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Abstract. This paper adresses facility location under uncertain de-

mand. The problem is to determine the optimal location of facilities

and allocation of uncertain customer demand to these facilities. The op-

erating costs of the facilities are subject to economies of scale.

The objective is to minimize the expected total costs. Total costs are

split into two parts: firstly the costs of investing in a facility as well

as maintaining and operating it with strictly diminishing average costs,

and secondly linear transportation cost. We formulate the problem as a

two-stage stochastic programming model and develop a solution method

based on Lagrangian Relaxation. We also present some preliminary com-

putional results.

1 Introduction

Facility location models usually deal with a trade-off between transportation
costs from satisfying customer demand and the costs of opening and operating
a facilities at certain locations. Traditionally, facility location models treat the
facility costs as fixed set-up costs [1, 2, 3, 4]. In real-world problems however,
facility costs often decrease in the size of the facility [5, 6, 7].

There is an extensive amount of research literature available in the field of fa-
cility location. These problems have already been studied since the 1950’s [8, 9].
The importance of economies of scale (see [10] or [11] for a definition) in combi-
nation with facility location was recognized at the same time [12]. Economies of
scale have been incorporated in facility location models in several ways: A loca-
tion problem with transportation costs that are concave in the amount shipped
and facility costs that are concave in the amount produced can be found in [13].
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A branch-and-bound algorithm, which is a particular case of minimizing separa-
ble concave functions over linear polyhedra, is presented there as well. Another
variant where the fixed costs of opening a facility include a component that is
convex and decreasing in the number of facilities is examined in [14]. A for-
mulation for a multi-product facility location problem with concave production
costs can be found in [15]. Another approach is to model the facility costs using
a staircase cost function. Solution methods for this approach are presented in
[16, 17]. A solution method for facility location under economies of scale with
non-convex, non-concave facility costs is developed in [18]. The aforementioned
problem formulations all assume deterministic demand. The formulation of a
production-transportation problem with stochastic demand and concave pro-
duction costs is given together with a solution method in [19].

This paper discusses the case of facility location under economies of scale
and uncertain demand. The total facility costs curve has a typical S-shape, often
found in long-run cost curves: it is concave in the beginning of the production in-
terval and convex towards the end. The cost function exhibits economies of scale
over the whole production interval as the average costs per unit produced are
strictly decreasing. In combination with linear transportation costs, the resulting
objective function is non-linear, non-convex, and non-concave.

We provide the stochastic programming formulation for a facility location
problem with a non-linear, non convex, non-concave objective function and un-
certain demand in Section 2. Our solution method based on Lagrangian re-
laxation is described in Section 3. Some preliminary computational results are
shown in Section 4. We finish this paper with the conclusions in Section 5.

2 The Mathematical Programming Model

In this section we provide a two-stage stochastic programming formulation for
a facility location problem subject to economies of scale and uncertain demand.
The first-stage decision is to determine the location of a facility and how much
capacity should be installed at this location. After observing the demand, we de-
cide in the second stage upon the allocation of customer demand to the facilities
opened in the first stage.

The objective function consists of non-linear facility costs and linear trans-
portation costs. The first stage facility cost function is both non-convex and non-
concave and derived from the long-run total curve, whereas the convex second-
stage facility cost function is derived from the short-run total cost function. For
a more detailed description of how we obtain the costs functions see [20]. We
approximate both the first-stage facility cost function and the second-stage fa-
cility cost function by a piecewise linear function. Thus, the objective function
becomes a piecewise linear, non-convex, non-concave function as well.

We model the non-convex, non-concave first-stage cost function using the
standard approach of a special ordered set of type 1 (see e. g.[21]), i. e. using
an ordered set of binary variables, one for each breakpoint of the function, that
have to sum up to one. In a feasible solution, exactly one of the variables will be
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equal to one, corresponding to the chosen linepiece in the facility cost function.
The first-stage decision is then to choose a linepiece k on the first-stage facility
cost function, opening a facility with a designed lower and an upper capacity
limit.

Once customer demand is known, the second-stage decision is to allocate
demand to the opened facilities. Depending on the realization of demand, the
production level is adjusted according to the short-run expansion path, varying
the variable input factors. It is possible to either exceed the upper capacity
limit installed in the first stage up to a certain limit, e. g. by using overtime
hours, or to assign less demand to a facility than capacity was installed for. The
total facility costs however, always exceed the costs that would have occured if
the right linepiece for the production level had been chosen in the fist stage.
We approximate the convex second-stage cost function by a piecewise linear
function. The second stage cost function is modelled using a special ordered set
of type 2 for each linepiece and each scenario.

Let n be the number of locations in the problem. By K we denote the number
of linepieces used to approximate the non-linear first-stage facility cost function,
thus resulting in K + 1 breakpoints. P1, . . . , PK+1 are the per unit cost, and
F1, . . . , FK+1 the volumes at the breakpoints of the piecewise linear function.
We also define an artificial linepiece k = 0 with P0 = 0 and F0 = 0, such
that the choice of this linepiece means that no facility is opened. The first-stage
decision variables are represented by the n · (K + 1)-dimensional vector y that
is made up by all yjk, j = 1, . . . , n, k = 0, . . . , K. If yjk = 1, k 6= 0, the linepiece
between Fk and Fk+1 is chosen. In order to properly represent the fixed costs of
opening a facility, F2 is chosen small. Thus, P2 becomes high as the fixed costs
of the facility are distributed only over these few units.

The second-stage cost function is approximated by a piecewise linear func-
tion, depending on the choice of linepiece k in the first stage. The second-stage
cost function consists of B linesegments, thus having B + 1 breakpoints. We
denote the breakpoints of this function by Qkb, ∀k, b = 1, . . . , B + 1. We define
Qkb1 = F (k) and Qkb2 = F (k + 1) such that the linepiece between breakpoints
b1 and b2 of the second-stage cost function is equal to the linepiece chosen in
the first-stage. In addition, let QkB+1 = (1 + α) · F (k + 1), with α ≥ 0 be-
ing the percentage by which the upper capacity limit from the first-stage deci-
sion can be exceeded. The slope of every linepiece is given by ukb, representing
the per unit production costs. The total costs at each breakpoint are given
by Ckb, ∀k, b = 1, . . . , B + 1. With Qkb1 and Qkb2 , we get Ckb1 = PkFk, and
Ckb2 = Pk+1Fk+1. Let µkb, ∀k, b = 1, . . . , B +1, denote the weight of breakpoint
b given linepiece k. Only two of the weights can be non-zero and in this case they
must be adjacent. This means that {µk1, . . . , µkB+1}, ∀k is a special ordered set
of type 2. The approximated the first-stage and the second-stage facility cost
functions are illustrated in Figure 1.

By Di we denote demand at a given location i. Tij is the per unit trans-
portation cost of satisfying demand at location i from location j. We define the
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Fig. 1. Approximated first-stage and second-stage facility cost function

parameters Lij as Lij = 1 if demand at location i can be satisfied from location
j and Lij = 0 otherwise.

We use continous decision variables xij to denote the amount of customer
demand at location i that is served from location j. The uncertainty in customer
demand is modelled by scenarios. The distribution of demand is discretized using
the set of scenarions S. We split the first-stage decision variables yjk and add
non-anticipativity constraints (3) to the modell formulation [22].

Let the superscript s denote the scenario and let ps be the probability asso-
ciated with scenario s. The stochastic programming formulation is then

min

S
∑

s=1

ps





n
∑

i=1

n
∑

j=1

Tijx
s
ij +

n
∑

j=1

K
∑

k=1

B+1
∑

b=1

Ckbµ
s
jkb



 (1)

subject to

K
∑

k=0

ys
jk = 1, SOS1, ∀j, s, (2)

y1
jk = y2

jk = · · · = yS−1
jk = yS

jk, ∀j, k, (3)
n
∑

j=1

xs
ij = Ds

i , ∀i, s, (4)
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n
∑

i=1

xs
ij =

K
∑

k=1

B+1
∑

b=1

Qkbµ
s
jkb, ∀j, s, (5)

xs
ij ≤ LijD

s
i , ∀i, j, s, (6)

B+1
∑

b=1

µs
jkb = ys

jk , SOS2, ∀j, k, s, (7)

ys
jk ∈ {0, 1}, ∀j, k, s, (8)

xs
ij ≥ 0, ∀i, j, s, (9)

µs
jkb ≥ 0, ∀j, k, b, s. (10)

The objective (1) is to minimize the expected costs of operating a set of fa-
cilites and satisfying customer demand. The restrictions (2) ensure that only
one linepiece is chosen for each location and define the special ordered set of
type 1. Constraints (4) force all demand at location i to be assigned to one
or more facilities. The set of constraints (6) only allow the assignment of de-
mand to locations from where the demand can be satisfied. By contraints (5) we
ensure that all demand is allocated to an open facility. These constraints also
prohibit allocating demand to locations without facility. Restrictions (7) link
the correct second-stage cost function to the first-stage decision and define the
special ordered set of type 2. Finally, constraints (9)-(10) are the non-negativity
constraints for the x- and µ-variables.

3 Lagrangian Relaxation

The technique of Lagrangian relaxation has in the past been successfully ap-
plied to standard facility location problem, both for the capacitated and the
uncapacitated case, see e. g. [23, 24, 25].

We relax the demand constraints (4) in the scenario formulation (1)-(10).
Let the vector λ =

(

λ1
1, . . . , λ

S
1 , . . . , λ1

n, . . . , λS
n

)

denote the Langragian mul-
tipliers. For a vector λ, the problem is separable in j. We define LR(λ) =
∑n

j=1 gj(λ)+E [
∑n

i=1 λs
i D

s
i ] and get the following Lagrangian subproblem gj(λ)

for each location j:

gj(λ) = min

S
∑

s=1

ps

[

n
∑

i=1

(Tij − λs
i ) xs

ij +

K
∑

k=1

B+1
∑

b=1

Ckbµ
s
jkb

]

(11)

subject to

K
∑

k=0

ys
jk = 1, SOS1, ∀s, (12)

y1
jk = y2

jk = · · · = yS−1
jk = yS

jk , ∀k, (13)

n
∑

i=1

xs
ij =

K
∑

k=1

B+1
∑

b=1

Qkbµ
s
jkb, ∀s, (14)
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xs
ij ≤ LijD

s
i , ∀i, s, (15)

B+1
∑

b=1

µs
jkb = ys

jk , SOS2, ∀k, s, (16)

ys
jk ∈ {0, 1}, ∀k, s, (17)

xs
ij ≥ 0, ∀i, s, (18)

µs
jkb ≥ 0, ∀k, b, s. (19)

3.1 Solving the Subproblem

The first-stage decision is to choose the designed capacity of the facility to open
at a given location j based on the long-run total cost function. This corresponds
to choosing a linepiece k of the piecewise linear facility cost function. Once the
linepiece k is chosen, the second-stage facility cost function is a piecewise linear
and convex function consisting of B linepieces. The slope of these linepieces, ukb,
is strictly increasing, with ukb1 = Pk+1Fk+1−PkFk

Fk+1−Fk

being the slope of the linepiece

chosen in the first stage. Choosing a linepiece k for a given location j also takes
care of the non-anticipativity constraints (13) as the choice of the linepiece is
valid for all scenarios. If we thus consider the problem (11)-(19) for each linepiece
k = 1, . . . , K separately, gj(λ) becomes separable in scenarios. The case k = 0
does not have to be calculated, as no facility will be opened and no costs occur.
The subproblem gjks(λ) for a given location j, linepiece k and scenario s is:

gjks(λ) = min

n
∑

i=1

(Tij − λs
i ) xs

ij +

B+1
∑

b=1

Ckbµ
s
jkb (20)

subject to

n
∑

i=1

xs
ij =

B+1
∑

b=1

Qkbµ
s
jkb, (21)

xs
ij ≤ LijD

s
i , ∀i, (22)

B+1
∑

b=1

µs
jkb = 1, SOS2, (23)

xs
ij ≥ 0, ∀i, (24)

µs
jkb ≥ 0, ∀b. (25)

The problem (20)-(25) can be easily reformulated as the Lagrangian subproblem
described in [18]. They solve a deterministic problem with a piecewise linear,
non-convex, non-concave objective function. However, as gjks(λ) has a piecewise
linear and convex objective function, we can adapt a method for solving con-
tinous knapsack problems with a linear objective function [26] . We apply the
following procedure to find the solution for gjks(λ):
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Initialise: Set gjks(λ) = 0, b = 1, and i0 = 1.
Define qs

i = Tij − λs
i + uk1, ∀i, as the extra cost of serving one unit of demand

at location i. Sort the locations i in order of increasing qs
i : qs

1 ≤ · · · ≤ qs
n.

Repeat: Until b > B,

1. Set xs
ij = LijD

s
i , i = 1, . . . , n, until either

(a) xs
ij = LijD

s
i , ∀i,

or for the first time for some index (ib):
(b) qib

> 0, or

(c)

ib
∑

m=1

xs
mj > Qkb+1.

If (a): Set b = B and ib = n. The solution is optimal.
If (b): Set xs

mj = 0, m = ib, . . . , n and b = B. The solution is optimal.

If (c): Set xs
ibj = Qkb+1 −

∑ib−1
m=1 xs

mj .

2. Calculate gjks(λ) = gjks(λ) +

ib
∑

m=ib−1

qs
mxs

mj − qs
ib−1

(

Qkb −

ib−1−1
∑

m=1

xs
mj

)

3. If b < B: update qs
m = Tmj − λs

m + ukb+1, m = i1, . . . , n. The sequence of
locations i is not changed.

4. Set b = b + 1.

Output: gjks(λ) is the solution to (20)-(25).
Once gjks(λ) is calculated for all scenarios, we can calculate the expected

costs per location and linepiece gjk(λ) =
∑S

s=1 psgjks(λ). The solution to sub-
problem (11)-(19) is then given by

gj(λ) = min
k

gjk(λ)

The computional complexity of this procedure is O(n · K · S).

3.2 The Lagrangian Dual

In order to find the best lower bound on the optimal solution value of the original
problem, one has to solve the Lagrangian dual problem (LD):

LD = max
λ

LR(λ).

We solve LD by using sub-gradient optimization, see e. g. [25]. The partial deriva-
tive of LR is given by

δs
i =

∂LR(λ)

∂λs
i

= Ds
i −

n
∑

j=1

xs
ij(λ),

with xs
ij(λ) being the optimal solution of the Lagrangian relaxation given the

multipliers λ. Hence, the gradient of LR is given by ∇LR(λ) = (δ1
1 , . . . , δ

S
n ). The
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sub-gradient optimization routine that we apply in this paper is commonly used
for facility location problems. A description of this routine can be found in [23].

The procedure relies on finding an upper bound for the problem. We deter-
mine the upper bound by finding a feasible solution usign a simple heuristic.
Starting out from the solution of LR(λ), we assign first as much demand of cus-
tomer i as possible to the facility j that can serve the demand at lowest trans-
portation costs. If there is still unstatisfied customer demand, we extend the
available capacity at the facility that can serve most of the unsatisfied demand.
In the case that the expansion of facilities does no longer remove infeasibilities,
we open a facility at the location from where we can remove the highest number
of unsatisfied demand, assign all possible demand to this location, and install
enough capacity to serve at least the expected demand. We repeat this proce-
dure until we have a feasible solution and thus an upper bound on the solution of
our problem. Every time we find a new best upper bound we take the locations
and solve a linear stochastic transportation problem using Xpress-MP to further
improve the solution. In addition we solve a stochastic transportation problem
every 100 iterations. See [20] for a detailed description of the heuristic.

4 Computational Results

We tested the solution method with data from the Norwegian meat industry.
The problem instance has 435 candidate locations for facilities and 416 demand
points, see [18] and [20]. We present here the results for a dataset consistsing of
10 scenarios that assumes normal distributed demand with a standard deviation
σ = 0.2µ for each location. In addition, the demand is correlated thus considering
only one stochastic variable (total animal population).

First test runs indicated the initial values of the Lagrangian multipliers do
not have much influence on the results. The zero tolerance ε required by the
subgradient optimization routine was set to 0.10−20. The other parameters are
given in Table 1. MaxIt is the maximum number of iterations after which the
routine terminates. By η0 we denote the initial value of the parameter needed

to calculate the step length t(v) = η
UB−LR(λ(v))
||∇LR(λ(v))||2

at iteration v [27]. If the lower

bound is not improved within IWI iterations, η is halved. When the upper bound
is improved, η is set back to η0. All calculations are carried out on a computer
with two 3GHz Intel P4 Xeon processors and 6GB RAM running with a 2.4.28
Linux kernel. Results are shown in Table 1.

Our best results after 4.25 hours is a lower bound of 232.883 · 106 and an
upper bound of 247.256 · 106 (gap 5.81%). The attempt to solve the stochastic
problem for the given dataset results in an lower bound of 149.742 · 106 and an
upper bound of 340.684 · 106 (gap 56.05%) after running for approx. 4.5 hours.
The solution obtained from the expected value problem is infeasible with respect
to the stochastic problem. See [20] for more results.
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MaxIt η0 IWI K S LB UB gap CPU-time

3000 2.0 150 6 1 232.791 · 106 245.496 · 106 5.18% 0:39:59

3000 2.0 100 6 10 230.869 · 106 247.256 · 106 6.68% 4:12:53

3000 2.0 75 6 10 232.883 · 106 247.256 · 106 5.81% 4:10:36

3000 1.75 125 6 10 229.403 · 106 247.256 · 106 7.22% 4:14:59

3000 1.75 25 6 10 228.160 · 106 247.384 · 106 7.7% 4:09:36

3000 1.5 150 6 10 228.724 · 106 247.256 · 106 7.50% 4:12:06

3000 1.5 125 6 10 228.893 · 106 247.256 · 106 7.43% 4:15:45

3000 1.25 100 6 10 227.968 · 106 249.872 · 106 8.77% 4:13:24

Table 1. Computional results for K linepieces and S scenarios

5 Conclusions

We presented a general two-stage stochastic programming formulation and a
solution method for a facility location problems under economies of scale and
uncertain demand.

Applying Lagrangian relaxation to the problem results in an improved lower
bound, considerably narrowing the optimality gap. The performance of the ap-
proach shown here may be even better if the obtained bounds are incorporated
in a branch-and-bound scheme.
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