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1 Introduction

We consider the Sample Average Approximation (SAA) method for 2-stage stochastic optimization prob-
lems with recourse and prove a polynomial time convergence theorem for the SAA method. In the 2-stage
recourse model, where one makes decisions in two steps. First, given only distributional information about
(some of) the data, one commits on initia (first-stage) actions, and then once the actual datais realized, ac-
cording to the distribution, further recourse actions can be taken, so that one can augment the earlier solution
to satisfy the revealed requirements, if necessary. Typically the recourse actions entail making decisions in
rapid reaction to the observed scenario, that is, at the “last minute,” and are therefore costlier than decisions
made ahead of time. The goa is to choose the first stage elements so as to minimize the sum of the cost
incurred in the first stage and the expected cost incurred in the second stage, where the expectation is taken
over al problem instances and these instances are distributed according to the given probability distribution.

More formally, given a probability distribution on scenarios A and a vector = describing the first stage
decisions, the cost incurred is given by h(z) = c(z) + E4 [ fa(z,74)] where vector r4 denotes the second
stage decisions that are taken when scenario A materiaizes, ¢(x) is the cost incurred in the first stage, and
fa(z,r4) isthe cost of augmenting « to obtain the solution (x,r4) for scenario A. We want to choose
x that minimizes the total cost i (). Consider a discrete distribution and let p4 denote the probability of
scenario A. Then the objective functionish(z) = c(x) +>_ 44 Pafa(z,74), where A denotes the set of
all scenarios.

2 The Sample Average Approximation method

Assume that we have a black box that one can use to draw independent samples from the distribution
on scenarios. A natural approach to computing near-optimal solutions for these problems is the sample
average approximation approach: sample some A times from the distribution on scenarios, and estimate
the probability ps of scenario A by pa = Na/N where N4 denotes the number of times scenario A
occurs. Now we consider the sample average function i(z) = ¢(z) + Y acabafa(z,ra) andfind 2 that
minimizes A(.). Since the distribution {f4}4c.4 assigns a non-zero probability to at most the A sampled
scenarios, if A is smal, e.g., polynomial size then the sample average problem of minimizingﬁ(.) isan
easier task than minimizing h(.). The issue here is to bound the sample size N required to guarantee that
every (near-) optimal solution to the sample-average problem is a near-optimal solution to the true problem
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with high probability. Intuitively we need A/ large enough so that thefunctionﬁ(.), isin some sense, aclose
approximation to A(.).

We show that for a large class of 2-stage stochastic linear programs, namely the class considered by
Shmoys and Swamy [5], we can bound A/ by a polynomial in the input size, the inverse of the desired accu-
racy, and the maximum ratio A between the second-stage and first-stage costs. Thisthus gives more efficient
algorithms for solving this class of problems than the algorithm in [5], which is encumbered by the machin-
ery of the elipsoid method. In comparison, Kleywegt, Shapiro, and Homem-De-Méllo [2] (see aso [4])
gave a bound on the sample size that depends on the variance of a certain quantity that need not depend
polynomially on the input size or \. Very recently Nemirovskii and Shapiro (personal communication) in-
dependently showed that for the stochastic set-cover problem with second-stage costs that are non-scenario
dependent, the bound of Kleywegt et a. is apolynomia bound, provided that one preprocesses the input to
eliminate certain first-stage decisions, and then applies the SAA method to the reduced problem. In terms
of lower bounds on the sample size, it was shown in [5] that the dependence on A cannot be avoided.

Our proof technique isdifferent from that of [2], and exploits the notion of subgradients and approximate
subgradients that was used in [5]. The ellipsoid-based convex minimization algorithm given by Shmoys and
Swamy [5] shows that, under an appropriately defined notion of approximate subgradient, one can minimize
a convex function in polynomial time using only approximate subgradient information about the function.
For agiven class of convex functions, if one can compute these approximate subgradients efficiently by some
uniform procedure, then one might be able to interpret these vectors as exact subgradients of another “nice”
function, that is, in some sense, “fit” anice function to these vectors, and thereby argue that minimizing this
nice function yields a near-optimal solution to the original minimization problem. For the class of 2-stage
problems considered in [5], one can compute approximate subgradients by simply sampling and averaging,
and therefore it turns out that the “nice” function is the sample average functioni(.).

We believe that our proof is smpler and may be of independent interest. The proof does not rely
on anything specific to discrete probability distributions and therefore extends to the case of continuous
distributions. In essence, our proof suggests that a performance guarantee statement about any algorithm
that uses approximate subgradients computed by sampling in some uniform way, can be trandated to a
statement about the performance guarantee of the sample average method. We believe that our approach
can be applied to prove convergence results for the sample average method for other stochastic models as
well. In particular, Swamy and Shmoys [6] recently gave an algorithm for solving a class of multi-stage
stochastic linear programs to near-optimality based on a (uniform) sampling-based procedure for computing
approximate subgradients; this suggests that one might be able to use our approach to prove an analogous
polynomial-time convergence theorem for the sample average method for this class of multi-stage programs.

3 Analysisof the SAA method

We consider the following generic 2-stage stochastic optimization problem considered in [5].

min h() =z + Y pafa(e) G
x€P
AcA
where fa(x) = min wA-TA-l-qA-sA
st. BAs, > h? (1)
DA+ T4 >4 — T4 2

74,54 >0, 74 €R™ s4 € R™

Here (@) 7' > 0 for every scenario A, and (b) for every z € P,>" 4, 4 pafa(z) > 0 and that the primal
and dual problems corresponding to f4(x) are feasible for every scenario A. A sufficient condition for (b)
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istoinsistthat 0 < fa(z) < +oo at every point = € P and scenario A € A. P C RZ,; denotes the bounded

feasible region of first-stage decisions and® € P. Define A\ = max (1, maxac,s A) we assumethat \ is

known. Let OPT bethe optimum value. Shmoys and Swamy adapted the ellipsoid method to approximately
solve (P), given only ablack box to draw independent samples from the scenario distribution.
The corresponding sample average problem is

min ﬁ(x) =w -z + Z pafa(z). (SAA-P)
zEP AcA

where p4 = Na/N isthe estimated probability of scenario A, N is the total number of samples, and N3

denotes the number of times that scenario A occurs in those samples. We assume that the polytope P is
contained in the ball B(0, R) = {z : ||z|| < R}, such that In R is polynomially bounded; Lemmas 6.2.4,

6.2.5in [1] show that one can always obtain such an R. We show that for any ¢,y > 0, we can bound A/ by
poly (input size, A, %, In(1)), and have that with high probability, 2(2) < (14 7)- OPT + 8¢ where & isany
optimal solution to (SAA-P). Our proof uses the notion of a subgradient and an approximate subgradient as
defined below.

Definition 3.1 Let g : R™ — R be a function. We say that d is a subgradient of ¢ at the point « if the
inequality g(v) — g(u) > d - (v — u) holds for every v € R™.

Definition 3.2 We say that d is a (w, D)-subgradient of a function g : R™ — R at the point u € D if for
everyv € D,wehave g(v) — g(u) > d- (v —u) —wg(v) —wg(u).

The above definition of an (w, D)-subgradient is slightly different and weaker than the notion of an
(w, D)-subgradient as defined in [5] where one requires g(v) — g(u) > d - (v — u) — wg(u), since any
vector that is an (w, D) subgradient according to the definition in [5] is clearly also an (w, D)-subgradient
according to Definition 3.2. This distinction is however inconsequential; note that one could implement the
algorithm in [5] using the notion of an approximate subgradient given by Definition 3.2. In the sequel, we
will only use (w, P)-subgradients, which we abbreviate and denote as w-subgradients from now on. It is
straightforward to show that both /(.) and h(.) are convex functions, and hence for both A(.) andk(.), a
well-defined subgradient exists at any given point.

The proof is based on two main ideas. Asmentioned earlier, in the convex minimization algorithm of [5],
the only information needed about the convex function to be minimized, isits subgradient or w-subgradient
at any given point. The algorithm generates a sequence of ellipsoids of successively smaller volume starting
with aball that encloses the feasible region, using at each step a cut passing through the center of the current
ellipsoid to chop off a half-ellipsoid and make progress; this cut is derived either through an infeasible
inequality (which one can assume is determined uniquely using an arbitrary tie-breaking rule), or if the
current center is feasible, then by a subgradient or an w-subgradient cut. Thus, if we have two functions
g,9 : R™ — R that agree in terms of their (approximate) subgradients on P, specifically suppose at every
x € P thereis a vector d, that is both a subgradient of g(.) and an w-subgradient of ¢(.), then using d,
to generate the cut at « would make the algorithm run identically on both the problems min,.cp g(z) and
mingcp §(x). So we would obtain a point that is simultaneously near-optimal for both functions g and g.
This only argues that there is one specific point that is near-optimal for both ¢ and g. But in fact, we will
show that if g and ¢ agree in terms of their subgradients even on a sufficiently dense finite set G C P
(property (A) makes this precise), then every optimal solution to min,cp §(z) is anear-optimal solution to
mingep g(z). )

Next, we show that with a polynomially bounded sample size A/, functions h(.) andh(.) satisfy this
“closeness-in-subgradient” property with high probability, so every optimal solution to the sample average
problem is a near-optimal solution to (P). Our method of using subgradients on a dense set G to identify
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closeness between h(.) and (.) and prove the polynomial time convergence of the SAA method, is different
from that of Kleywegt et al. [2] who show that if 2* is an optimal solution to (P), then the quantities
h(z) — h(z*) and h(x) — h(z*) should be close to each other at every grid point z, and use this to prove the
convergence result.

Let the functions % and & have Lipschitz constant (at most) K, e, > 0 be two input parameters with
v < 1 without loss of generality. Let N = log(22£) and w = k. We first construct a suitably dense
“gridding” of the polytope P. Let G' = {x € P : 2; = n; - (We\/m)’ n; € Zfordli=1,...,m} and
G=GU{z+tly—a)y+tlx—y) :z,yec G, t=2"i=1,...,N}. Notethat for every = € P
there exists 2/ € G’ such that ||z — « — Rand g : R™ — R satisfy
property (A) if

€
— KN~

at every point € G, there exists d, € R™ such that (A)
1) d, isasubgradient of g(.) at =, and
2) d,isanw-subgradient of ¢(.) at =

Lemma33 Letg : R™ — Rand g : R™ — R be any two convex functions with Lipschitz constant (at
most) K that satisfy property (A). Then, g(z) < (1 + 7)g(«*) + 8¢ where z* and z are pointsin P that
respectively minimize functions g(.) and g(.).

Proof : For ease of understanding, consider first the case when & € G. We will argue that there is a point
x near & such that g(z) is close to g(z*), and from this it will follow that ¢() is close to g(«*). Let Z be
the point in G’ closest to z*, s0 [|Z — 2*|| < 5 (Z) <g(z*)+eLety=i(l—55) + (37)Z € G
and consider the vector d, given by property (A). It must be that d, - (z —y) < 0, otherwise we would
have (&) > g(y) contradicting the optimality of z. So, by the definition of an w-subgradient, we have

9ly) < T2 - g(F) < (1+4w)g(d) < (1+7)g(a) + 2e sincew = g < 1. Also |2 —y]| = 57 <
since |2 — Z|| < 2R. S0, g(%) < g(y) + € < (1 +7)g(z*) + 3e.
Now consider the case when & ¢ . Let & be the point in G < %% and

§(z) < (&) + +. Forany y € G, if we consider d, given by property (A), then whereasdy (z—y) <O0it
need not bethat d, - (z —y) < 0, so we haveto argue alittle differently. Note that however d,- (Z —y) <
otherwise we would have §(z) > g(y). Lety = z,andy; = (T + y;—1)/2 fori = 1,...,N. Smce

eachy; € G, wehaved,, - (yi-1 — ¥i) = —dy, - (T — yi) > — 4, and because d,, is an w-subgradient of
€ w N

9() @ yi, g(yi) < (1 +4w)g(yi-1) + xp=g- Thisimplies that g(yx) < (1 + 4)Vg(7) + - <

(1 +7)g(x*) + 2e + 4e. S0 g(2) < g(yn) + 2e < (1 + 7)g(a*) + 8e. u

Now we show that h(.) and h(.) satisfy property (A). First, as in [5], we show that to get an w-
subgradient, it suffices to approximate each component of a subgradient to within a certain additive error.
Then, we argue that with alarge enough sample size, at any point = € P, there is a subgradient ofﬁ(.) that
is component-wise close to a subgradient of A(.) with high probability. Finally, we bound the size of G,
and show that we can set V' large enough, keeping it polynomially bounded, so that property (A) holds with
high probability.

Lemma 3.4 Let d be a subgradient of A(.) at the point z € P, and suppose that d is a vector such that
ds € [ds — wwy, ds + ww?] for all S. Then d isan w-subgradient of h(.) at z.

~

Proof : The proof isalmost exactly asin[5]. Lety € P. Then, h(y) — h(z) > d-(y —z) =d- (y —z) +
(d—d)-(y—x). Sincexg,ys > 0 for al S, the latter term is at least

Z (ds — ds)ys + Z (ds — dg)zs > Z(—wwéys —wwizs) > —wh(y) — wh(z).
S:dsSdAS S:stgds S



Recall that A = max (1, maxaca,s Z—?) Consider any point = € P, and let (u%, z%) be an optimal
solution to the dual of f(x). where 2% issfhe dual multiplier corresponding to inequalities (2). It is shown
in [5] that the vector d = w! — 3", pa(T4)T 2% is asubgradient of i(.) a = and ||d|| < A|«!. So the
Lipschitz constant of A(.) isat most K = A||u!||. The sample average function & (.) is of the same form as
h(.), only with adifferent probability distribution, so

d=uw'=) pa(@hH Tz, ©)
A

is a subgradient of A(.) at « and the Lipschitz constant of A(.) is also at most K. Observe that d is just

w!' — (T4)T 2 averaged over the scenarios sampled to constructh(.) since pa = Na /N, andand E[d] = d
where the expectation is over these samples. Also for any scenario A, component S of «J — (T4)T 2% lies
n [—Aw}, wk] since the dual has the constraint (74)" 24 < w!. The following lemma shows that d will

be component-wise close to d with high probability, and is therefore an approximate subgradient of g(.) at
x by Lemma 3.4.

Lenma35b Let X;,i = 1,..., N = 4(1:720‘)21n(§) be iid random variables where each X; € [—a,b),
a,b> 0, @ = max(1,a/b), and c isan arbitrary positive number. Let X = (3", X;) /N and p = E[X] =
E[X;]. ThenPr[X € [ — cb, pu+cb]] >1—6.

Proof : LetY; = X, +a € [0,a+badY =3,Y,. Lety/ = E[Yi] = p + a. We have Pr[X >
i+ cb] = Pr[Y > E[Y](1 + cb/p)], and Pr[X < pu— cb] = Pr[Y < E[Y](1 — ¢b/u')). Letv = cb/p'.
Note that 1/ < a + b. Since the variables Y; are independent we can use Chernoff bounds here. The latter

V2 u! ((‘be

probability, Pr[Y < E[Y](1 — v)], isat most e T2t = ¢ W@ < g To bound PrlY > E[Y](1+v)]

we consider two cases. If v > 2
V2 91 (cb) s

which is bounded by 2~ a5 < $.1f v < 2e — 1, then the probability isat most e i@y = ¢ Weth) < g.
So using the union bound, Pr[X ¢ [uw—cb,p+cb]] <6 I

Theorem 3.6 Wth probability at least 1 — 4, any optimal solution & to the sample average problem con-
structed with at most poly(input size, 7,ln( ),In(})) samples, satisfies, h(&) < (1 +7) - OPT + 8e.

Proof :  We will satisfy property (A) with probability 1 — . Let n = |G|. Recall that N = log(2££)
and w = gk . Note that log(K R) is polynomially bounded in the input size. Using Lemmas 3.5 and 3.4 by

taking V' = % In (222 ) samples to construct A(.), a any point =, the subgradient d,, of /(.) given by
(3) isan w-subgradient of i(.) with probability at least 1 — 6 /n. So with probability at least 1 — §,d, isan
w-subgradient of (.) at every point x € G.

To bound 7, note that n < 2N (/%) < N|G’|2. Each grid cell of ¢ contains a ball of radius r =
m and therefore has volume at least ¥"*V,,, where V,,, is the volume of the unit ball in m dimensions.
The grid cells are pairwise disoint (volume-wise), and have total volume at most vol B(0, R)) < R™V,,
since? C B(0, R). So|G| < (ZENEVm)™ pyygging thisabove, weget that N = O(X2N2 In(22Ne') /42) —

O (mA?log?(ZE) In(2E4im)) which is poly (input size, 7, In(¢), In(5)). n

As shown in [5], under the dlight assumption that for every € P and scenario A, either fi(z) is
minimized at = = 0, or thetotal cost w' -z + f4(z) > 1, by sampling AIn(§) timesinitially, one can detect
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with probability atleast1 — 9§ (6 < 1) that either x = 0 is an optimal solution to (P), or that OPT > o/A
where o = 1n(1/5) So to get a multiplicative (1 + «)-guarantee, if we detect that OPT is large after this
initial sampling, then setting v = x/2 and € = xp/(16)) above, we get that poly(input size, A, 1, In(}))

samples suffice to ensure that any optimal solution to (SAA-P) isa (1 + x)-optima solution to (P) with
probability at least 1 — 2.

Extension to continuous distributions. Notice that nothing in the preceding analysis relied on the fact
that we have a discrete probability distribution. In particular Lemma 3.5 and Corollary 3.4 aso hold for
continuous distributions. This shows that the SAA method with a polynomial number of samples, returns a
near-optimal solution to the class of programs (P) where the second stage scenario is specified by a parameter
¢ that is continuously distributed with probability density function p(&), the objective function is h(x) =

w'-z+E¢ [ f(z,8)], whereEg[ O] = [p(&)f(z, &) d¢ and f(z,£) isthe cost of scenario & determined
by the minimization problem in (P) With parameters w(&), q(&), h(&), (&), B(§), D(&) and T'(£). Here

“’(5)5) As before we have that at every feasible point = and scenario &, (8) 7'(§) >0,
Wg

(b) [ p(¢ ,€)d¢ > 0, and that the primal and dual problems corresponding to f(z, &) are feasible.

A= max(l supé g
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