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Abstract. The need for calculating and characterizing singular normal
distributions arises in a natural way when considering probabilistic con-
straints of the type , where A is a rectangular matrix having more rows
than columns, b is some function and ¢ has a nondegenerate multivariate
normal distribution. The talk provides structural results (criterion for
Lipschitz continuity and differentiability) as well as a formula for the
calculation of singular normal distribution functions.
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1 Introduction

An m-dimensional random vector 7 is said to have a singular normal distribu-
tion if there exists some s-dimensional random vector £ having a nondegenerate
normal distribution such that

n=Af +b, (1)

where A is an (m, s)-matrix with rank smaller than m and b is an m-vector.
Singular normal distributions are those normal distributions whose covariance
matrix has a rank strictly smaller than the dimension of the random vector. Such
seemingly artificial distributions arise in a natural way in problems of stochas-
tic optimization, where a relatively small (nondegenerate-) normally distributed
random vector induces a large number of linear inequality constraints. As an ex-
ample, we refer to the problem of optimal capacity expansion in a network with
stochastic demands (see [4], p. 453), which leads to a probabilistic constraint of
the form

P(AE <b()) > p <= P(n < b(w)) > p <= d(b(x)) > p,

where 7 is defined in (1), @ refers to its distribution function and I;(m) = b(z)—b.
In order to cope with such constraints, it is important to be able to calculate
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Fig.1. Distribution functions of 2-dimensional singular normal distributions
with covariance matrix having rank one (see text).

values and gradients of singular normal distribution functions. As the latter need
not exist in general, it is of interest to characterize differentiability of such func-
tions. If differentiability fails to hold, one could rely on more general tools from
nonsmooth optimization (both for algorithmic purposes and optimality condi-
tions). Tn such constellation, local or global Lipschitz continuity is a favorable
property. Whether a singular normal distribution function is discontinuous or not
does not depend on the rank of the covariance matrix. Figure 1 shows (from the
left to the right) the distribution functions of 2-dimensional normal distributions
with zero mean and covariance matrices all of which have rank one:

(0)- (1) (5 70)

The following result on (Lipschitz-) continuity is a special case of a characteri-
zation provided in [2] for the broader class of so-called quasi-concave measures
which singular normal distributions belong to (see [4]).

2 Results

Theorem 1. A singular normal distribution function is (globally) Lipschitz con-
tinuous if and only if it is continuous and if and only if its covariance matriz
does not contain zero elements in the diagonal.

The Theorem explains why in the three examples of Figure 1, the first distribu-
tion function is discontinuous whereas the other two are Lipschitz continuous.

In order to establish a condition for differentiability, consider the system
(A, b) of linear inequalities induced by the rows a; of an (m, s)- matrix A and
the components b; of b:

(a5, 2) <b; (1=1,...,m).
With (A4, b) we associate a family of index sets defined by
T(Ab):={IC{l,...,m}Fz€eR’: (a;,2) =b; (i€,
(ai, 2) < b; (ie€{l,...,m}ND}
The system (A, b) is said to be nondegenerate, if
rank{a;li € I} = #I VI e€T(A,b).
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Theorem 2. Let £ be an s-dimensional random vector having a nondegenerate
normal distribution. Denote by & the distribution function of n in (1). Then,
& is smooth (infinitely many times differentiable) at any point & for which the
system (A, T — b) is nondegenerate.

The last theorem essentially relies on the following formula for the probability of
polyhedra proved in [3] by means of the so-called abstract-tube theory (a recent
proof based on more elementary arguments like duality of linear programming
can be found in [1]):

Theorem 3. Let £ be an s-dimensional random vector. If the system (A,b) is
nondegenerate, then the probability of the polyhedron induced by (A, b) equals

P(ai, &) <bi (i=1,...,m)= Y  (-D* P((a,&)>b (i€).

IeI(Ab)

Specializing this formula to the case of € having a (nondegenerate) normal dis-
tribution and translating it to the transformed random vector n in (1), one
obtains the following formula for the explicit calculation of the singular normal
distribution function (of n):

b= > (- FE-2") Veeu (2)
IeI(A,z-b)

Here, F denotes the (regular) normal distribution function of £ and the upper
index [ refers to a selection of corresponding components.

3 Conlusions

If one is able to calculate the index sets T (A, Z — b) (which amounts to the deter-
mination of corners of polyhedra), and if, moreover, a code for the calculation of
nondegenerate normal distribution functions is available, then (2) may be used
for the calculation of values and gradients (by derivation of (2)) of singular nor-
mal distribution functions. First numerical experiments show that this approach
is very efficient in moderate dimensions.
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