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Abstract. We consider online scheduling of splittable tasks on parallel machines.
In our model, each task can be split into a limited number of parts, that can then
be scheduled independently. We consider both the case where the machines are
identical and the case where some subset of the machines have a (fixed) higher
speed than the others. We design a class of algorithms which allows us to give
tight bounds for a large class of cases where tasks may be split into relatively
many parts. For identical machines we also improve upon the natural greedy al-
gorithm in other classes of cases.

In this paper, we consider the problem of distributing tasks on parallel machines,
where tasks can be split in a limited amount of parts. A possible application of the
splittable tasks problem exists in peer-to-peer networks [5]. In such networks large files
are typically split and the parts are downloaded simultaneously from different locations,
which improves the quality of service (QoS).

More generally, computer systems often distribute computation between several
processors. This allows the distributed system to speed up the execution of tasks. Naively
it should seem that the fastest way to run a process would be to let all processors partic-
ipate in the execution of a single process. However in practice this is impossible. Set-up
costs and communication delays limit the amount of parallelism possible. Moreover,
some processes may have limited parallelism by nature. In many cases, the best that
can be done is that a process may be decomposed into a limited number of pieces each
of which must be run independently on a single machine.

The definition of the model is as follows. In the sequel, we call the tasks “jobs” as
is done in the standard terminology. We consider online scheduling of splittable jobs on
m parallel machines. A sequence of jobs is to be scheduled on a set of machines. Unlike
the basic model which assumes that each job can be executed on one machine (chosen
by the algorithm), for splittable jobs, the required processing time pj of a job j may be
split in an arbitrary way into (at most) a given number of parts `. Those parts become
independent and may run in parallel or at different times on different processors. After
a decision (on the way a job is split) has been made, the scheduler is confronted by the
basic scheduling problem, where each piece of job is to be assigned non-preemptively
to one machine. In the on-line version, jobs are presented to the algorithm in a list, this
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means that each job must be assigned before the next job is revealed. Only after the
process of job splitting and assignment is completed, the next job is presented to the
algorithm. The goal is to minimize the makespan which is the last completion time of
any part of job.

We consider two machine models. The first one is the well known model of identical
machines, where all machines have the same speed (w.l.o.g. speed 1). The second case
relates to systems where several processors are faster (by some multiplicative factor)
than the others. In this case let s be the speed of the fast processors. The other processors
have speed 1. This also contains the model where one processor is fast and all others are
identical [15, 8, 3, 14]. We call the machines of speed s fast, and all other machines are
regular machines. The number of fast machines is denoted by f whereas the number
of regular machines is m − f . The processing time of job j on a machine of speed s is
pj/s. Each machine can process only one job (or part of job) at a time, and therefore
the completion time of the machine is the total processing time of all jobs assigned to it
(normalized by the speed), which is also called the load of the machine. In the context
of downloading files in a peer-to-peer network, the speeds correspond to the bandwidths
for the different connections.

We use competitive analysis and given a problem we would like to determine its
competitive ratio. The competitive ratio of an algorithm is the worst case ratio between
the makespan of the schedule produced by the algorithm, and the makespan of an op-
timal offline algorithm which receives all input tasks as a set and not one by one. We
denote the cost of this optimal offline algorithm by OPT. The competitive ratio of a
problem is the best possible competitive ratio that can be achieved by a deterministic
on-line algorithm.

Previous work

The basic model (with ` = s = 1) was studied in a sequence of papers, each improving
either the upper bound or the lower bound on the competitive ratio [10, 7, 2, 12, 1, 9, 6,
11]. The offline splittable jobs problem was studied by Shachnai and Tamir [19]. They
showed that the problem is NP-hard (already for identical machines) and gave a PTAS
for uniformly related machines. The problem was also studied by Krysta, Sanders and
Vöcking [13] who gave an exact algorithm which has polynomial running time for any
constant number of uniformly related machines. A different model that is related to our
model is scheduling of parallel jobs. In this case, a job has several identical parts that
must run simultaneously on a given number of processors [4, 16].

Our results

We first analyze a simple greedy-type algorithm that splits jobs into at most ` parts,
while assigning them in a way that the resulting makespan is as small as possible. We
then introduce a type of algorithm that always maintains a subset of k < ` machines
with maximal load (while maintaining a given competitive ratio), and show that it is
optimal as long as ` is sufficiently large in relation to m + f . The case f = m − 1

is treated separately. For smaller `, we give an algorithm for identical machines that
uniformly improves upon our greedy algorithm. Finally, we consider the special case



of four identical machines and ` = 2, which is the smallest case for which we did not
find an optimal solution. The algorithms assume that it is always possible to compute
the value of OPT for a subsequence of jobs which already arrived. In the full paper, we
explain how to compute this value.
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