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Formal topology in the sense of Martin-Löf and Sambin (Sambin 1987,
2003) may be considered as a predicative version of constructive locale theory
(Johnstone 1982, Joyal and Tierney 1984). In order for the theory to permit
the usual topological constructions, such as quotienting, gluing subspaces
and attaching maps, it is enough that the category of formal topologies and
continuous mappings has finite limits and finite colimits. See e.g. (Palm-
gren 2003) for a survey of earlier results, e.g. the construction of products
and coproducts and equalisers. In this paper we provide the missing piece:
construction of coequalisers.

In the category of locales the coequaliser of a pair of morphisms can
easily be constructed as an equaliser in the dual category of frames (see e.g.
Borceux 1994). The straightforward translation of this construction in terms
of formal topologies is

{U ∈ P(Y ) : (∀a ∈ X)(a�F−1U ⇐⇒ a�G−1U)}

for a pair of continuous mappings F,G : X → Y between formal topologies.
From a predicative point of view the problem with this construction is the use
of the full power set P(Y ). We show that it can be replaced by a restricted
set of subsets which may indeed be constructed in, e.g., Martin-Löf type
theory.

Together with known predicative constructions of products (Coquand et
al. 2003) and coproducts, and equalisers (Palmgren 2003) the above result
gives that the set-presented formal topologies form a small complete and
small cocomplete category, just as the classical topological spaces. This
indicates that the category should be adequate for constructing many of the
spaces studied by methods of algebraic topology.

Already in the setting of neighbourhood spaces (and thus with points)
surprisingly difficult predicativity problems appear when constructing quo-
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tient spaces or coequalisers. The problem was solved independently, simul-
taneously and using different methods by Hajime Ishihara and the author in
October 2004; see the forthcoming paper (Ishihara and Palmgren 200?).

1 The category of set-presented formal topologies

Following Bishop and Bridges (1985), and category-theoretic practice, a sub-
set A = (ι, I) of a given set X is an injective function ι : I → X. An element
x of X is member of the subset A, if x = ι(a) for some a ∈ A. Note that this
a is necessarily unique. We write x ∈X A. Two subsets A and B of X equal
if

x ∈X A ⇐⇒ x ∈X B.

From this arises easily notions of inclusion and the usual set-theoretical op-
erations.

For any family U of types T (t) (t : U) there is a notion of U-set, which
is a set A which is isomorphic to a set of the form (T (t),=e) where

x =e y ⇐⇒ T (e(x, y))

and e : T (t)× T (t) → U . For any set X there is then a notion of restricted
power set RU (X). This is a set consisting of subsets A = (I, ι) of X where
I is a U-set. Such subsets are called U-subsets. Two such are identified if
they are equal as subsets. Unless the family of types have certain closure
properties it will not be possible to perform the usual set operations on the
restricted power set. We return to the question of what these properties
might be later.

A set X is a projective set or a choice-set if the axiom of choice is valid
on X. The latter means that for any set Y and for any relation R between
X and Y if

(∀x ∈ X)(∃y ∈ Y )R(x, y)

then there is a function f : X → Y so that

(∀x ∈ X)R(x, f(x)).

As any type in Martin-Löf type theory can be equipped with an equality
relation (given by an Id-type) so that it becomes a projective set X, the
above choice principle is sometimes referred to as type-theoretic choice. The
principle is frequently used in Bishop-style constructivism. We thus assume
that for every set X there is a projective set X and a surjective function
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pX : X → X. Then we get the following choice principle which is sometimes
useful

(∀x ∈ X)(∃y ∈ Y )R(x, y) =⇒ (∃f : X → Y )(∀x ∈ X)R(pX(x), f(x)). (1)

Definition 1.1 Let S be a set, and let � be a relation between elements
of S and subsets of S, i.e. � ⊆ S ×P(S). Extend � to a relation between
subsets by letting U �V if and only if a�V for all a ∈ U . For a preorder
(X,≤) and a subset U ⊆ X, its downwards closure U≤ consists of those
x ∈ X such that x ≤ y for some y ∈ U . Write a≤ for {a}≤. When the
preorder is obvious from the context we write U ∧ V for U≤ ∩ V≤. A further
abbreviation is a ∧ b for {a} ∧ {b}.

Definition 1.2 A formal topology S is a pre-ordered set S = (S,≤) (of so-
called basic neighbourhoods) together with a relation � ⊆ S × P(S), the
covering relation, satisfying the four conditions

(R) a ∈ U implies a�U , (L) a�U , a�V implies a�U ∧ V ,
(T) a�U , U �V implies a�V , (E) a ≤ b implies a� {b}.

The topology is set-presented if there is a family of subsets C(a, i) of S,
where i ∈ I(a) and a ∈ S such that

a�U ⇐⇒ (∃i ∈ I(a))C(a, i) ⊆ U.

Equivalently, we may express this as: there is a family C(w) (w ∈ I) of
subsets of S and a function p : I → S so that

a�U ⇐⇒ (∃w ∈ I) p(w) = a & C(w) ⊆ U. (2)

A continuous mapping between formal topologies is a certain relation
between their basic neighbourhoods. To define the concept we introduce
some notation. For a relation R ⊆ S × T the inverse image of V ⊆ T under
the relation R is, as usual,

R−1[V ] =def {a ∈ S : (∃b ∈ V ) aR b}

Notice that, in general, R−1[U ] ⊆ R−1[V ] whenever U ⊆ V , and

R−1[∪i∈IUi] = ∪i∈IR
−1[Ui].

The relation R is naturally extended to subsets as follows. For U ⊆ S,
let U R b mean (∀u ∈ U) uRb, and for V ⊆ T , we let aR V mean a�R−1[V ].
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Definition 1.3 Let S = (S,≤, � ) and T = (T,≤′, � ′) be formal topolo-
gies. A relation R ⊆ S×T is a continuous mapping, or continuous morphism,
from S to T (and we write R : S → T ) if

(A1) aR b, b � ′V implies aR V ,

(A2) a�U , U R b, implies aR b,

(A3) aR T , for all a ∈ S,

(A4) aR V , aR W implies aR (V≤′ ∩W≤′).

Remark 1.4 Note that by b � ′{b}, (A1) and (A2)

{a}R b ⇐⇒ aR b ⇐⇒ a�R−1{b} ⇐⇒ aR {b}.

Moreover (A4) may be replaced by the condition

(A4’) aR b, aR c =⇒ aR (b≤′ ∩ c≤′).

The next properties are useful for checking closure under composition.
Denote by Ũ = {a : a�U} — the saturation of U in the topology.

Proposition 1.5 Let R : S → T be a continuous mapping. Then:

(i) U �V implies R−1[U ]�R−1[V ],

(ii) b R U iff b R Ũ ,

(iii) R−1[U ]˜ = R−1[Ũ ]˜. 2

Let FTops be the following category of set-presented formal topologies
and continuous mappings. For a formal topology S = (S,≤, � ) we define a
continuous mapping I : S → S (the identity) by

aIb ⇐⇒ a� {b}.

For continuous mappings, R1 : S1 → S2 and R2 : S2 → S3, between formal
spaces, define the composition

a(R2 ◦R1)b ⇐⇒ a�R−1
1 [R−1

2 {b}].

This is continuous mapping (R2 ◦R1) : S1 → S3. The category is not locally
small, within any known predicative meta-theory.
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2 Construction of coequalisers

Let F and G be continuous mappings X → Y in FTops. A set R(Y ) of
subsets of Y is said to be adequate for F and G if (H1) – (H3) below are
satisfied.

(H1) Y ∈ R(Y ).

(H2) U, V ∈ R(Y ) implies U ∧ V ∈ R(Y ). Here ∧ is taken with respect to
the preorder of Y.

(H3) For any subset U of Y with b ∈ U such that U satisfies the equivalence

(∀a ∈ X)(a�F−1U ⇐⇒ a�G−1U)

there is already some V ∈ R(Y ) with b ∈ V ⊆ U satisfying the equiv-
alence.

Lemma 2.1 Let F,G : X → Y be a pair of continuous morphism in FTops.
If R(Y ) is adequate for the pair F and G, then the following defines a co-
equaliser of the pair: the formal topology Q = (Q,≤Q, �Q) where

Q = {U ∈ R(Y ) : (∀a ∈ X)(a�F−1U ⇐⇒ a�G−1U)}

and U ≤Q V iff U � YV , and where U �QU iff U � Y ∪ U for U ⊆ R(Y ).
Moreover the coequalising morphism P : Y → Q is given by: aP U iff
a� Y U .

Proof. By (H2) it follows that Q is closed under ∧. Using this it is straight-
forward to check that Q is a formal topology. It is as well set-presented since,
if C(a, i) (i ∈ I(a)) is the set-presentation of Y then we get a set-presentation
(D,J) for Q by letting for U ∈ R(Y )

J(U) = {(f, g) : f ∈
∏
x∈U

I(x), g ∈
∏
x∈U

∏
y∈C(pU (x),f(x))

Qp(y)}

where Qu = {U ∈ Q : u ∈ U}. Moreover,

D(U, (f, g)) = {g(x, y) : x ∈ U, y ∈ C(p(x), f(x))}.
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Here pS : S → S is the projection associated with the choice-set of S. Indeed,
using the choice principle (1)

U �QU ⇐⇒ (∀a ∈ U)(∃i ∈ I(a))C(a, i) ⊆ ∪U
⇐⇒ (∃f ∈ (Πx ∈ U)I(x))(∀a ∈ U)C(p(a), f(a)) ⊆ ∪U
⇐⇒ (∃f ∈ (Πx ∈ U)I(x))(∀a ∈ U)(∀b ∈ C(p(a), f(a)))(∃V ∈ Q)

V ∈ U & p(b) ∈ V

⇐⇒ (∃f ∈ (Πx ∈ U)I(x))(∃g ∈ (Πx ∈ U)(Πy ∈ C(p(x), f(x)))Qp(y))
(∀a ∈ U)(∀b ∈ C(p(a), f(a)))g(a, b) ∈ U .

⇐⇒ (∃(f, g) ∈ J(U))D(U, (f, g)) ⊆ U .

Next, to check that P is a continuous morphism is easy. For instance,
to verify condition (A3): Trivially for any a ∈ Y we have a� YY . By (H1),
Y ∈ R(Y ) and Y ∈ Q and it follows that a�QP−1[Q]. Thus condition (A3)
is verified.

The equation P ◦ F = P ◦G is clear by the definition of Q.
To verify the universal property of P , suppose that H : Y → Z is a

continuous morphism such that H ◦F = H ◦G. Thus we have for all a ∈ X
and b ∈ Z

a� YF−1[H−1b] ⇐⇒ a� YG−1[H−1b]. (3)

Now define K : Q → Z by

U K c ⇐⇒def (∀a ∈ U) aH c. (4)

We first prove that K is a morphism.
(A1): Let U ∈ Q and suppose U K c and c �ZW . The since H is

a morphism, a� YH−1W for any a ∈ U . The property to be shown is
U �QK−1W , i.e. U � Y ∪K−1W . Let c ∈ H−1W be arbitrary. Thus there
is b ∈ W with c ∈ H−1b. Applying (3) and (H3), we obtain V ∈ Q with
c ∈ V ⊆ H−1b. Thus by definition (4) we have V K b, so V ∈ K−1W and
c� Y ∪ K−1W . Since c was arbitrary, H−1W � Y ∪ K−1W , and thereby
a� Y ∪K−1W for any a ∈ U . This was what had to be shown.

(A2): immediate
(A3): follows since Y ∈ Q by (H1).
(A4’): Suppose U K c and U K d. Thus U � YH−1c and U � YH−1d.

From this follows using (A4’) for H that U � YH−1[c∧d]. Let a ∈ H−1[c∧d],
i.e. assuming that there is e ≤ c and e ≤ d with aH e. By (H3) and (3)
(with b = e) we find W ∈ Q satisfying W ⊆ H−1e and a ∈ W . Thus
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W K e and so W ∈ K−1[c ∧ d]. Since a ∈ W , we get a�QK−1[c ∧ d]. Thus
H−1[c ∧ d]�QK−1[c ∧ d] and now U �QK−1[c ∧ d] follows.

We finally need to prove that K is the unique morphism such that K◦P =
H, that is

a� YP−1K−1c ⇐⇒ a� YH−1c. (5)

The direction ⇒ is clear by the definition of P and K. To prove ⇐, assume
a� YH−1c. Thus a ∈ H−1c. By (H3) and (3) there is U ∈ Q with a ∈ U ⊆
H−1c. Hence U � YH−1c, i.e. U K c, so in particular we have a� Y ∪K−1c.
Thereby a� YP−1K−1c.

The uniqueness of K: suppose K2 : Q → Z is another morphism satis-
fying (5). For U ∈ Q and c ∈ Z we have

U K2 c ⇔ U �QK−1
2 c

⇔ (∀a ∈ U)a� Y ∪K−1
2 c

⇔ (∀a ∈ U)a� YP−1K−1
2 c

⇔ (∀a ∈ U)a� YH−1c

⇔ U K c.

The next to last equivalence is direct from (3). Thus K2 = K. 2

3 Existence of adequate, restricted power sets

Let F,G : X → Y be continuous morphisms between set-presentable formal
topologies. Let C(a, i) (i ∈ I(a), a ∈ X) be a set-presentation of X . Consider
its equivalent form C(w) (w ∈ I) with p : I → X as in (2). Now let U be
a type-theoretic universe T(t) (t : U), closed under Σ- and Π-constructions,
and which is such that X, Y, I are U-sets, the relation ≤X is a U-subset of
X ×X, and the relations F and G are U-subsets of X × Y . Moreover C(w)
is an U-subset of X for each w ∈ I. Moreover, we assume the universe to
be closed under the W -type construction, though only a special instance is
actually used.

Then form the restricted power set RU (Y ) with respect to the family U .
The following is a set-theoretic collection principle.

Lemma 3.1 Suppose U is as above. Let H be a U-subset of X × Y , and let
A be a U-subset of X. Then for any subset B of Y with

A ⊆ H−1B,
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there is a U-subset Z of Y with A ⊆ H−1Z and Z ⊆ B.

Proof. Suppose A ⊆ H−1B. This is equivalent to

(∀x ∈ A)(∃y ∈ B) p(x) H y.

Thus there is some f : A → B with (∀x ∈ A) p(x) H f(x). The image of
this function Z = {y ∈ B : (∃x ∈ A) f(x) = y} is a U-subset of Y since U is
closed under Σ. It is clear that A ⊆ H−1Z and Z ⊆ B. 2

Lemma 3.2 Suppose R(Y ) = RU (Y ) is as above. Take a subset U of Y
such that

(∀a ∈ X)(a�F−1U ⇒ a�G−1U). (6)

Then for any V ∈ R(Y ) with V ⊆ U , there is W ∈ R(Y ) with W ⊆ U and

(∀a ∈ X)(a�F−1V ⇒ a�G−1W ). (7)

Moreover, the above holds with F and G interchanged in both (6) and (7).
2

Proof. Let V ∈ R(Y ) with V ⊆ U . Then by (6) and transitivity of covers
we get

(∀a ∈ X)(a�F−1V ⇒ a�G−1U).

Using the set-presentation of the cover this may be rephrased as

(∀a ∈ X)(a�F−1V ⇒ (∃i ∈ I(a))C(a, i) ⊆ G−1U).

By Lemma 3.1, and since C(a, i) ∈ R(X), the statement C(a, i) ⊆ G−1U
is equivalent to (∃Z ∈ R(Y ))C(a, i) ⊆ G−1(Z) & Z ⊆ U . Thus using the
set-presentation again we get

(∀a ∈ X)(a�F−1V ⇒ (∃Z ∈ R(Y ))a�G−1Z & Z ⊆ U).

Rewriting the first covering relation we get

(∀a ∈ X)
[
(∃i ∈ I(a))(C(a, i) ⊆ F−1V ) ⇒ (∃Z ∈ R(Y ))a�G−1Z & Z ⊆ U

]
.

Let Q(a) = (∃i ∈ I(a))(C(a, i) ⊆ F−1V ). This may be rewritten again as

(∀a ∈ X)(∀q : Q(a))(∃Z ∈ R(Y ))p(a) �G−1Z & Z ⊆ U.

Using type-theoretic choice we obtain

H : (Σa ∈ X)Q(a) → R(Y )
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such that

(∀a ∈ X)(∀q : Q(a))p(a) �G−1H(a, q) & H(a, q) ⊆ U.

Let
W =

⋃
(a,q):(Σa∈X)Q(a)

H(a, q).

Now W ∈ R(X) and by transitivity

(∀a ∈ X)(∀q : Q(a))p(a) �G−1W & W ⊆ U.

That is
(∀a ∈ X)(a�F−1V ⇒ a�G−1W ),

proving (7). 2

Lemma 3.3 The restricted power set R(Y ) = RU (Y ) as constructed above
is adequate for F and G.

Proof. Condition (H1) is trivial since the subset Y = {x ∈ Y : x = x}
belongs to R(Y ). Condition (H2) follows since the relation ≤Y is a U-subset
of Y × Y and U is closed under Σ.

To prove (H3) a W-type, T defined by the following introduction rules,
is used

(i) 0 : T ,

(ii) if α : T , then s0(α) : T ,

(iii) if α : T , then s1(α) : T ,

(iv) if (a, i) : (Σa : A)I(a) and f : C(a, i) → T , then sup((a, i), f) : T .

Suppose now that U ⊆ Y satisfies the equivalence

(∀a ∈ X)(a�F−1U ⇐⇒ a� G−1U).

Let b ∈ U . We construct Vα (α : T ) with Vα ∈ R(Y ) and Vα ⊆ U as follows.

(base) V0 = {b}

(suc0) (∀a ∈ X)[a�F−1Vα ⇒ a�G−1Vs0(α)]

(suc1) (∀a ∈ X)[a�G−1Vα ⇒ a�F−1Vs1(α)]
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(sup) For f : C(a, i) → T let

Vsup((a,i),f) =
⋃

p:C(a,i)

Vf(p).

By Lemma 3.2 we can find such Vs0(α) and Vs1(α) as in (suc0) and (suc1).
Now put

V∞ =
⋃
α:T

Vα.

Then V∞ ∈ R(Y ) since U is closed under W-types. (Actually, only the
particular W-type T is required.) Furthermore b ∈ V∞ ⊆ U .

Suppose now that a�F−1[V∞]. Thus for some i ∈ I(a),

C(a, i) ⊆ F−1[U∞] =
⋃
α:T

F−1Vα.

Thus we have
(∀x : C(a, i)) (∃α : T ) p(x) ∈ F−1Vα.

Using type-theoretic choice we get f : C(a, i) → T so that

(∀x : C(a, i)) p(x) ∈ F−1Vf(x).

But F−1Vf(x) ⊆ F−1Vsup((a,i),f) and so we obtain

C(a, i) ⊆ F−1Vsup((a,i),f).

Hence by the construction (suc0) we get

a�G−1Vs0(sup((a,i),f)).

But Vs0(sup((a,i),f)) ⊆ V∞, and thereby a�G−1V∞. We have shown

(∀a ∈ X)(a�F−1V∞ ⇒ G−1V∞).

The proof of the converse implication is the same, exchanging F and G and
using (suc1) instead of (suc0). This establishes the lemma with V∞ as the
set satisfying the required equivalence. 2

A universe forming operator is a type construction which over any family
of types builds a type universe closed under Π, Σ, W , Id and +-constructions
(Palmgren 1998).
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Theorem 3.4 Under the assumption of universe forming operators, coequalis-
ers exists in the category FTops.

Remark 3.5 There is a corresponding notion of universe forming operator
in extensions of constructive set theory, see Rathjen et al. (1998). It would
be of interest to investigate whether the above construction is possible to
carry out in these extensions.

4 Examples

For any set S there is the discrete formal topology D(S) = (S, � ,≤) given
by a�U iff a ∈ U and a ≤ b iff a = b. It is easily seen to be set-presented.
Moreover D is a functor from sets to FTops.

1. The two-dimensional T2 torus may be constructed as the coequaliser of
the followings maps R2 × Z2 → R2

(x,n) 7→ x,

(x,n) 7→ x + n.

2. The n-dimensional real projective space RPn may be constructed as a
coequaliser of two maps Rn+1 × R 6=0 → Rn+1

(x, λ) 7→ x,

(x, λ) 7→ λx.

3. Pushouts may be constructed using sums and coequalisers. Various glued
spaces may be constructed using pushouts.

4. Suppose that X is formal topology whose points P = Pt(X ) form a set.
Then a continuous morphism

J : D(P ) → X

is given by α J a iff a ∈ α. For any equivalence relation E ⊆ P×P , with pro-
jections π1, π2 : E → P , the point-wise quotient topology is the coequaliser
of the continuous mappings J ◦ D(π1) and J ◦ D(π2) going from D to X .
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