Disruption Management and Planning with
Uncertainties in Aircraft Planning

J. Ehrhoff, S. Grothklags, U. Lorenz

University of Paderborn, Germany

1 Introduction

An important problem in aircraft planning is to react with an instant decision,
after a certain disruption which hinders the company to act as planned before.
AT and OR have a long lasting history in the area of planning under uncertainty.
For an introduction and a wider overview we refer e.g. to [16,17].

Multistage Decisions under Risk The reason for disruptions obviously stems
from the fact that planners lack information about the real behavior of the
environment at planning time. Often, data is not as fixed as assumed in the
traditional planning process. Instead we know the data approximately, we know
distributions over the data. In our airline example, we know e.g. a distribution
over a leg’s (i.e. flight’s) possible arrival times. Traditionally, plans are built
which maximize profits over ’expected’ or just estimated input data. We belong
to the group of people who believe that it is more realistic to optimize the
expected payoff over all possible scenarios instead. This view on the world leads
us to something that is often called 'multistage decisions under risk’, related to
linear stochastic programming [4, 14], stochastic Optimization [10], game playing
[3] and replanning [9].

Planning in Airline Industry

An airline planning process starts with the so called network design, which
roughly tells the planning team which routes (so called legs) should be taken
into account. Then, a first ’plan’ is made which shows when which legs are of-
fered to the customers. Thereafter, the planning process contains some layers
which are of special interest for us.

Typically, airline companies have aircrafts of different types (so called sub-
fleets), which differ in size and economic behavior. Given a flight schedule and a
set of aircrafts, the fleet assignment problem is to determine which type of air-
craft should fly each flight segment. A solution of the fleet assignment problem
and the flight schedule together answers the question of how many aircrafts of
which subfleet have to be at certain places at certain times. The fleet assignment
problem is known to be NP-hard ([5]).

So called time-space networks, which are special flow graphs, can be used to
give a specific mathematical programming formulation for this class of problems.

Dagstuhl Seminar Proceedings 05031
Algorithms for Optimization with Incomplete Information
http://drops.dagstuhl.de/opus/volltexte/2005/62



They were introduced by Hane et al. in [6] to solve the fleet assignment problem.
On the basis of the fleet assignment, a so called rotation plan is generated. The
rotation plan describes which physical aircraft must be at which place in the
world and at which time.

The planning is dominated by deterministic models. All uncertainties are
eliminated though restrictive models. However, since some time, several large
airline companies have come to the opinion that new models and methods are
necessary in order to exploit further potentials for cost reduction.

Fleet assignment and rotation planning belong to long- and midterm plan-
ning phases. They produce airline plans according to economical parameters
(passenger demands, revenues, costs, ...), airline parameters (existing aircraft
types, capacities, crews, ...) and operational restrictions (maintenance times,
flight durations, ...). To enhance this profitability aircraft usage is more and
more increased and airline plans become tighter and tighter. The tighter the
plans become, the more frequently disruptions occur, which must be faced by the
operation control management [15]. Disruptions cause delays, aircraft changes,
cancellations, ad hoc crew re-assignment, slot problems, etc. Therefore, it is a
major desire of the long- and midterm planning groups to build plans which
allow the operation control to go back to the original plan fast and without
causing high costs.

Game Tree Search Game tree search is the core of most attempts to make
computers play games. The game tree acts as an error filter and examining the
tree behaves similar to an approximation procedure.

Typically, a game playing program consists of three parts: a move generator,
which computes all possible moves in a given position; an evaluation procedure
which implements a human expert’s knowledge about the value of a given posi-
tion (these values are quite heuristic, fuzzy and limited) and a search algorithm,
which organizes a forecast.

At some level of branching, the complete game tree (as defined by the rules of
the game) is cut, the artificial leaves of the resulting subtree are evaluated with
the heuristic evaluations, and these values are propagated to the root [8,13, 1] of
the game tree as if they were real ones. For 2—person zero-sum games, computing
this heuristic minimax value is by far the most successful approach in computer
games history, and when Shannon [18] proposed a design for a chess program in
1949 — which is in its core still used by all modern game playing programs —
it seemed quite reasonable that deeper searches lead to better results. Indeed,
the important observation over the last 40 years in the chess game and some
other games is: the game tree acts as an error filter. Therefore, the faster and
the more sophisticated the search algorithm, the better the search results! This,
however, is not self-evident, as some theoretical analyzes show [2,12,7].

The evolution of game tree search in parlor games is important for us, because
the computer games community has explicitly stated the question whether it is
self-evident that more forecast leads to better results. Indeed, it is not self-
evident. We miss this aspect of forecasting with scenarios in planning literature.



1.1 New Approach

Our approach can roughly be described by looking at a (stochastic) planning
task in a ’tree-wise’ manner. Let a tree T be given that represents the possible
scenarios as well as our possible actions in the forecast time-funnel. It consists of
two different kinds of nodes, MIN nodes and AVG nodes. A node can be seen as a
‘system state’ at a certain point of time at which several alternative actions can
be performed/scenarios can happen. Outgoing edges from MIN nodes represent
our possible actions, outgoing edges from AVG nodes represent the ability of
Nature to act in various ways. Every path from the root to a leaf can then be
seen as a possible solution of our planning task; our actions are defined by the
edges we take at MIN nodes under the condition that Natures acts as described
by the edges that lead out of AVG nodes.

The leaf values are supposed to be known and represent the total costs of
the ’planning path’ from the root to the leaf. The value of an inner MIN node
is computed by taking the minimum of the values of its successors. The value
of an inner AVG node is built by computing a weighted average of the values
of its successor nodes. The weights correspond to realization probabilities of the
scenarios.

Let a so called min-strategy S be a subtree of T which contains the root of
T, and which contains exactly one successor at MIN nodes, and all successors
that are in T at AVG nodes. Each strategy S shall have a value f(S), defined
as the value of S’s root. A principle variation p(S), also called plan, of such a
min-strategy can be determined by taking the edges of S leaving the MIN nodes
and a highest weighted outgoing edge of each AVG node. The connected path
that contains the root is p(S). We are interested in the plan p(Sp) of the best
strategy Sp and in the expected costs E(Sy) of Sp. The expected costs E(p) of
a plan p are defined as the expected costs of the best strategy S belonging to
plan p, e.g. E(p) = min{E(S) | p(S) = p}. Because differences between planned
operations and real operations cause costs, the expected costs associated with a
given plan are not the same before and after the plan is distributed to customers.
A plan gets a value of its own once it is published and other parties depend on
it.

This model might be directly applied in some areas, as e.g. job shop schedul-
ing [11], not, however, in applications which are sensible to temporary plan
deviations. If a job shop scheduling can be led back to the original plan, the
changes will nothing cost, as the makespan will stay as it was before. That is
different in airline fleet assignments. Mostly, it is possible to find back to the
original plan after some while, but nevertheless, costs occur. A decisive point
will be to identify each tree nodes with a pair of the system state plus the path,
how the state has been reached. At first glance this seems to complicate the
given facts, but in truth this little detail enables our research to be practically
relevant.

An analysis, as mentioned above, starts as soon as a disruption has occurred.
We compute several partial plans which lead back to the original plan with
low change-costs, examine further possible disruptions in the next time-step,



compute further optional repair-plans, examine the next time-step etc., until we
reach a search depth limited only by our computing power. The repaired plan
that we select has small expected repair and future costs.

The appeal of our new approach, playing the so called Repair Game, lies in a
slim problem description and in presenting solving techniques which provide the
opportunity to plug in heuristics which quickly lead to good approximations,
such that we are able to produce gains for large real world applications. The
Repair Game represents a generic methodology for general logistic planning tasks
to incorporate stochastic input data. The method has an AI search, OR and
game theoretic flavor. For the sake of clarity, we restrict the description mainly
to the area of airline scheduling. Before we start explaining our methodology for
planning under uncertainty, we give a short introduction about the two other
fields which influenced our work.

Our approach differs from known techniques in at least one of the following
properties:

— We plan against the odds of an environment with the help of a local tree
search into the future. When a disruption occurs, we compute several re-
pair plans which lead back to the original plan, examine further possible
disruptions in the next time-step, compute further repair-plans etc.

— We define robustness with the help of possible future events.

— We generate scenarios automatically and make profit from the bulk of sce-
narios. This bulk of scenarios acts like an error filter.

— The possible actions of the environment need not be equal in all branches of
the forecast tree.

— We compare our experimental results with optimal results in the correspond-
ing deterministic model.

References

1. A. de Bruin A. Plaat, J. Schaeffer and W. Pijls. A minimax Algorithm better than
SSS*. Artificial Intelligence, 87:255-293, 1999.

2. L. Althofer. Root evaluation errors: How they arise and propagate. ICCA Journal,
11(3):55-63, 1988.

3. B.W. Ballard. The *-minimax search procedure for trees containing chance nodes.
Artificial Intelligence, 21(3):327-350, 1983.

4. S. Engell, A. Markert, G. Sand, and R. Schultz. Production planning in a mul-
tiproduct batch plant under uncertainty. Preprint 495-2001, FB Mathematik,
Gerhard-Mercator- Universitit Duisburg, 2001.

5. Z. Gu, E.L. Johnson, G.L. Nemhauser, and Y. Wang. Some properties of the fleet
assignment problem. Operations Research Letters, 15:59-71, 1994.

6. C.A. Hane, C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, and
G. Sigismondi. The fleet assignment problem: solving a large-scale integer pro-
gram. Mathematical Programming, 70:211-232, 1995.

7. H. Kaindl and A. Scheucher. The reason for the benefits of minmax search. In
Proc. of the 11 t* IJCAI, pages 322-327, Detroit, MI, 1989.

8. D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intel-
ligence, 6(4):293-326, 1975.



10.

11.

12.

13.

14.

15.

16.

17.
18.

S. Koenig, D. Furcy, and Colin Bauer. Heuristic search-based replanning. In
Proceedings of the International Conference on Artificial Intelligence Planning and
Scheduling, pages 294-301, 2002.

P. Kouvelis, R.L. Daniels, and G. Vairaktarakis. Robust scheduling of a two-
machine flow shop with uncertain processing times. IIE Transactions, 32(5):421—
432, 2000.

V.J. Leon, S.D. Wu, and R.h. Storer. A game-theoretic control approach for job
shops in the presence of disruptions. International Journal of Production Research,
32(6):1451-1476, 1994.

D.S. Nau. Pathology on game trees revisited, and an alternative to minimaxing.
Artificial Intelligence, 21(1-2):221-244, 1983.

A. Reinefeld. An Improvement of the Scout Tree Search Algorithm. ICCA Journal,
6(4):4-14, 1983.

W. Romisch and R. Schultz. Multistage stochastic integer programming: an intro-
duction. Online Optimization of Large Scale Systems, pages 581-600, 2001.

J. M. Rosenberger. Topics in Airline Operations. 2000. PhD-Thesis, Georgia
Institute of Technology, Atlanta, GA 30332.

S. Russel and P. Norvig. Artificial Intelligence, A Modern Approach. 2003. Prentice
Hall Series in Artificial Intelligence.

A. Scholl. Robuste Planung und Optimierung. Physiker Verlag, 2001.

C.E. Shannon. Programming a computer for playing chess. Philosophical Magazine,
41:256-275, 1950.



