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Abstract. A mathematical framework for observable processes is introduced via
the model of systems whose states may be time dependent and described by pos-
sibly “negative probabilities”. The model generalizes and includes the linearly
dependent models or observable operator models for classical discrete stochastic
processes. Within this model a general convergence result for finite-dimensional
processes, which generalize finite state (hidden) Markov models, is derived. On
the philosophical side, the model furthermore offers an explanation for Bell’s
inequality in quantum mechanics.
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1 Introduction

Observations that cannot be carried out with absolute exactness are usually modeled
by random variables within the probabilistic framework proposed by Kolmogorov [11].
However, the Kolmogorov model of probability may not always be appropriate. This
issue is intensively discussed, for example, in quantum theory, where the paradox of
Einstein, Podolsky and Rosen [6] has led to fundamental questions about the existence
of hidden states. Bell’s inequality [2], for example, is necessarily satisfied by random
variables in the Kolmogorov model. Experimental results, however, have led researchers
to doubt its validity in quantum mechanical observations (see, e.g., Aspect et al. [1]).
Therefore, alternative probabilistic models have been proposed. In particular, it has been
argued that “probabilities” should be allowed to be negative (see e.g., Khrennikov [12]
for an extensive discussion).

In the present note, we sketch a theory of observations under uncertainties based on
linear state descriptions of physical systems that can be interpreted as classical (Kol-
mogorov) probabilities when they are non-negative (and hence as possibly negative
“probabilities” in general). Our framework naturally includes as special cases the mod-
els of linearly dependent processes or linear operator models that have been proposed
for the analysis of (classical) discrete stochastic processes (see, e.g., Heller [8], Ito et
al. [9] and Jaeger [10]). It can be viewed as a generalization of the Markov chain model
(with possibly hidden states). Purely formally, this model may imply “negative transi-
tion probabilities” for hidden states even in the case of classical stochastic processes.
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However, our point here is not a philosophical discussion of physical interpretations
of “negative probabilities”. While also our model offers an explanation for observations
that possibly violate Bell’s inequality, we generally simply accept the model as math-
ematically feasible and capable of providing a valid analysis of observation processes.
As an example, we prove a convergence result for state vectors that holds in particular
for so-called finite-dimensional (classical) stochastic processes and shows that one can
do meaningful empirical statistics on such processes.

2 Systems, States and Observables

We consider a (non-empty) set {2 = {w,...,wy} of pure states associated with some
system S. We want to perform observations on S and assume that the results we obtain
depend on the pure state w € {2 of the system, on which we have perhaps only partial
information.

REMARK. The finiteness assumption on (2 is for simplicity of the exposition. It is not diffi-
cult to generalize the model to possibly infinite sets of pure states.

As usual, we call a subset £ C (2 an event and associate with it its characteristic
function
xg: {2 —{0,1} where xgw)=1 <= wekFE.

The event F is said to be observable if x g is a random variable, i.e., there is a number
0 < pg < 1 describing the observation probabilities

PT{XEzl}ZpE and PT{XEZO}:l—pE.

We assume that the event (2 is always trivially observable with probability p, = 1
(and hence py = 0). We do not necessarily assume that all events are observable, but
that observability depends on the preparation state w of the system S. We view w as a
function

w:2? SR
on the collection of all events.
2.1 Linear Observation Models
The preparation state w of S is called linear if there are parameters aq,...,a, € R

such that
w(E)= Y «a; forallEC .
w;,€EE
So the linear preparation states w are represented by the n-dimensional coordinate vec-

tors:
g

W — T eR™.
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CONVENTION. In the following, we restrict ourselves to linear observation models,
namely observation models where all preparation states w are linear. Keeping this in
mind, we will refer to a preparation state w often simply as a state of the system S
and think of it as a coordinate vector in R™. The unit vectors in R™ thus correspond
precisely to the pure states of S.

Under the linearity assumption, each state w obeys the computational rules

w({2) = 1
w(R2\ E) 1-w(E) forall E C {2
w(AUB)+w(ANB)=w(A) +w(B) forall A, B C (2.

REMARK [NEGATIVE PROBABILITIES]. A non-negative (linear) state can of course be
interpreted as a classical probability distribution on the set {2. Therefore, one could generally
call the state parameter w(E) the “probability” of the event E — accepting with this terminology
“negative probabilities” or “’probabilities exceeding 1” come into existence. The possibility of
mathematical models for stochastic events on the basis of negative probabilities was already
noted by Dirac [4] and Feynman [7].

REMARK [QUANTUM PROBABILITIES]. Our model for observations is in spirit quite
similar to the one common in quantum mechanics, where the state of a system is also described by
a coordinate vector with possibly negative components, from which probabilities for observations
on the system are computed. The difference of the two models lies in the way probabilities are
derived from the state vector.

In quantum mechanics, the state vector u = [u1, ..., un}T has unit length:
HuH2 = |u1|2 +...+ \un\g =1.

So the squared absolute values of the components are the elementary “probabilities”. The relevant
transformations on quantum systems thus are unitary transformations, under which the length of
coordinate vectors is invariant.

In our model, coordinate vectors w = [a1, ..., an]T of states have unit coordinate sum:
ur+...+ur=1.

The relevant transformations in our model will therefore be Markov type transformations, which
retain the coordinate sums of coordinate vectors, as will become clearer in the sequel.

2.2 Information Functions

Generalizing the concept of characteristic functions, we define an information function
to be a function

X:N—-X

into a finite set (or alphabet) X of symbols. X is observable (in the state w) if

0 < PriX=a}l=wiwe|X(w)=a} <1
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holds for all @ € 2. An observable information functions thus appears like a classical
JY-valued random variable:

ZPT{X:a}zl and Pr{X =a}>0.
acXy

We say that k£ observable information functions X; : 2 — X; (i = 1,...,k) are
(jointly) compatible if the information function

X:02—-X:=Xx...xX with Xw)=[X;Ww),..., Xew)]

is observable (in the state w).

If X is a set of real numbers, we define the expected value of the observable infor-
mation function X in the state w = [y, . . ., ;)T as usual via

n

E(X)=Y aPr{X =a} =) X(wi)o .

acX =1

If X,Y : 2 — R are compatible information functions, their product XY is readily
verified to yield an observable information function so that it is meaningful to define
the covariance of X and Y (in the state w) as

(X,Y):= E(XY) = ZX(wi)Y(wi)ozi :

2.3 Bell’s Inequality

It is important to note that joint compatibility of a set of information functions is a
stronger condition than pairwise compatibility. We illustrate this fact with the inequality
of Bell [2], which in our model takes the following form.

Lemma 1 (Bell’s Inequality). Assume that the three information functions X,Y, Z :
2 — {=1,+1} are compatible in the state w. Then their covariances satisfy the in-
equality

|<XaY>_<sz>| < 1_<XaZ>' (1

Proof. Any choice of x,y, z € {—1,+1} satisfies the inequality
ey —yz] < 1—2az.

By assumption, all the probabilities p,,, := Pr{X = z,Y = y,Z = z} are non-
negative. So we conclude

(X, Y) = (Y, Z)| = ‘ Z(my—yz)pxy2| < Z ‘xy—yz|pmyz

T,Y,z T,Y,z

<=y = 1-(X,2).

z,y,z
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&

Bell’s inequality (1) may not hold if X, Y, Z are not jointly compatible in the state
w. In fact, the inequality could already be violated when we only know that X, Y and
Z are pairwise compatible.

Consider for example the set 2 = {w;, wa, w3, ws,ws } and functions X, Y, Z as in
the following table:
‘wl W2 W3 Wyqg Ws
X|—-1+1-1-1-1
Y|+1+1-14+1-1
Z|+1+1+1—-1-1

One can check that X, Y, Z are observable and pairwise compatible in the state

w=[-1/3,1/3,1/3,1/3,1/3]" .
The covariances relative to w are
(X,Y) = +1, (Y, 2) = ~1/3, (X, 2) = +1,

violating Bell’s inequality.

2.4 Identically Repeated Observations

Assume that we measure the information function X : {2 — X two times “under
identical circumstances”, i.e., with the system S being twice in the same preparation
state w = [a, . .., o, ]T. We can model this situation with the tensor product

NeN=02xN,wew), where ww=[q; ;] e R"",
and the information functions X7, X5 : {2 x 2 — X whose values are given as
Xl(wi,wj) :X(wl) and Xg(wl-,wj) :X(w]') .

It is clear how this model generalizes to more than two identical observations. The
next section provides a further generalization within the framework of discrete time
processes.

REMARK. Bell’s inequality can also be studied from the point of view of relative frequencies
of observations made under identical conditions. The expected values of the relative frequencies
then coincide in the limit with the expected values (see also Section 4.2).

2.5 Observable Processes and Generalized Markov Chains

We now turn to the observation of the information function X : {2 — X over discrete
time intervals. We assume that the system S is in the state

Pt
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and that X is observable at each time pointt = 0, 1,. ... Let X; be the observed value
of X at time ¢. By (X;) we denote the resulting (discrete) observable process.

We call (X;) a (generalized) Markov chain if there exists an (n x n)-matrix M =
[m;] such that

i) Y mg=1forallj=1,....,n.
Gi) W' = Mwt=1 = .. = M'wO forallt = 1,2, ...

M is the transition matrix of the Markov chain (X;). M decomposes naturally into

a sum of matrices,
M = g T,
acX

where the (n X n)-matrix 7 retains from M precisely the rows ¢ with X (w;) = a and
has zero-rows otherwise. We have

Pr{Xip1 =a} = Z Pt = Z Zmijpgt) =1"7T'w",
X (wi)=a X (wi)=aj=1
where the row vector 17 = [1,1,...,1] effects the coefficient sum of the vector T%w*.
Given v = aqas ... v; € Xt we set
T .= T% %1 T"

and then observe by multinomial expansion of M? the representation

wi = M'w’ = (Z T“)tw0 = Z T°w° . 2

acX veXt

2.6 Random Walks

The generalized Markov chain (X;) offers an alternative view on the system S. We
imagine that S is in some pure state m; = w; at time ¢ and then moves into the state w;
with (possibly negative) probability

p(wilw;) = mij .
In this sense, S performs a random walk on 2. At time ¢, S is in w; with probability

Prim = w;} = p”

We assume that the symbol X (w;) € X' is emitted when 7 = w;. Thus we obtain

Pr{X;=a}= Z pl(-t) .

X(wi)=a

REMARK. While the Markov chain (X¢) is observable (by definition), the underlying ran-
dom walk (7;) need not be an observable process.
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2.7 LPDs, OOMs and HMMs

It is straightforward to extend the notion of compatibility of information functions to
observable processes (X;). In the case of Markov chains compatibility amounts to (X;)
exhibiting classical conditional probabilities

Pr(alv) > 0.

A compatible Markov process (X;) may be viewed as a classical (discrete) stochastic
processes. Not going into details here we just remark that compatible Markov chains can
be shown to be equivalent with the stochastic processes that have been termed finitary
linearly dependent (so-called LDPs) (cf. Heller [8] and Ito [9]) or the finite-dimensional
observable operator models (or OOMs) (cf. Jaeger [10]).

All these models are, of course, closely related to classical (discrete) hidden Markov
models (or HMMs for short) that are well understood (see, e.g., Elliot et al. [5]), which
in our context essentially are Markov chains with a non-negative transition matrix M.
OOMs are strictly more general than HMMs. Jaeger [10] gives the example of a so-
called probability clock that can be modeled as an OOM but not as an HMM with a
finite number of pure states.

3 Generalized Stochastic Processes

Abstracting Markov chains, we think of a (generalized) discrete stochastic process (P;)
with alphabet 3 as a function

P:XYx X" —R suchthat Z P(alw) =1 foralla € X¥,w e X* |
weXt

where Y* := U;’i o 2" is the collection of all finite words (or strings) over the alphabet
X. We denote by t = |w| the length of the word w € X* and let (0 € X0 be the empty
word of length |OJ| = 0.

The interpretation is, of course, that the process starts at time ¢ = 0 with the empty
word and adds, at time ¢ + 1 and with probability P(a|w), the letter P;+1 = a to the
word w already produced.

We define the transition probabilities (or conditional probabilities) for all strings
v=>by...by € XFandw € X by

P(v|w) := P(by|w)P(ba|wby) ... P(bg|wby ...bg_1)
and note for all w € X*:

Z Pwlw)=1 forallk e Nwe X*.
veXk
P(w) := P(w|0) is the probability for w € X' to have been produced at time ¢,

yielding the relation
P(wv) = P(v|w)P(w) .
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We say that (P;) is observable if foralla € Y and allt =0, 1,. ..,

Pr{Pyi1=a}= Y P(wa)= Y P(ajw)P(w) >0.

weXt weXt

REMARK [Compatibility]. Call (P;) compatible if all conditional probabilities are clas-
sical, i.e., P(alw) > 0 holds for all a € X, w € X*. It follows that a compatible stochastic
process is in particular observable. In fact, the compatible stochastic processes are the classical
stochastic processes.

The transition probabilities describe (P;) via an infinite matrix P = [P(v|w)] with
rows and columns indexed by the words v, w € X*. Letting g,, be the column of P
corresponding to the word w (and hence having the components P(v|w)), g, contains
all the information on the future of the process, given that the word w has been observed
so far.

So g,, can be understood as a representative for the state of the process once
the word w has been realized. The expected subsequent state is the probabilistically
weighted superposition of all possible subsequent states:

p(gw) = > Plajw)gua -

acX

Denoting the expected state of the process at time ¢ by

and extending p by linearity, we find

gt+1 — Z P(IUCL)gwa = Z Z P(w)P(a|w)gaw

wa€eXt+1 weXt a€X
=Y Pwu(gs) = n( Y Pwg,)) = u(g).
weX? weX?

We call p the evolution operator of the stochastic process (P;) and refer to

t—l) t—2) t .0

gh=puE ) =pE = =u'g
as its ground state at time t. g' contains all the information about the future of (P;).
Indeed, for any v = b1by, ... b, € X*, we obtain the prediction probability of v at time
t as

Pr{Piyy =b1,...,Pyp=bi} = »_ Plw)P(w)=g'(v), 3)

weX?t

where g(v) denotes the v-component of the ground state vector g.
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3.1 Stobits

In the case of the binary alphabet & = {0, 1}, the words w € X" are the (0, 1)-strings
of length ¢, i.e., boolean t-bits. A ground state g’ thus represents a certain probabil-
ity distribution on the collection of all ¢-bits (and thus yields a “’preparation state” in
the sense of Section 2). In analogy with the terminology of ¢-qubits in quantum com-
putation, one could call a probability distribution on the collection of ¢-bits a ¢-stobit
(stochastic t-bit”).

The evolution operator u describes the stochastic process (P;) as an evolution of
the “empty bit” (i.e., O-stobit) over time.

3.2 Finite-Dimensional Processes

We define the dimension dim(P;) of the (generalized) stochastic process (P;) as the
minimal number m such that the ground state g™ = p™g? is a linear combination of
the preceding ground states g°, ..., g™ 1:

m—1
gm = Z OéigZ (ozi S R)
1=0

REMARK. For example, it can be shown that the generalized Markov chains of Section 2
give rise to finite-dimensional observable stochastic processes.

Assume m = dim(P;) < co. Then, by definition, the set
B={go,... ,gm_l}

is linearly independent. In fact, 3 is a linear basis for the collection of all ground states.
To see this, let M = [p;;] be the (unique) matrix such that

m—1

U(gj) =g/t = Z pijgi (j=0,...,m—1).
i=0

We now find
m—1 m—1 m—1
g™ =pu(g™) = > aug) =) Big', where Bi= ) pija;.
j= i=0 §=0

More generally, every ground state g admits a unique representation with respect
to B,

m—1
t) i
g'=> algl,
i=0
where [agt), .. ,ag?fl]T is precisely the first column vector in the matrix M*. Letting

e be the first unit vector in R™, we have in matrix notation:

g =[g"....g" "|Me .

We note: The evolution operator /4 is described by the matrix M = [p;;]. We there-
fore call M the evolution matrix of the stochastic process (P;).
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3.3 State Representations

As we have seen, in the case dim(P;) = m < oo, every ground state g’ can be de-

scribed by a unique coordinate vector w! = [a(()t), e ,oz,ffl)_l]T relative to the basis B
such that ground state evolution arises as

wl=¢ey and w'=Mw'"!=Mw" (t=1,2,..).

The coordinate vectors w' are always (preparation) states in the sense of Section 2.
Indeed, we observe:

Lemma 2. Let oy, ..., o € R be arbitrary. Then
k k
gt:Zajgtj - Zajzl.
j=1 j=1

Proof. 1= Zaez Pr{Piy1 =a} = ZaGE gt(a) = Z?:1 ZaGZ ajgtj (a) = Z§:1 Q.
<&

REMARK [REVERSIBILITY]. The evolution matrix M of a finite-dimensional stochastic
process (P;) is non-singular. Hence the initial state w” can be recovered from the ground state
w' at any given time ¢. In this sense, the process does not lose any information over time and is
reversible.

REMARK [MARKOV CHAINS]. Markov chains not only furnish examples of finite-dimen-
sional stochastic processes. In fact, one can show that every finite-dimensional (generalized) sto-
chastic process arises from some (generalized) Markov chain.

4 A Law of Large Numbers

Say that the stochastic process (P;) is bounded if the prediction probabilities g!(v) are
bounded, i.e., there are constants ¢, co € R such that

c1 <g'(v)<cy forallve X*andt=0,1,....

Every classical stochastic process, for example, is bounded by ¢; = 0 and ¢ = 1.

We want to show that the ground state vectors of a bounded finite-dimensional sto-
chastic process converge on the average to some limit g:

0 k—1
E(g +...+g8"77) — g.
For classical stochastic processes, this result implies that one can do empirical statistics.
It order to derive the convergence property, we first establish a general convergence
result for sequences of vectors.
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4.1 Stability of Sequences

Let V be an n-dimensional vector space over the field C of complex numbers. Assume
V to be equipped with a norm ||v|| that is derived from a hermitian inner product

(vlw) suchthat ||v|| =+/(v|v).

Let F : V — V be a linear operator and denote by F* its k-iterate. We say that the
vector a € V' is F-bounded if there exists some constant ¢ € R such that

|F*a| <c¢ forallk =1,2,....

Since F' is linear, it follows that arbitrary linear combinations of F'-bounded vectors are
again F-bounded. So F gives rise to the linear subspace

F={aeV |ais F-bounded} CV .
Note that F is F-invariant. Indeed, the definition immediately yields:

acF — FaelkF.

REMARK. F'-boundedness is closely related to the concept of matrix stability in the sense
of Brayton and Tong [3], where F' is called stable if there exists a full-dimensional F-invariant
compact set K C V with 0 € K. Here, however, we are not so much interested in the operator ¥’
but the behavior of an element a € V under the action of F'. It is not difficult to see that F = V'
holds if F'is a stable matrix.

Letting I = FO be the identity operator, we furthermore associate with F' and every

k > 1 the k-th averaging operator

— 1
Fy = E(I+F+F2+...+F’H).

and call the vector a € V' F'-stable if there exists some a € V' such that

lim Fra — a.
k—o0

Also the averaging operators I}, are linear. So the F-stable elements of V form a linear
subspace F of " as well. The main result in this section says that F is a subspace of F.

Theorem 1. Let F' : V' — V be a linear operator and a € V an F-bounded element.
Then the k-averages Fia converge to somea € V,

— F S FRL
lim Fra = lim atlfat...+ a_ a,

k—oo k—oo k

where a is either the null vector 0 € V or an eigenvector of F with eigenvalue \ = 1.
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Proof. We prove the Theorem by induction on the dimension n, assuming it to be true for
all dimensions n’ < n. So there is no loss in generality when we assume F = V (otherwise, the
claim follows from the induction hypothesis already).

If F has at least two distinct eigenvalues A1 # A2, then V' decomposes into the direct sum of
two F-invariant subspaces:

V=Vi®Ve with dmV; <n.
a = a; + ap holds for unique elements a; € V; and we have
2 2 2
lall” = [lar (" + [[az]|” -

Since the V; are F-invariant, the a; are F'-bounded. So the induction hypothesis implies that the
vectors a, are F'-stable, which in turn implies that their sum a is F'-stable.

So we are left with the case where F' has a unique eigenvalue A € C. We distinguish two
cases. If \ # 1, the linear operator I — F' is non-singular. So there is some v € V such that

a=(I-F)v.
The geometric summation formula for the powers of F' yields
(I+F+.. +F-YUI-F)=I-F*
and, because v if F-bounded, the convergence

— (I-FFv 1 1
ra A kv A v 0eV

It remains to deal with the case where A = 1 is the unique eigenvalue of the linear operator F'.
By the Cayley-Hamilton Theorem, there exists a minimal number /N such that

(F-=D)Nv=0 forallveV.

CLAIM: N =1 (ie.,, F=1).

Suppose to the contrary that N > 2 is true. Then there exists some v € V with (F'—1I)v # 0
and (F — I)*v = 0. Consequently, we have for all k > n,

k

Fkv_[(FI)+I]kv_Z<]z)(FI)Sv—erk(FI)V,

s=0

which implies that v is not F-bounded. This contradiction shows F' = I and thus Fra = a. So
convergence follows trivially.
o

REMARK. An F'-stable element a € V always yields average convergence to either O or an
eigenvector a of F' with eigenvalue A = 1. The point of Theorem 1 is a criterion for guaranteed
stability.

REMARK. One can show that the converse of Theorem 1 is also true, i.e., a € V is F-
bounded if and only if a is F'-stable.
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4.2 Convergence of Ground States

Let B = [g"...,g™ 1] the basis of the finite-dimensional stochastic process (P;).
Then B contains some (m x m)-submatrix B of full rank rk B = m and any ground
state g’ is already determined by its restriction g; of the components corresponding to
the rows of B. In particular, the evolution operator x acts linearly on those restrictions
of the ground states.

Hence, if (P;) is bounded, Theorem 1 guarantees the convergence of the averages
of the ground states to some g. Because

dYglw=1 = > ga=1,
aceX acX

we conclude g # 0. So g must be an eigenvector of the evolution operator p with
eigenvalue 1.

CLASSICAL STOCHASTIC PROCESSES. Assume that (P;) is a classical finite-dimen-
sional stochastic process. Then the average convergence of the ground states implies the
average convergence of the prediction probabilities for all a1, ...,a; € 2"

PriXi1=ay,... Xeop =ap} =g'(ay...an) ~ glay...ap) .

For example, fixing any a € X' and defining the empirical counting function by

Y, — 1 %th:a
0 if Xy # a,

we see that the expected value of the averaged count converges:

Yi+.. Y, EM)+...E)
t )= i
gla)+ ...+ gt a)

E(

Because ) 5 g'(a) = 1 for all £, we obtain a classical limiting probability distri-
bution on X:

Z ga)=1 and g(a)>0.
acX

A similar averaged counting result holds for any v € X*. This observation indicates
that we can do statistics on finite-dimensional stochastic processes.
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