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Abstract. We consider stochastic nonlinear programs, restricting ourself to
differentiable, but possibly non-convex, problems. This leads us to consider
non-linear approaches, designed to find second-order critical solutions. We
focus here on the use of trust-region approaches when solving a sample aver-
age approximation, and adapt the technique to only use sub-samples when
possible, adjusting the sample size at each iteration. We finally present an
extension to the estimation of mixed logit models, that are popular in dis-
crete choice theory when the population heterogeneity is taken into account.
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1 Nonlinear stochastic programming

A classical problem in stochastic programming is the minimization of the expecta-
tion of some function depending on a random variable £, defined on the probability
space (=2, F, P):

min g(z) = E¢[G(z,£)], (1)

where S is the feasible set, that we first assume to be deterministic. If the distribu-
tion of £ is continuous or discrete with a large number of possible realizations, g(z)
can be very hard to evaluate, and we have to turn to approximations such as Monte
Carlo methods (see [1] for a review). The original problem (1) is then replaced by

then approximations obtained by generating draws &1,...,¢N:
1 XN
min g (z) = + i_ZIG(z,&)- (2)

We refer to (1) and (2) as the true (or expected value) and the sample average
approximation (SAA) problems, respectively. If S is defined as

i(2) = Ep[H; >0,j=1,...,k
S=qxz eV CR™ such that ¢i(2) Pl (2, w)] 2 ’J. o )
¢j(2) = Ep[Hj(2,w)] =0, j=k+1,...,C.
where V is assumed to be compact, we can also define SAAs of ¢; (j=1,...,C).
If the random vectors &, k = 1,...,00, are assumed to be independent and

identically distributed (IID), from the Kolmogorov consistency theorem, we can
construct the infinite-dimensional probability space (=, Fr, Pir), whose elements
are processes of the form & = {£,}%° ;. We will denote by 2% (€) a solution of the SAA
problem (2). Since V' is compact: 2} (£) has some limit point z* (£) as N — co. We
therefore assume (wlog) that 2} (€) converges to 2* (£) as N — oo, by considering a
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subsequence if necessary. If the approximate solutions z} (§) are first-order critical
for the corresponding problems, under some regular conditions, z* (Z) satisfies first-
order conditions for (1) [1]. Requiring that z}(€) are second-order critical does
not however ensure that z* (£) is also second-order critical for (1) [2]. Consistency
results can nevertheless be obtained by enforcing stronger assumptions. We first
define €y (z,z) as

an(2) — 9(2)
en(zf=| GvGE 4@ =1, M
AR V.in(2) - V.g(2)

We then have the following property.

Assume that, for almost every & in (Zq, Frr, Prr), A* (€) is the unique vector of
Lagrangian multipliers associated to the original program at z* (), that

(a) en(2x(£),€) — 0 uniformly on V, as N — oo,

(b) 25 (€) — 2z* (£) as N — o0, 2*(£), 2 (€) do not belong to the boundary of
v, B o 3

(©) V2.3(x(©),en(2x(8),8)) — Vi.g(2* (€)) as N — o0,

(d) V2.6 (2 (8), en(2x(€),€) — Vi.cj (2* (€)) (1 =1,...,M) as N — co.

and that the strict complementarity condition holds at (2* (£) ,A* (£)). Assume
furthermore that the Jacobian of the KKT conditions is almost surely nonsingular
at (2* (€) ,A* (€)). Then (2*(€),A*(€)) almost surely satisfies the second-order
sufficient conditions for the original program.

Proof and other results can be found in [2].

2 An adaptive trust-region algorithm

The SAA problem can be solved using a trust-region approach. We consider here
the unconstrained case. The main idea is to compute at iteration k (with current
estimate zp) a trial point z; + sx by approximately minimizing a model of the
objective function, for instance the quadratic model

(- 5) = v (24) + (V= () ) + 3 (s, Hs), ©

where Hy, is a symmetric approximation of the Hessian V2_gn(zx), inside a trust
region By defined as {z € R™|||z — zx|| < Ay}, where Ay, is called the trust-region
radius. The predicted and actual decreases are then compared by computing the
ratio
_ gn(2k + sx) — g (2k)
B (e + sk) — ma(z)”

If py, is greater than a certain threshold 7 (for instance 0.01), the trial point be-
comes the new iterate, and the trust-region radius is (possibly) enlarged. The trial
point is otherwise rejected and the trust region is shrunk, in order to improve the
correspondence of the model with the objective function [3].

The trust-region approach can be easily adapted to include a variable sample size
strategy [4], based on the idea of generating a full set of draws prior to optimization,
but to only use part of it during certain stages of the optimization process. At a
given iteration k, using N draws, we compute a candidate sample size NT in
[NE. s Nmax]), where Npax is the final sample size, and N¥,  is the minimum number

of draws. If the ratio 7, between the decrease in the model and the estimated
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accuracy is greater than 1, we set N* to the minimum of [0.5N™2<] and the size
needed to obtain an accuracy equal to the model decrease, denoted by N*. If the
improvement is smaller than the precision, but greater than the ratio between the
sample size N° and Nt, we set Rt to the minimum of [0.5Nyax] and [7,N?],
on the grounds that an increase of the order of the estimated accuracy could be
reached in approximately [7j] iterations. Otherwise, we set N to [0.5Nmyax]| as
long as 7 is greater than some threshold, and to Nyax when this condition is not
met. We then compute the approximate ob jective function with NT draws at the
trial iterate. If the ratio py is less than a constant 7, we recompute the approximate
objective at 2 with Nt draws if N, < N7, in order to take account of variance
difference, or, when Ny > N, we set NT = N*. We then again compute the ratio
Pk, with updated sample sizes. As a safeguard, we also increase the minimum sample
size if the algorithm exhibits poor performance due to the variations of accuracy.
The algorithm stops when the gradient norm is less than a pre-defined tolerance,
or a fraction of the estimated accuracy, where we expect that no more significant
decrease in the objective will be achieved. Convergence results can be found in [4].

3 Application to Mixed Logit models estimation

Discrete choice modeling is concerned with the description of choice behavior among
a finite set of alternatives. An individual ¢ (i = 1,...,I) is assumed to select in the
set A(¢) the alternative that maximizes his/her utility, expressed as U;;(8;,x:;) =
Vij(Bj,%i;) + €5, where f; is the vector of model parameters, and z;; are the
observed attributes of alternative j, while €;; is a random term reflecting the unob-
served part. If the terms €;; are independently Gumbel distributed, we obtain the
classical multinomial logit model, characterized by the logit formula expressing the
probability that the individual ¢ chooses alternative j:

eViJ' (ﬁ)

LslB) = S vy

Mixed logit models relax the assumption that the explanatory variables 5 are the
same for all individuals, by assuming instead that individual explanatory variables
vectors B(i) (1 = 1,...,I), are realizations of a random vector 3, derived from
a random vector v and a parameters z. The probability choice is then Pj;(z) =
Ep[L;i; (7,2)], and z is estimated by maximizing the log-likelihood function:

I
1
max LL(z) = max 21 In Py, (2), (4)
=

where j; is the (observed) alternative choice made by the individual i. The corre-
sponding SAA problem is

SLIN (2 Iy Ly 5
max IZ N Z iJi r)/n“ ( )

The analogy with stochastic programming can also be used to derive consistency
results for a fixed population size [2]. Moreover, SLLY (z) can be shown to be an
asymptotically unbiased estimator of LL(z), with an estimable asymptotic value of
the confidence interval radius [2,5], that we use as the accuracy evaluation. The sim-
ulation bias (resulting from the logarithm operator) can also be approximated and
the BTRDA algorithm can be adapted in order to take it into account, in addition to
the Monte-Carlo accuracy. As an illustration, we consider the estimation of a parking
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choice model, described in [6], with 9 parameters (1 constant, 5 normally distributed,
3 log-normally distributed), 1335 observations, 298 individuals. Each individual de-
livers several observations, but heterogeneity is only considered at the population
level, so the approximate probability choice is SP{X =< ZnNzl ;‘rzl Lﬁji (Yns 2)-
The evolution of the number of draws with the iteration index and log-likelihood

value is illustrated in Figure 1.
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Fig. 1. number of draws evolution

4 Conclusion and future research

Nonlinear stochastic programming opens various issues, both theoretical and practi-
cal. Only local minimizers can usually be guaranteed; this has pushed us to to revisit
consistency; in particular, while first-order consistency can be ensured under regu-
lar conditions, second-order consistency requires more care. First results have been
proposed, but more research is needed to relax some of the assumptions and better
assess the quality of the approximate solutions. On the numerical point of view,
classical algorithms have to be adapted in order to take account of the structure,
and to increase the efficiency. We have here introduced a trust-region algorithm for
SAA problems, with an extension in mixed-logit models estimation. This algorithm
allows to vary the number of used draws from iteration to iteration. The method
could however be refined, for instance by combining external and internal sampling
strategies, and extended to other class of problems and approximations techniques,
as soon as the error can be evaluated.
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