kronecker’s theorem. After giving a topological
proof of a variant of the regular element property (Section 1), we show how to
constructively interpret this proof without prime ideals (Section 2), and finally
apply this interpretation to achieve the desired result (Section 3).

2 The Nilregular Element Property

Let R be a commutative ring with unit and N its nilradical. We define an element
a (respectively, an ideal I) of R to be nilregular if and only if x € N whenever
ax € N (respectively, ax € N for all a € I). So an ideal I is nilregular precisely
when the transporter ideal (N : I) = {x € R: I C N} is contained in N. To
find nilregular elements of nilregular ideals when R is Noetherian, we interpret
first the property of being nilregular in a topological way.

As usual, let D(a) be the set of prime ideals p of R such that a ¢ p, and let
D(ai,...,an) stand for the union of D(a1), ..., D(an). The intersection of D(a)
and D(b) is D(ab), and D(a) is a subset of D(ay, ... ,a,) if and only if a belongs
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to the radical of the ideal (ai,...,a,) generated by ai,...,a,. In particular,
D(a) = 0 precisely when a € N.

Lemma 1. We have D(a + b,ab) = D(a,b) for all a,b € R. If, in particular,
D(a) and D(b) are disjoint, then D(a +b) = D(a,b).

It is well-known that the ©(a) with a € R form a basis of opens for the
Zariski topology on the prime spectrum (the set of all prime ideals) of R.

Remark 1. ®(ay,...,ay) is dense if and only if (a4,.. ., a,) is a nilregular ideal.

Theorem 1. Let R be Noetherian. If ®(aq, - .. ,ay) is dense for ay,...,an € R,
then the ideal (a1, ..., a,) contains a nilregular element.

Proof. Tt D(x) # 0, then there exists i such that D (za;) # 0, because D(ay, ..., an)
is dense. Hence if the ring is nontrivial, then we can inductively build a se-
quence bg, by, ... of elements of R in the following way: bg is one a; such that
D(bg) # 0; if D(bg,-..,bx) is not dense, then by, is a multiple of one a; such
that D (bgy1) # 0 and D (bg1) is disjoint from D (by, - .., by,)- Since R is Noethe-
rian, this procedure has to stop, and we eventually find p such that D (by, ..., bp)
is dense and D(b;) N D(b;) = @ whenever i # j. By Lemma 1, we have

D(bo,.-.,bp) =D(bo+---+bp)
and bp + - - - + b, is a nilregular element in (a4, ..., an).

As in [2] we define the ideal boundary N, of a € R to be the ideal generated
by a and the elements z of R such that ax is nilpotent; in other words, N, =
aR+ (N :a).

Lemma 2. Ewvery ideal boundary is a nilregular ideal.

Corollary 1. If R is Noetherian, then every ideal boundary contains a nilregular
element.

Throughout this section we could only have required that the topological
space Spec(R) rather than the ring R be Noetherian.

3 Constructive Interpretation

We interpret the previous argument in the framework of constructive mathe-
matics [10,11]. Let L(R) be the lattice of radically finitely generated ideals of R:
that is, the radicals of finitely generated ideals [3]. Following Joyal [8], the lattice
L(R), with inclusion as ordering, can also be defined as the distributive lattice
generated by the symbols D(a) with a € R, and equipped with the relations

D(0)=0, D(1)=1, D(ab)=D(a)AD(®), D(a+b)< D(a)V D)
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for a,b € A. Writing D(ay,...,an) for D(a1) V-V D(an), it can be shown [3]
that
Dby))A---AND(by) < D(ay,---,am)

if and only if the monoid generated by by, ...,b, meets the ideal generated by
a1, ..,am. S0 D(ai,...,a,) can indeed be identified with the radical of the
ideal (a1,...,am,), and D (a) = 0 precisely when a is nilpotent.

Lemma 3. If R is coherent, Noetherian, and discrete, then one can decide
whether a given element of R is nilpotent.

Proof. Let a € R. Every annihilator (0: aP) is a finitely generated ideal with
(0:af) C (0:aPt!). Since R is Noetherian, there exists n such that (0:a") =
(0: a™*!'). We even have (0 : a™) = (0 : a™*¥) for all k. (Indeed, if a"T*+1p = 0,
then a*b annihilates a™*! and thus also a™, so that a™t*b = 0.) Hence a is
nilpotent if and only if @™ = 0.

Corollary 2. If R is coherent, Noetherian, and discrete, then equality to 0 is
decidable in L (R).

If R is coherent and Noetherian, then L(R) is a Heyting algebra [3].
Remark 2. =D(aq,...,a,) = 0if and only if (ay,...,a,) is a nilregular ideal.

Lemma 4. If R is coherent, Noetherian, and discrete, for given bg,..., b, € R
we can decide whether =D (bg,...,b;) = 0; if indeed ~D(bg, ..., by) # 0, then we
can compute byy1 € R such that D(bgy1) # 0 and D(bgs1) A D(bg,...,b;) =0.

Proof. Write =D (bo,-..,b;) = D (c1,-..,¢m), and apply Lemma 3 successively
to the ¢;. If ¢; ¢ N for some j, then by1 = ¢; is as desired.

Corollary 3. If R is coherent, Noetherian and discrete, then we can decide
whether an element b of R is nilregular, and if this is not the case, then we can
compute an element © ¢ N such that bz € N.

In this context, =D(bg,...,b;) = O precisely when D(bg,...,b) is dense.
Reasoning as in the previous section (Theorem 1), we can now conclude.

Theorem 2. Let R be coherent, Noetherian, and discrete. If =D(aq,...,a,) =0
for ai,...,a, € R, then the ideal (a1,...,a,) contains a nilregular element.

This result seems closely connected to the regular element property proved
constructively in [11]. The hypothesis is a little weaker (we don’t assume the
ring to contain an infinite field), but the statement is a priori different unless
the ring is reduced (we use ‘nilregular’ instead of ‘regular’). In view of Lemma
2, Corollary 1 can be rephrased as follows.

Corollary 4. If R is coherent, Noetherian, and discrete, then every ideal bound-
ary contains a nilregular element.

In terms of L (R), this means that for every a € R there is s € R with
=D(s) =0 and D(s) < D(a) V =D(a); observe that D(N,) = D(a) V —~D(a).
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4 Application

The motivation of this work was to give a constructive proof of the Eisenbud-
Evans—Storch theorem that every algebraic set in n—dimensional affine space is
the intersection of n hypersurfaces [6,13]. In [2,3,5] a constructive approach to
the theory of Krull dimension is given with KdimR < —1 if and only if R is
trivial, and KdimR < n + 1 if and only if Kdim(R/N,) < n for all a € R. This
inductive definition of being of Krull dimension < n is then classically equivalent
to the usual definition that there is no strictly increasing chain of prime ideals
of length > n [3,5]. We also say that two rings Ry and Rs have the same Krull
dimension if and only if KdimR; < n is equivalent to KdimRy; < n for every
n>—1.

Lemma 5. If I is an ideal of R with I C N, then R and R/I have the same
Krull dimension.

Corollary 5. If KdimR <n+1 and s € R is nilregular, then Kdim(R/sR) < n

Lemma 6. If R is reduced, then R is von Neumann regular if and only if
KdimR < 0.

Corollary 6. If R is reduced and KdimR < 0, then every finitely generated ideal
of R[X] is principal. If we assume only KdimR < 0, then every radically finitely
generated ideal of R[X] is radically generated by one element.

Theorem 3. Let R be coherent, Noetherian, and strongly discrete. If KdimR <
d, then for every gi,...,9m € R[X] there exists fo,...,fqa € R[X] such that

D(gla"'agm) =‘D(f07“‘7fd)'

Proof. We prove this by induction on d. The statement is clear from Corollary
6 if d = 0. Let S be the multiplicative monoid of nilregular elements. Corollary
4 shows that the ring of fractions Rg is of Krull dimension < 0. Hence, using
Corollary 6 again, we can find f € R[X] such that D(f) = D(¢1,...,9m) in
Rs[X]. In R[X] this means that there exists s € S such that

D(f)AD(s) < D(g1,.--,9m) and D(g;) AD(s) < D(f).
We now set fo = sf and thus arrive at
D(s) AD(g1,--,9m) < D(fo) < D(g1, .- -, 9m)
in R[X]. Since s € S, we have Kdim(R/sR) < d—1 by Corollary 5. By induction,
D(h1,...,hq) =D(g1,---,9m)

for suitable hy, ..., hq in (R/sR)[X]. (Induction is possible, because if R is coher-
ent, Noetherian, and strongly discrete, then so is R/ for every finitely generated
ideal I of R [10, II1.2].) This means

D(87h17"'7hd) =D(87gl7"'7gm)
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in R[X]; whence
h;bj =a;s+ Z Cij i
i
for j =1,...,d and suitable integers n; > 1. For each j > 1, we now set
fi=hy’ —a;s
and get D(f;,s) = D(h;,s) with D(f;) < D(g1,...,gm); whence

D(Safla "'de) = D(S,g]_, agm)

and thus D(fo, f1,.-, fa) < D(g1,...,9m). For each ¢ < m, moreover, D(g;) <
‘D(SJ f17 "'7fd) 1mp11es D(gl) S D(sgia fl: ey fd): since also D(Sgl) S D(f0)7 we

get D(gz) S D(f07f17 ey fd) We ﬁna‘uy arrive at ‘D(fOJ f17 "'7fd) = D(gla ng)
as desired.

In this proof we apply Corollary 6 also to certain quotient rings of R (for instance,
to R/sR for some nilregular element s). We thus need to know that all these
rings are discrete, which is guaranteed by the assumption that R be strongly
discrete. Note that if R is coherent, Noetherian, and strongly discrete, then
L(R) is discrete [3].

In [3] it is shown, in an elementary and constructive way, that the Krull
dimension of a polynomial ring in n variables over a discrete field is < n. By
Hilbert’s basis theorem [10, VIIIL.1.5], any such ring is coherent, Noetherian, and
strongly discrete.

Corollary 7. If K is a discrete field and d > 1, then for all g1,...,9m €
K[Xy,...,X4] there exist f1,...,fqs € K[X1,...,X4] such that D(g1,...,9m) =

D(f17"'7fd)'

Kronecker proved this result with d+ 1 polynomials instead of d polynomials [2].
Our argument, being constructive, can be read as an algorithm that produces

fi,..., fq for given g1, ..., gm-

5 Conclusion

The fresh perspective on Krull dimension which we needed also in this paper
(Section 3) made it further possible to generalise some results providing bounds
for numbers of generators. For instance, a generalisation of the theorem of Forster
and Swan works in the non—Noetherian case as well [4]. The clue is to switch
to Heitmann’s notion of dimension [7], which gives the Krull dimension of the
maximal spectrum in the Noetherian case.

Before, the local-global principle of commutative algebra was understood
in a point—free way by means of finite open coverings [9]. This requires Joyal’s
presentation of the Zariski spectrum as a distributive lattice, which was indis-
pensable also in the present paper (Section 2): the points of the Zariski spectrum
are nothing but the prime ideals of the given commutative ring. The other ide-
als that have occurred in this paper are (radicals of) finitely generated ideals;
whence each of them can be seen as a finite list of ring elements.
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