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Extended Abstract

A number of methods for solving multistage stochastic linear programs with recourse decompose
the deterministic equivalent [4] to form subproblems based on scenarios (e.g., Rockafellar and
Wets [6] and Mulvey and Ruszczyński [5]). Other methods use forms of Benders decomposition
to form subproblems based on nodes of the scenario tree (e.g., Birge [1] and Gassmann [2]).
Both types of algorithms can be conceptualized as a decomposition of the scenario tree [4] of the
stochastic program. Also, under both of these approaches the number and size of the subproblems
is predefined: each scenario or node corresponds to a subproblem.

This research describes an algorithmic approach which allows more flexibility in the structure
and size of the subproblems. Two existing decomposition approaches are used as a basis for
applying the principles. The deterministic equivalent is reformulated in two ways in order to meet
the needs of two underlying decomposition approaches. We use the concept of the extension of a
node set, which adds the predecessor of each node to the node set.

A subtree cover of the scenario tree is a set covering of the scenario nodes with the property
that for each node set the subgraph induced by its extension is connected.

A subtree partition of the scenario tree is a partition of the scenario nodes with the property
that the subgraph induced by each node set is connected.

Note the different node sets that are required to induce subtrees for the above. Different
subtree covers and subtree partitions will lead to different subtree decompositions for the same
problem.

0.1 Subtree partition decomposition

In its most straightforward form, the nested Benders decomposition approach decomposes the sce-
nario tree into subproblems corresponding to individual nodes. The influence of a node’s successors
is applied through additional constraints added to the node’s subproblem. These constraints are
passed towards the root, while partial solutions are passed in the other direction to direct the
generation of constraints. Nested Benders decomposition is used as the basis for a more general
decomposition.

For any subtree partition of the scenario tree form the corresponding partition extensive form of
a stochastic program by re-indexing the deterministic equivalent so that variables are additionally
labelled with the index of the node subset containing their corresponding node. This re-indexing
exposes a new underlying tree structure, called the partition tree.

The partition extensive form can be viewed as a stochastic linear program with the partition
tree as the underlying scenario tree. Stages and probabilities may be assigned in a straightforward
manner. Since we have a stochastic linear program with an underlying scenario tree, nested
Benders may be directly applied. In this way, all results for nested Benders apply directly to the
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partition extensive form. This also means that the subtree partition algorithm may be implemented
as a layer between the model (or modelling software) and a nested Benders solver (for instance
MSLiP [2]).

A subtree cover decomposition

The scenario decomposition approach retains the dynamic structure of a deterministic version
of the problem. The scenario tree is expanded with each scenario allocated copies of the nodes
that form it with the variables and constraints corresponding to these nodes. Nonanticipativity
constraints are added to ensure that one common decision is made for all of the nodes in the
expanded tree that correspond to the same node of the original tree. These nonanticipativity
constraints are then relaxed so that the problem decomposes into subproblems corresponding to
each of the scenarios. This effectively splits those variables corresponding to nodes which have
more than one scenario passing through them. Some scheme is then used to iteratively tighten
the relaxation of the nonanticipativity constraints. The scenario decomposition approach is, also,
generalized.

For any subtree cover of the scenario tree of a stochastic linear program, form the corresponding
cover extensive form by adding copies of the linking variables which appear in constraints corre-
sponding to different node subsets. Subtree weights are used to apportion the objective coefficients
amongst the various copies of each variable. Additional constraints are added to ensure that the
various copies of each variable have the same value. These constraints are called implementability
constraints (adapting its use from [6]) to differentiate them from the nonanticipativity which may
be present in the deterministic equivalent formulation.

The decomposition is effected by relaxing the implementability constraints, to form a number
of subproblems, then applying some scheme to progressively tighten the relaxation. Applying the
diagonal quadratic decomposition of Ruszczyński [7] as a subtree decomposition is straightforward.

This scheme is essentially an augmented Lagrangian approach. One factor affecting the con-
vergence rate of augmented Lagrangian is the dimension of the multiplier vector. By allowing an
arbitrary subtree cover we allow greater control over this dimension.

Subproblem creation

One important issue is how to take the original stochastic program (as presented to a solver) and
determining which variables and constraints will play the various roles required.

The procedure outlined below determines the composition of the subproblems for both decom-
positions. It assumes that the deterministic equivalent is provided together with the scenario tree
and a subtree partition or subtree cover. Each variable in the linear program is associated with a
node of the scenario tree. These assumptions are consistent with the input standard for stochastic
programs [3].

1. All variables are assigned a stage index corresponding to the stage of their associated scenario
tree node.

2. Constraints are assigned a scenario tree node corresponding to any one of the youngest
variables with non-zero coefficient, appearing in the constraint. Variables appearing in con-
straints with variables from more than one node are labelled as linking variables.

3. Each node set, S, in the subtree partition or subtree cover defines a subproblem consisting
of:

(a) all constraints whose node is in S.

(b) all variables with a non-zero coefficient in one of those constraints.
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