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Abstract

Stochastic optimization problems attempt to model uncertainty in the data by assuming that the input
is specified by a probability distribution. We consider the well studied paradigm of 2-stage models
with recourse: first, given only distributional information about (some of) the data one commits on
initial actions, and then once the actual datais realized (according to the distribution), further (recourse)
actions can be taken. We show that for a broad class of 2-stage linear models with recourse, one can,
for any e > 0, in time polynomial in % and the size of the input, compute a solution of value within a
factor (1 + ¢) of the optimum, in spite of the fact that exponentially many second-stage scenarios may
occur. In conjunction with a suitable rounding scheme, this yields the first approximation algorithms for
2-stage stochastic integer optimization problems where the underlying random datais given by a“black
box” and no restrictions are placed on the costs in the two stages. Our rounding approach for stochastic
integer programs shows that an approximation a gorithm for adeterministic analogueyields, with asmall
constant-factor loss, provably near-optimal solutions for the stochastic generalization. Among the range
of applicationswe consider are stochastic versions of the multicommodity flow, set covering, and facility
location problems.

1 Introduction

The study of stochastic optimization problems dates back to the 1950's and the work of Dantzig [7] and
Bedle [2], and attempts to model uncertainty in the data by assuming that (part of) the input is specified
in terms of a probability distribution, rather than by deterministic data given in advance. Stochastic opti-
mization techniques and models have become an important paradigm in a wide range of application areas,
including transportation models, logistics, financial instruments, and network design. Stochastic models are
often computationally quite difficult, both from a practical perspective, as well from the point of view of
computational complexity theory; even extremely specialized (sub)problems are # P-complete.

We focus on an important and widely used model in stochastic programming, the 2-stage recourse
model: first, given only distributional information about (some of) the data, one commits on initial (first-
stage) actions, and then once the actual data is realized, according to the distribution, further recourse
actions can be taken, so that one can augment the earlier solution to satisfy the revealed requirements, if
necessary. Typically the recourse actions entail making decisions in rapid reaction to the observed scenario,
that is, at the “last minute,” and are therefore costlier than decisions made ahead of time. Many applications
come under this setting and much of the textbook of Birge and Louveaux [4] is devoted to models and
algorithms for this class of problems. Consider for example the problem of opening facilities to serve a
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set of clients. Initialy given only distributional information (likelihood estimates) about the client demands
(in addition to deterministic data for the facility and assignment costs), the first-stage decisions consist of
deciding which facilities to open initially; but then once the actual input (the client demands) is realized
according to this distribution one can extend (in a second stage) the solution by opening more facilities (if
necessary) incurring a certain recourse cost. These recourse costs are typically more expensive than the
original ones, e.g., because opening a facility at the last minute to handle excess demand might involve
deploying resources at a much smaller lead time, may be different for the different facilities, and could even
depend on the scenario that materializes.

We shall initially focus on the following stochastic generalization of the set cover problem: we are
given a family of sets Sy, ..., S,, over aground set U, where each set S has an a priori weight «f, and
an a posteriori weight wg associated with it. In the first stage, one selects some of these sets, incurring
each associated weight w, then asubset A C U is drawn according to a specified distribution, and then
additional sets may be selected (incurring their second stage weights) so as to ensure that A is contained
in the union of the selected sets (in both stages). The aim is to minimize the expected cost of the solution.
Note that an explicit representation of afeasible solution would require specifying an exponential amount of
information (since there are 2! possible choices for A), and so it will be necessary to give more compact,
algorithmic representations.

An important issue left ambiguous in the description above is the way in which the probability distri-
bution is specified; several approaches have recently been considered in papers that address related 2-stage
stochastic optimization problems. Dye, Stougie, and Tomasgard [8], and later, Ravi and Sinha [22] assume
that there are only a polynomial number of scenarios, i.e., choicesfor A, that occur with positive probability.
Independently, Immorlica, Karger, Minkoff, and Mirrokni [14] consider both this assumption, as well asthe
model where each element occurs with its own independent probability, and in so doing they enlarge the
space of scenarios to be exponentialy large. Thisis done with the rather severe restriction of assuming that
the costs in the two stages are proportional, that is, there is a parameter A such that «ff = \w} for each
set S. Gupta, Pal, Ravi, and Sinha[13] also require this assumption, but give a more general way to specify
the distribution, which we shall call the black-box model: they assume that the algorithm may make use of
samples that are drawn according to the distribution of scenarios.

Our Results  We achieve the best qualities of all of these approaches. we work in the black-box model and
obtain results in settings where the costs in the two stages need not be proportional, and the second-stage
costs may even depend on the particular scenario realized (asin [22]). We obtain the first approximation
algorithms for a variety of applications including the stochastic versions of the multicommaodity flow, set
covering, and facility location problems, without placing any restrictions on the underlying probability dis-
tribution or the cost structure of the input. Moreover, the performance guarantees we obtain, in some of
these applications, are improvements on the results obtained by [22, 14, 13] in weaker models.

We show that, given a class of (deterministic) set cover instances (e.g., the vertex cover problem), for
which we have a p-approximation guarantee with respect to the natural linear programming relaxation, we
can, for any e > 0, obtain arandomized (2p + ¢)-approximation algorithm for the stochastic generalization.
This generalizes and improves upon performance guarantees of [13].

Our result has two principle components. First, we show that if we formulate the stochastic set cover
problem as an (exponentialy large) integer program and solve its linear programming (L P) relaxation, then
asurprisingly simple rounding approach suffices to prove the guarantee claimed above. The essence of our
approach is that the relaxation indicates for each element either that it is at least half covered in the first
stage, or else it must be at least half covered in each scenario in which it occurs in the second stage. This
alows us to decouple the two stages (and indeed each of the scenarios for the second stage), and apply
the deterministic result to each separately. Thus, the fact that we lose a factor of 2 is exactly tied into the
fact that we are considering a 2-stage problem. It is important to note that we need to examine only the



first-stage variables to decouple the two stages, and not the entire (exponentially large) LP solution. In
fact, this decomposition can be applied to a number of stochastic integer optimization problems, allowing
one to “reduce” the stochastic problem to the deterministic analogue. Furthermore, if we consider the case
when there are only a polynomial number of scenarios, then this rounding approach is sufficient to yield
polynomial time algorithms with strong performance guarantees for awide range of applications.

Second, and thisisthe moretechnically difficult part of the paper, we give afully polynomial randomized
approximation scheme for solving these stochastic linear programming problemsin spite of the fact that they
are #P-hard. (Not surprisingly, the LP has an exponential number of both variables and constraints.) We
believe that this is a tool of independent interest, in particular, in the stochastic programming literature,
and will find application in the design of approximation algorithms for other stochastic integer optimization
problems.

We approximately solve this linear program by working with an equivalent (but compact) convex pro-
gramming formulation, and show that the ellipsoid algorithm can be adapted to yield such a scheme. In
the ellipsoid algorithm for convex programming, the algorithm generates a sequence of lipsoids, starting
with an elipsoid that contains the entire feasible region; in each iteration, a hyperplane is generated that
is intersected with the current ellipsoid, and the next ellipsoid generated is the minimum-volume ellipsoid
containing this intersection. If the current ellipsoid center is infeasible, then one uses a violated inequality
to generate the hyperplane; otherwise, the hyperplane is obtained by computing the subgradient of the ob-
jective function at the ellipsoid center. We introduce a notion of approximate subgradients that is sufficient
to yield the same convergence of the algorithm. Furthermore, we show that this approximate subgradient
can be computed in randomized polynomial time using samples from the distribution (obtained from ablack
box). Findly, the elipsoid algorithm outputs the iterate with the best objective function value. However,
evaluating the objective function value at a given point for our class of stochastic programs may be # P-
hard; nonetheless, approximate subgradient information is sufficient to efficiently compute a point of cost
close to the cost of the minimum-cost iterate (without, however, computing these costs). Note that for the
rounding algorithm, one only needs the convex program’s (near-)optimal solution to compute the solution
for the stochastic integer optimization problem.

Our agorithm returns a solution of objective function value within (1 + €) of the optimum for any
e > 0, in running time bounded by a polynomial in the input size, % and the maximum ratio between the
second- and first-stage costs. The algorithm works for both discrete and continuous distributions, and does
not require any assumptions about the probability distribution (or the cost structure of the input). This result
should be viewed as indicative of the fact that an exponential number of scenarios is not an insurmountable
impediment to the design of efficient algorithms for these problems. (For example, in [3], this viewpoint
was used as amotivation for considering so-called “robust” versions of deterministic optimization problems,
as opposed to their stochastic versions.) We believe that this work could lead to both, the development of
algorithms with provable guarantees for more genera stochastic optimization models, such as multistage
problems, and better computational procedures for solving 2-stage stochastic LPs.

Related Work Two-stage stochastic programs, both linear and integer programs, have been extensively
studied in the stochastic programming literature, but relatively little is known about polynomial-time al-
gorithms that deliver solutions that are provably good approximations to the optimum stochastic linear or
integer program objective value.

It is useful to compare our result with some work in the stochastic programming literature on the sam-
ple average approximation (SAA) method for solving stochastic programs, where one samples from the
distribution on scenarios and then solves an approximate problem, estimating the probability of a scenario
by its frequency. Note that the estimated distribution has support of size at most the number of samples.
While there are results that prove asymptotic convergence to the (true) optimal solution as the number of
samples goes to infinity (see [23] and the references therein), and it has been reported that some of these



algorithms converge quickly in practice [18, 29], fewer results are known that give bounds on the rate of
convergence and the sample size required to obtain a near-optimal solution (with high probability). Kley-
wegt, Shapiro, and Homem-De-Mello [16] (see also [23]) prove a bound on the sample size required to
obtain a near-optimal solution that is polynomial in the dimension, but depends on the variance of a certain
guantity (calculated using the scenario distribution) that might be exponential in the input size. Whereas the
running time of our algorithm depends on the parameter ), it does not depend on the underlying probability
distribution. The agorithm of [13] also has the same dependence on A. In fact, this dependence on \ is
unavoidable; we show that a performance guarantee of p reguires 2(\/p) samples. The dependence on%
is aso necessary in light of the known # P-hardness results. To the best of our knowledge, this is the first
result to show that (a broad class of) 2-stage stochastic LPs can be solved in time polynomial in the input
size, A, and 1.

Dyer, Kannan, and Stougie [9], and Nesterov and Vial [21] aso give algorithms for stochastic optimiza-
tion and we now compare our algorithm with their work. Dyer et a. focus on computing an estimate for
the objective function value at a given point (for a maximization problem) by sampling from the distribution
sufficiently many times. But this yields a running time that is only polynomia in the maximum value at-
tained by any scenario, and does not yield a polynomial approximation scheme for our setting. In contrast,
our agorithm is based on approximating the subgradient at a given point, and consequently the running
time depends on the variation in the subgradient vector components which we show is bounded by A\. The
algorithm of Nesterov and Via also employs subgradients and uses a subgradient-descent approach; they
obtain arunning time that depends on the maximum variation in the objective function value in the feasible
region, which in general is not polynomially bounded.

The first worst-case analysis of approximation algorithms for 2-stage stochastic integer programming
problems appears to be due to Dye et al. [8], who give a constant performance guarantee for a resource
provisioning problem (a maximization problem) in the polynomial scenarios setting based on rounding a
linear program. Ravi and Sinha [22], and independently Immorlica et a. [14], and subsequently Gupta et
a. [13] consider various 2-stage problems including applications that follow from our general settings. We
now contrast our results in these applications with previous results.

For the vertex cover problem, our technique yields a (4 + €)-approximation algorithm in the black-box
distribution model. In contrast, [13] give an 8-approximation agorithm in the black-box model with pro-
portional costs, and [22] give a guarantee of 2 in the polynomial scenarios setting. We also give extensions
to multi-covering generalizations of the set cover problem. For the stochastic uncapacitated facility loca-
tion problem, we give a (3.225 + €)-approximation algorithm, whereas [13] give a guarantee of 8.45 in the
black-box model with proportiona costs, and [22] give aguarantee of 8 in the polynomial scenarios setting.
Our approach yields constant-factor performance guarantees for several facility location variants, including
facility location with penalties, or soft capacities, or service installation costs. Asin [22], our results also
extend to the case with scenario-dependent second-stage costs.

The rest of the paper is organized as follows. In Section 2, we focus on a stochastic generalization
of the set cover problem to illustrate our rounding approach and motivate a compact convex programming
relaxation of the problem. In Sections 3,4 we describe the algorithm to solve the resulting convex program
and prove that it computes a near-optimal fractional solution to the stochastic set cover problem; Section 5
extends this analysis to show that the algorithm can be used to solve arich class of 2-stage programs to near-
optimality. In Section 6, we consider various applications and present approximation algorithms for 2-stage
stochastic integer problems. Section 7 proves a lower bound on the sample size required in the black-box
model, and we conclude in Section 8.



2 Anillustrative example: the stochastic set cover problem

The deterministic weighted set-cover problem (DSC) is the following: given a universe U of elements
e1,...,e, and acollection of subsets of U, Sy, ..., S, with set S; having weight w;, we want to choose a
minimum weight collection of sets so that every element ¢;, j = 1,...,n, isincluded in some chosen set.
The problem can be formulated as an integer program and the integrality constraints can be relaxed to yield
the following linear program:

min Y wews subjectto Y zg>1 forale; wg >0 forals. (SC-P)
S S:ecS

Let OPTp,; denote the optimal value of (SC-P).

In the 2-stage stochastic generalization of the problem, abbreviated SSC, the elements to be covered are
not known in advance. There is a probability distribution over scenarios, and each scenario specifies the
actual set of elements A C U to be covered. For our purposes, ascenario isjust some subset of the elements
A C U. Wewill assume without loss of generdlity that the set of all possible scenarios is the power set 3/
(including the empty set ()). We use p4 to denote the probability of scenario A (ps could be 0, if scenario
A never occurs). We will never explicitly the quantities p4 in the algorithm. Throughout we will use A to
index the scenarios.

Each set .S; has two weights associated with it, an a priori weight «}, and an a posteriori weight w;!.
In the first stage, one selects some of these sets, incurring a cost of u}[s for choosing set S, then a scenario
A C U isdrawn according to a specified distribution, and then additional sets may be selected incurring
their second stage weights so as to ensure that A is contained in the union of the sets selected (in both
stages). The aim isto minimize the expected total cost of the solution, that is, the sum of the cost incurred
in stage I, and the expectation over al stage Il scenarios A of the stage Il cost of scenario A. The two-stage
problem can also be formulated as an integer program and the integrality constraints can be relaxed to yield
alinear program.

min Z ngs + ZpAwqurAS (SSC-PL)
s A,S
st ) me+ Y ras>1 forall A,e € A, (1)
S:e€eS S:eeS
zg,7A,5 >0 forall A, S.

Variable z g indicates whether set S is chosenin stage |, and 4 s indicates if set S is chosen in scenario A.
Constraint (1) saysthat in every scenario A, every element in that scenario has to be covered by a set chosen
either in stage | or in stage II. A {0, 1}-solution corresponds exactly to a solution to our problem. The
following theorem forms the basis of our methodology for tackling various 2-stage stochastic optimization
problems. Let OPT denote the optimal value of (SSC-P1).

Theorem 2.1 Suppose that we have a procedure that for every instance of DSC produces a solution of cost
at most p - OPTp.;. Then, one can convert any solution (x, ) to (SSC-P1) to an integer solution losing a
factor of at most 2p. Thus, an optimal solution to (SSC-P2) gives a 2p-approximation algorithm.

Proof : Let h(.) denote the objective function. We will argue that we can obtain an integer solution (z, 7) of
cost at most 2p - h(z, 7). Observe the following simple fact: an element e is either covered to an extent of at
least % in the first stage by the variables zg, or it is covered to an extent of at Ieast% by the variables 4 g in
every scenario A containing e. Let E = {e : Y q..cq2s > 3}. Then (2z) isafractional set cover solution
(i.e.,, asolution to (SC-P)) for the instance with universe set E and so, one can obtain an integer set cover
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for thisinstance of cost at most p- " ¢ 2wizs. Similarly, for any scenario A, (2r4) isafractional set cover
for the elementsin A \ E, since for each such element e, we haveZSzeeS TAS > % Therefore, one can
cover these elements at acost of at most p - > g wir 4 5. Soif we output 7 as the first-stage decisions, we
get asolution of cost at most 2p - h(z, ). ]

Corollary 2.2 If theintegrality gap of (SC-P) is p, then the integrality gap of (SSC-P1) is at most 2p.

It iswell known [6] that “the greedy algorithm” returns a solution to the deterministic set cover problem
of weight at most Inn - OPTp;. Thus, Theorem 2.1 shows that if we could solve (SSC-P1), then we could
get a 2 In n-approximation algorithm for SSC. In particular, when there are only a polynomia number of
scenarios with non-zero probability, we obtain a 2 In n-approximation algorithm. In general, however, it
seems difficult to find an optimal solution to (SSC-P1) in its present form, since it has both an exponential
number of variables and an exponential number of constraints; even writing out an optimal solution might
take exponential space. Observe that in the proof of Theorem 2.1, we needed to examine only the stage
| variables zg of the fractional solution, in order to round it to an integer solution. This is important,
because if the rounding algorithm required information about each stage |1 scenario A, that is, an exponential
amount of information (asin [22]), then one would not get a polynomial-time algorithm even if one could
“solve” (SSC-P1) efficiently. In contrast, Theorem 2.1 shows that if we could somehow compactly express
(SSC-P1), and solve the resulting program efficiently and find an (near-) optimal (fractional) first-stage
vector z, then one can obtain a 2p-approximation algorithm. This motivates the following formulation with
only the stage | variables zg.

min Y whzs+ f(z) subjectto zg >0 for all S, (SSC-P2)
s

where f(z) = > pafa(z),

ACU
and fa(z) = min ZwISIrA,S

s
s.t. ZTA,SZI_ Z(L‘S forall e € A,
S:eeS S:eeS
ras >0 for all S.

It is straightforward to show that (SSC-P2) and (SSC-P1) are equivalent mathematical programs, and that
the objective function of the latter is convex.

3 Solving the convex program: algorithm overview

We now leverage the fact that the objective function of (SSC-P2) is convex to show that the ellipsoid method
can be adapted to find a near-optimal solution to (SSC-P2) in polynomial time. In doing so, a significant
difficulty that we need to overcome, is the fact that evaluating f(z), and hence the objective function, may
in general be #P-hard. Section 5 generalizes the arguments to show that the algorithm can be applied to a
more general class of 2-stage stochastic programs.

The elipsoid method starts by containing the feasible region within a ball and generates a sequence of
ellipsoids, each of successively smaller volume. In each iteration, one examines the center of the current
ellipsoid and obtains a specific half-space defined by a hyperplane passing through the current ellipsoid
center. If the current ellipsoid center is infeasible, then one uses a violated inequality as the hyperplane,
otherwise, one uses an abjective function cut, to eliminate (some or all) feasible points whose objective



function value is no better than the current center, and thus make progress. A new €ellipsoid isthen generated
by finding the minimum-volume ellipsoid containing the half-ellipsoid obtained by the intersection of the
current one with this half-space. Continuing in this way, using the fact that the volume of the successive
€llipsoids decreases by a significant factor, one can show that after a certain number of iterations, the feasible
point generated with the best objective function value is a near-optimal solution.

The above description makes clear that the inability to evaluate f(z) is an obstacle to applying the
ellipsoid method in this case. Let P = P, denote the polytope {z € R™ : 0 < zg < 1 foral S}, and let
h(z) bethe (convex) objective function w* - z + f(x). If the current iterate z; isfeasible, then one could add
the constraint h(z) < h(z;) while maintaining the convexity of the feasible region. But then, in subsequent
iterations, one would need to check if the current iterate is feasible, and generate a separating hyperplane if
not. Without the ability to evaluate (or even estimate) the objective function value, we cannot even decide
whether the current point is feasible (or even almost-feasible), and finding a separating hyperplane appears
to pose a formidable difficulty. An aternative possibility isto use cuts generated by a subgradient, which
essentially playsthe role of the gradient when the function is not differentiable.

Definition 3.1 Let g : R™ — R be a function. We say that d is a subgradient of ¢ at the point « if the
inequality g(v) — g(u) > d - (v — u) holdsfor every v € R™.

Note that the subgradient at a given point need not be unique. It is known (see [5]) that if a function
is convex then it has a subgradient at every point. If d isthe subgradient at point z;, one can add the
subgradient cut d; - (xz —z;) < 0 and proceed with the (smaller) polytope ;1 = P;nN{x : d;-(z—=;) < 0}.
Unfortunately, even computing the subgradient at a point 2 seems hard to do in polynomial time for the
objective functions that arise in stochastic programs. To circumvent this obstacle, we define the following
notion of an approximate subgradient which is crucial to the working of our algorithm.

Definition 3.2 We say that d is a (w, D)-subgradient of a function g : R™ — R at the point u € D if for
everyv € D,wehave g(v) —g(u) > d- (v —u) — wg(u).

Wewill only use (w, P)-subgradients in the algorithm, which we abbreviate and denote as w-subgradients
from now on. We show that one can compute, with high probability, an w-subgradient of 4(.) at any point
z, by sampling from the black box on scenarios. At a feasible point ;, we compute an w-subgradient d;
and add the inequality d; - (x — z;) < 0 to chop off aregion of P; and get the polytope P;;. Since we use
an approximate subgradient to generate the cut, we might discard points with objective function value better
than that at the current iterate x;; but one can show that for each point y in P41 \ P;, h(y) > (1 — w)h(z;),
implying that a discarded point has function value not much better than k(). Continuing this way we
obtain a polynomial number of points xy, z1, . . ., zx such that z; € P; C P;_ for each 4, and the volume
of the ellipsoid centered at x;, containing P, (and hence of P;.) is“small” (thisis made precise later). Now
if the function h(.) has bounded variation on nearby points, then one can show that miny h(z;) is close to
the optimal value h(z*) with high probability. Since we approximate the subgradient at a feasible point x
(and not the function value f()), our running time depends only on the variation in the subgradient vector
components, which we show is bounded by the maximum ratio of the stage Il and stage | costs.

One last hurdle remains however. Since we cannot compute 4 (xz) we will not be able to compute the
point z = argmin; h(z;). Nonetheless, by using approximate subgradients we will find a point z in the
convex hull of zy, ..., z, a which the objective function value is close to min; A(z;) (without, however,
computing these values). At the heart of this procedure is a subroutine that given two points y, y2, returns
a point y on the line segment joining 1 and y» such that h(y) is close to min(h(y), h(y2)). We find y
by performing a bisection search, using the subgradient to infer which direction to move along the line
segment. By repeatedly calling the above subroutine with z (initialized to 25) and x; fori = 1,..., k, each



time updating z to the point returned by the subroutine, at the end we get a point z such that h(z) is close
to min; A(z;).

4 Algorithm detailsand analysis

Let OPT = min{h(z) : x € P} denote the optimal solution value. We describe the algorithm for an
arbitrary convex function h(.) and an arbitrary (rati onal) polytope P (the feasible region is bounded). We

use ||u|| to denote the 4, norm of , i.e,, (-7, u Z) . The following definition makes precise the notion of
bounded variation.

Definition 4.1 (Lipschitz Condition) Given a function g : R™ — R, we say that g has Lipschitz constant
(at most) K if [g(v) — g(u)| < K||v — ul| for all u,v € R™.

Let the objective function 4 : R™ — R have Lipschitz constant K. We shall assume that = > 0 is
a defining inequality of P. We also assume that the polytope P is contained in the ball B@M R) = {z :
|z < R}, and contains a ball of radius r such that In R and In(1) are polynomially bounded. (For all
the optimization problems considered, it is trivial to set R and r so that they satisfy all these properties;
moreover Lemmas 6.2. 4—6 2 6 in [12] show that one can aways get such R and r.) Set V' = min(1,r) and

define A = max(l maxg — ) We assume that A (or an upper bounds on it) is known to the algorithm.

The bulk of the work i |s performed by a procedure FindOpt (see Fig. 1). FindOpt takes two parameters
v and e and returns a feasible solution z such that #(z) < OPT/(1 — ) + ¢, where y < 1 without loss
of generality, assuming that one can compute w-subgradients for a sufficiently small w, in ti me polynomial
in the dimension m, and ln(KVRm) (excluding the time to compute the w-subgradients). This is the main
procedure that uses the ellipsoid method and the notion of w-subgradients to get close to an optimal solution
asdiscussed earlier. It uses a subroutine FindMin which takes a set of feasible points %, . . . , zj, and returns
afeasible point having function value close to min; h(z;) using w-subgradients. To convert thisto a purely
multiplicative guarantee we use aprocedure ConvOpt to bootstrap algorithm FindOpt. In procedure ConvOpt
we first sample a certain number of times from the distribution on scenarios, and determine with high
probability that either, x = 0 is an optimal solution and return this solution, or obtain a lower bound on
OPT and then call FindOpt setting v and e appropriately. By wrapping FindOpt within procedure ConvOpt,
we may assume that FindOpt executes only if OPT is“large,” and thus set v and € so that FindOpt returns
asolution of cost at most (1 + ) - OPT.

For ease of understanding, we divide the analysis into two parts. In Section 4.1 and prove that procedure
FindOpt returns a solution of objective value at most OPT /(1 — ) + € in time polynomial in the dimension
m, and In(Z£2). We also show that, with high probability, ConvOpt correctly determines if OPT islarge
enough and if FindOpt should be called. By our earlier discussion, one can always choose R and V' so that
In(£) ispolynomial intheinput size. In Section 4.2 we show that for the stochastic set cover problem, one
can efficiently compute w-subgradients (with a sufficiently high probability), and bound the parameter K,
so that the entire procedure runs in polynomial time and delivers a solution of cost at most (1 + ) - OPT
with high probability. In Section 5 we generalize these arguments and show that for alarge class of 2-stage
stochastic programs, one can efficiently compute w-subgradients and bound the Lipschitz constant K, to
argue that procedures FindOpt and ConvOpt can be used to find a (1 + x)-optimal solution in polynomial
time.

4.1 Analysisof the Generic Algorithm

We first analyze procedure FindOpt. Clearly we maintain the stated invariant. We will need the following
well known facts (see for example, [12]).



ConvOpt(k, d) [Returnsz suchthat h(z) < (1+ ) - OPT with probability at least 1 — §. Assumed < 1]
Cl1. Define A = max(1, maxswy /wg). Sample M = XIn(}) times from the distribution on scenarios. Let X =
number of times a non-null scenario occurs.
C2. If X =0, return z = 0 asan optimal solution.
C3. Otherwise (with high probability), OPT > o/\, where p = ﬁ Set e = ko/(2)\), v = x/3. Return
Findopt(v, €).

FindOpt(v, €) [Returnsapoint z suchthat h(z) < OPT/(1 —~) + €. Assumey < 1]
OL Setk + 0, yo + 0, N « 2m?In(L8EEY) 'y « Nlog(8¥KR) andw « 4/2n. Let By + B(0, R) and
Po + P.

02. Fori =0,...,N dothefollowing.
[We maintain theinvariant that £; is an ellipsoid centered at y; containing the current polytope Py,.]

a Ify; € Pk,Aset xTp + y;. Let d), be an w-subgradient of h(.) at z;. Let H denote the haf space
{ e R™ :dy - (x —xp) <0} Set Pryr + PrNHandk + k+1.

b) Ify; ¢ Py, leta -z < bbeaviolated inequality, that is, a - y; > b, whereasa - z < bforall z € Py. Let
H bethehalf space {z € R™ :a - (z —y;) < 0}.

c) Set E;;1 tobethe lipsoid of minimum volume containing the half-ellipsoid £; N H.

O3. Let k « k — 1. We now have a collection of points xg, ...,z such that each x; € P, C P;_;. Return
Findmin(w; zo, . - ., ).

FindMin(w; o, ..., Tk)

ML Setp < €/4k, @ + xo, N’ « log(3EEE),
M2. Fori=1,...,k dothefollowing. .
[We maintain theinvariant that 1(z) < (mini_} h(z;) + (i — 1)p) /(1 — w) DN

a) We usebinary search to find y onthe z — z; line segment with value close to min(h(Z), h(z;)). Initidize
Y1 < T, Y2 & T
b) Forj =1,..., N' dothefollowing.
[Wemaintainthat h(y;) < h(Z)/(1 —w)i=1, h(yz) < h(x;) /(1 —w)i~1]
— Lety + “1¥2. Compute an w-subgradient d of h at the point y. If d - (y1 — y») = 0, then exit the
loop. Otherwise exactly oneof d - (y; — y) andd - (y, — y) is positive.
— Ifcf~(y1 —y) > 0,sety; <y, elsesetys + y.
C) Setz «+y.

M3. Return z.

Figure 1. The convex optimization algorithm.

Fact 4.2 The volume of the ball B(u,D) = {z € R" : ||z —u|| < D} whereu € R™",D > 0 is
D™vol(B(0,1)).

Fact 4.3 Let F C R™ bean ellipsoid and H C R™ be a half space passing through the center of E. Then
thereis a unique elipsoid E' of minimum volume containing the half-ellipsoid EN H and QL. < ¢=1/Cm),

Fact 44 Let T : R™ — R™ be an affine transformation with 7'(x) = Qz + t, where det @ # 0. Then for
any set S C R™ we have vol(T'(S)) = | det Q|vol(S).

Lemma 4.5 The points zy, . .. ,z; generated by FindOpt at the end of step O2 satisfy mirf_, h(z;) <
(OPT + £)/(1 - w).



Proof : Let z* be an optimal solution. If d; - (z* — z;) > 0 for some [, then h(xz;) < h(z*)/(1 — w)
since d; is aw-subgradient at ;. Otherwise let r = s+ Congder the affine transformation 7" defined by
T(z) =rly(x—z*)+z* = rz+ (1 —r)z* where I,,, isthe m x m identity matrix, and let W = T'(P), so
W isashrunken version of P “centered” around z*. Observethat, (1) W C P because P is convex, and any
point T'(z) € W isaconvex combination of z € P and z* € P, s0T'(z) € P; (2) vol(W) = r™vol(P) >
(rV)™vol(B(0,1)) using Facts 4.4 and 4.3 and since P contains aball of radius V' by assumption; and (3)
foranyy =Tz e W, ||y —z*|| = r||lz —2*|| < ;% sincez,z* € B(0,R), s0 h(y) < h(z*) + § since h(.)
has Lipschitz constant X. Since V?ILEIIEJEJF)I) < e~1/(2m) for every i, and the volume of the ball £, = B(0, R)
is R™vol (B(0,1)), plugging things together we obtain

vol(Py) < vol(Ex) < e N yol(Ey) = (%)mvol(B(O, 1)) < vol(W),

so there must be apoint y € W that lies on a boundary of P, generated by a hyperplaned; - (x —x;) = 0.
Thisimpliesthat h(z;) < h(y)/(1 —w) < (h(z*) + £) /(1 — w). n

Lemma 4.6 Procedure FindMin returns a point z such that h(z) < (minf_ h(z;) + £)/(1 — w)*V'.

Proof : The proof follows from the invariant stated in step M2 with : = k£ + 1, so we show the invariant.
The invariant clearly holds when i = 1. Suppose the invariant holds at the beginning of iteration 7. We will
show that the inner “For j=...” loop returnsapoint i such that h(y) < min(h (%), h(1))/(1—w)™ +p. So
after we set 7 < y in step M2c) at the end of iteration 4, we get that h(z) < (mirj_, h(x;) +ip)/(1—w)?',
which satisfies the invariant at the beginning of iteration i + 1.

To prove the claim about the inner loop, first notice that if at any point we haved - (y1 — y2) = 0, then
sincey,, y2 and y al lieon the z — =; line segment, we also haved - (z—y) = d- (x; —y) = 0. Thisimplies
that 2 (y) < min(h(z), h(z;))/(1 — w) and in this case the claim holds. So assume that this is not the case.
We will show by induction that h(y;) < h(z)/(1 —w)’~! and h(y2) < h(z;)/(1 — w)i~! a the start of the
4 iteration of theinner loop. Thisistrue at the beginning of theinner loop when j = 1. Suppose that thisis
truefor iterations 1, ..., j — 1. Sowehave, h(y1) < h(z)/(1—w)’~> and h(yz) < h(z;)/(1 —w)’~* a the
start of the (j— l)th iteration. Initeration j—1, wesety = 12 and either d-(y; —y) > 0 ord-(ya—y) > 0.
In the former case, wehave h(y) < h(y)/(1 —w) < h(z )/( w)’~! and we update y; + y; similarly, in
the latter case we have h(y) < h(z;)/(1 —w)’~! and we update 3 < y. So in either case, at the beginning
of the 5% iteration we maintain that h(y;) < h(z)/(1 — w)?~" and h(yz) < h(z;)/(1 — w)i~', and by
induction the invariant holds through all iterations. At the end of iteration N, we have ||y — y1 ]|, |y — yol|
both at most 22240 < p/ K, since ||z — ;]| < 2R asz and z; both liein P C B(0, R), which implies that
h(y) < min(h(y1), h(y2)) + p < min(h(Z), h(z;))/(1 — w)N" + p. This proves the claim about the inner
loop on j, and hence the lemma. ]

Theorem 4.7 Algorithm FindOpt returns a feasible point z satisfying h(z) < OPT/(1 — ~) + eintime
O(T(w) - m?In?*(£E2)), where T(w) denotes the time taken to compute an w-subgradient and w =
O(y/m? lnz(%)).

Proof : By Lemmas 4.5 and 4.6, we get that h(z) < (OPT + £)/(1 — w)*N'+1. Since kN' <
Nlog(8¥ER) = p and w = 7/2n, we have (1 — w)*N'+1 > (1 — w)"*! > (1 —v) > 1 (since we
assumed v < 1) which proves the performance guarantee, and shows that w = ©(y/m? In (K Jim)). The
running timeis O((N + n)T(w)) whichis O(T (w) - m? In?(£E2)). n
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Now we show that procedure ConvOpt works correctly with high probability. We make the very mild
assumption that at any point z € P, in any non-null scenario, the total stage | cost + stage |1 cost of the
scenario is at least 1, that is, w' - # + f4(z) > 1 for every scenario A # (). Note that with integer costs,
thisis simply saying that we incur a non-zero total cost in any non-null scenario. (The constant 1 may be
replaced by any other constant by adjusting the number of samples required by ConvOpt accordingly.)

Lemma 4.8 Procedure ConvOpt determines (correctly) with probability at least 1 — ¢, that OPT > o/,
or that z = 0 isan optimal solution.

Proof : Notethat p < 1 sinced < % Since in every non-null scenario, we incur a cost of at least
1, OPT > q, where ¢ = }_ 17 449 Pa IS the probability of occurrence of a non-null scenario. Let
r=PrX=0=(1-¢M Sor<e™andr >1-gM.If ¢ >In(5)/M,then Pr[X = 0] < . So
with probability at least 1 —d wewill say that OPT > p/A whichistruesince OPT > ¢ > 1. If ¢ < /M,
then Pr[X = 0] > 1 — 6. Wereturn z = 0 as an optimal solution with probability at least 1 — § which is
indeed an optimal solution, because ¢ < % impliesthat it is always at least as good to defer to stage Il since
the expected stage |1 cost of aset S isat most ¢-ulf < wl. If §/M < q < In(})/M, then we always return
acorrect answer since it is both true that z =0 is an optimal solution, and that OPT > g > o/ . [

4.2 Computing w-subgradients and bounding the Lipschitz constant K

We now focus on showing that algorithm ConvOpt returns a (1 + «)-optimal solution to relaxation (SSC-P2)
of the stochastic set cover problem in polynomial time. Recall that our objective function is h(z) = « -z +

£ () where () = Y- 4y pafa(z), and

falz) = min{ZwISIrA,S : Z ras >1— Z zs fordlec A; rys>0 forall S}.
S S:eeS S:eeS

By taking the dual, we can write f4(z) = max{}",(1 — Y g..cg¥s)2a,c : 24 € Qa} Where

_ U| . I . _ .
QA_{zER|.26;qze§waoraIIS, 2 =0fordle¢ A; zZO}.

Recdll that A\ = max(l, maxg Z—Ifl) We argue that for the function A(.) one can efficiently compute w-
S
subgradients and bound its Lipschitz constant K, asfollows.

1. In Lemma 4.9 we show that any vector d that component-wise approximates a subgradient at z to
within a certain accuracy is an w-subgradient at ..

2. Next we show that at any point z, thereis a“nice” subgradient d with components s € [—wy , w]
(in Lemma 4.10). This gives a bound on the Lipschitz constant K, and will allow us to compute an
w-subgradient by using a sampling procedure.

3. Lemma4.12 and Corollary 4.13 show that since the components ds lie in arange bounded multiplica-
tively by A, poly(m, A, %) samples from the scenario distribution suffice to compute a vectord that
component-wise approximates this subgradient d to within the desired accuracy with high probability,
and thus obtain a w-subgradient.

Using the above procedure to compute w-subgradients in procedure FindOpt with a small enough error
probability, and putting the various pieces together we show in Theorem 4.15 that ConvOpt returns a point
z, such that, h(z) < (1 + k) - OPT with probability at least 1 — 26 in time poly(input size, A, 1,In(})).

EAPR]
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Lemma4 9 Let d be a subgradient of h( ) at the point z € P, and suppose that d is a vector such that
dg — wws < dg < dg for all S. Thend isan w- subgradient of i(.) at x.

Proof : Let y be any point in P. Since the polytope P has z > 0 as a defining constraint, it follows
that zg,yg > Oforal S. Wehave h(y) — h(z) > d-(y —z) =d-(y — 2) + (d — d) - (y — z), 0
we need to lower bound the second term by —wh(z). Since ds — ds > 0 and rs,ys > 0 for every S,
(d—d)-(y—2)>—(d—d) 5> - Y gwwiss > —wh(z) (since f(x) > 0). ]

Lemma4.10 Consider any point z € R™, and let 2% be an optimal dual solution for scenario A with
z as the stage | decision vector. Then the vector d with components dy = wl — 3, pa Y ecs 2, iS@

subgradient at =, and ||d|| < Al|w"|.

Proof : Lety be any point in R™. We have to show that h(y) — h(z) > d - (y — x). We know that
fa(z) =32.(1 = g.0c5w5)2) . fOr every scenario A. Also, since 2y € Qy, at point y, we have fa(y) >

el =X g cesys)?h . for every scenario A. So h(y) > ws -y + > AcuPA (el = Xguces yS)Zﬁl,e)-
The last term can be rewritten as

D o pazie— D> pad, > Ysth.= Y pazh, - ZmZys(Zer),

ACU,e ACU e S:eeS ACU,e ACU ecS

therefore we get that (y) > > g ys (ws — Y ac PA Yees i o) + 2o acte PAZH .- We can express h(z)
in asimilar way with an equality instead of the inequality, and replacmg 1 With zg. Subtracting the two

terms, we get that A (y) — h(z) > > ¢(ys — (I,‘S)dg whereds = wk — ZACUpA > ees %4 .- TObound [|d]],

sincez} , > Oforall A, e, wehaveds < wy. Also, observe that wi — wy < dg, since }", ¢ Zhe < wy
for every scenario A, and ) , -, p4 = 1 because some scenario has to materialize (recall that we include
the empty set also as a scenario). Therefore |ds| < Aw', and hence ||d]| < Al|w'|. n

Claim 4.11 Suppose ||d(z)|| < D for every x, where d(z) isa subgradient of i (.) at point z. Then h(.) has
Lipschitz constant (at most) D.

Proof : Consider any two points u,v» € R™ and let d, d’ denote the subgradients at , v respectively, with
lldl|, ||d'"|| < D, thenwe have h(v) — h(u) > d- (v —u) > —||d|| ||v — u|| > —D||v — ul|, and similarly
h(u) —h(v) 2 =[|d'|| |lu — ]| > =Dllu—v]|. u

Claim 4.11 and Lemma 4.10 show that we can bound the Lipschitz constant K by A||«f||. Note that

In K is polynomially bounded. We will use the following sampling lemma to show that one can efficiently
compute an w-subgradient of A(.) at any point x.

Lemma4.12 Let X € [—a,b] be arandom variable, a,b > 0, computed by sampling from a probability
distribution . Let » = E[X | and oo = max(1,a/b). Thenfor any ¢ > 0, by taking £323— 1000‘ In(}) independent
samples from 7, one can compute an estimate Y such that ;1 —2¢-b <Y < p with probablllty atleast 1 — 0.

Proof : Let g = max(a,b). Thevariance of X isco? = E[X?] — p? < ¢*. Wedivide the samples into
s1 = 2 1n(}) groups, each group containing s, = 5a2/c* samples. Let X;; be the value of X computed
from thegth sample of group ¢, = 1,...,s1, 7 = 1,...,s2. LetY; be the average of the X;; values. We
set Y = median(Yy,...,Y;,) —c-b. Thevariables Xij areiid with mean 4 and variance o2. So we have
E[Y;] = pand Var[Y;] = 0?/s,. By Chebyshev's inequality, we get Pr[|Y; — u| > ¢-b] < ﬁ <
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o <l letZ =1if|¥;—p| > c-bandOotherwise, and Z = YPL, Z;. Then E[Z] < s,/5 and the

variables Z; areindependent. If Y > por Y < u — 2c - b, then at least 31/2 variables Z; must be set to 1.
Therefore by Chernoff bounds we have Pr[Y ¢ [ — 2c¢ - b, pu]] < exp(— 351) < 6. ]

Corollary 4.13 At any point z € P, one can compute an w-subgradient with probability at least 1 — § using
atmost T'(w) = 40027 ln( ) independent samples from the probability distribution on scenarios.

3w?

Proof : The proof is an easy corollary of Lemmas 4.10, 4.9 and 4.12. We use the sampling process
described in Lemma 4.12. Each time we sample and get a scenario A, we compute the quantities Xg =
wE—Y e . Where z7; isan optimal dual solution for scenario A with z asthe first-stage vector. Observe
that if ds = E [Xs] thends = ws—" 1 pa Y e 1 .» SO the vector d with components ds is asubgradient
at r by Lemma4.10. Since Xs € [—wY,w}] for each S, usmg Lemma 4.12 with error probability 6/m
and ¢ = w/2, we can estimate the expectation E[XS] = dg by dg using the claimed number of samples, so
that for each S individually, we have ds — wwfq < 025 < dg with probability at least 1 — 6 /m. So the error
probability over all sets S isat most §, that is, Pr[VS, ds — wwIS <dg < ds] > 1 — 6. Soby Lemma4.9,
the vector d = {dg} isan w-subgradient at 2 with probability at least 1 — 4. n

Plugging in the time bound 7T'(w) (with asufficiently small error probability) in Theorem 4.7, we get the
following.

Lemma 4.14 Using the above procedure for computing w-subgradients, FindOpt finds a feasible solution z
such that h(Z) < OPT /(1 — ) + e with probability at least 1 — § in time poly(input size, ln( ),In(3)).

Proof : Theorem 4.7 gives the performance guarantee and accounts for the time taken excluding the time
taken to compute w-subgradients. We need to show that with high probability every vector the algorithm
computes is an w-subgradient for w = v/2n where n = N log(2Y5E) and N = 2m? In(1EE%) | The
total number of times we need to compute a w-subgradient isat most N + n. Setting the error probability to
§/(N +n),and w = /2n in Corollary 4.13, we get that T'(w) = O(% ln(W)) samples suffice to
ensure that each individual vector computed is an w-subgradient with probability at least 1 — 1/((N +n)J).
So the net error probability over all w-subgradient computations is at most 6. The time taken is O((N +
n)T(w)) = O(n’ *(In N +In(5))/~*), which is polynomial in theinput size, A, *, In(¢) and In(5). =

Theorem 4.15 Procedure ConvOpt computes a feasible solution to (SSC-P2) of cost at most (1+ ) - OPT
with probability at least 1 — 24 in time polynomial in theinput size, £, and In(3).

Proof : By Lemma 4.8, we know that if ConvOpt calls FindOpt then with probability at least 1 — § we
have OPT > p/X where o = ﬁ The performance guarantee and the time bound now follow from

Lemma4.14 sinceweset v = k/3 and e = kp/(2)) = m. Since FindOpt may err with probability
at most 4, the net error probability is at most 26. [
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5 A General Classof Solvable Stochastic Programs

We now show that algorithm ConvOpt can be used to solve the following broad class of 2-stage stochastic
programs.

min w' -z + f(x) subjectto € P C RY, (Stoc-P)
where f(z) = Y pafa(z),
AcA
and fa(z) = min wA-rA—i-qA-sA
st. BAs, > h? 2
DA%+ TAry >4 - T4 (3)

ra,s4 >0,74 € R™ sy € RE

Here A denotes the set of all possible scenarios, and P is the feasible region polytope. We require that
(@ T4 > 0 for every scenario A, and (b) at every point z € P, f(x) > 0 and that the primal and dual
problems corresponding to f4(x) be feasible for every scenario A. A sufficient condition for (b) isto insist
that 0 < fa(z) < 400 a every point z € P and scenario A € A. We can relax condition (a) somewhat
and solve amore general class of programs that alow one to incorporate upper bounds on the second-stage
decisions 4, under certain conditions. We assume that z = 0 liesin P, since we would like to be able to
express the option where one does nothing in the first stage and defers all decisionsto stage ll.

The essential property of this class of programs is that constraints (3) have the same matrix 7 multi-
plying the recourse vector 4 and the first-stage vector « in every scenario A. Thisimplies that the stage |
decisions given by the vector = and the stage |1 decisions for scenario A given by the vector 4 act in the
same capacity. All of the stochastic optimization problems we will consider can be expressed as convex
programs in the above form, and one can therefore obtain a near-optimal fractional solution for each of
these problems in polynomial time. Observe that this class of stochastic programs is rich enough to model
stochastic problems with scenario-dependent recourse (that is, stage Il) costs. To prevent an exponentia
blowup in the input, we consider an oracle model where an oracle supplied with scenario A reveals the
scenario-dependent data (w”, ¢, b4, 74, B4, DA, T#); procedure ConvOpt will need to query this oracle
only apolynomia number of times.

We now show that the analysis in Section 4.2 can be extended to show that agorithm ConvOpt computes
a near-optimal solution to (Stoc-P). Let h(.) denote the objective function which is easily shown to be

A
convex. Define A = max(l, MaxXAcAS “’—f) . As before, we assume that the algorithm knows the value of
L) wS

A. To extend the analysis in Section 4.2 we need to show the following three things. (1) one can compute
a w-subgradient in polynomial time, (2) the Lipschitz constant K can be set so that In K is polynomialy
bounded, and (3) one can detect with high probability that OPT is large. The third requirement is easily
handled by Lemma 4.8. Under the mild assumption that at any = € P, every “non-null” scenarid A € A
incurs a total cost of at least 1, Lemma 4.8 holds, and shows that by sampling Aln(%) times one can
determine, with probability at least 1 — §, whether OPT > m orif z = 0isanoptimal solution. To
show (1) and (2) we proceed exactly as in Section 4.2. We show that at any point, there is a subgradient
with anice structure and bounded 4 norm. By approximating this subgradient component-wise one obtains
an w-subgradient, and the bound on 4 norm gives a bound on the Lipschitz constant. The following lemma
shows that the components of the subgradient vector have variation that is bounded multiplicatively by A,
so that one can use the sampling lemma, Lemma 4.12, to compute an w-subgradient with high probability
by repeated sampling.

1The meaning of a non-null scenario will be intuitively clear from the application; for concreteness, we could define a null
scenario as ascenario A for which f4(0) = mingep fa(x).
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Lemma 5.1 Consider any point z € R™, and let (u%, 2% ) be an optimal dual solution for scenario A with
x asthe stage | vector, where 2, isthe dual multiplier corresponding to inequalitiec(S) Then, (i) the vector
d = w — Z pa(T)T2% is a subgradient at =, (i) ||d|| < A||w!|| and (iii) if d is a vector such that
d —ww! < d < d, thend isaw-subgradient at =.

Proof : By taking the dual, we can write f4(z) = h™-u* +(j4 —T4z)- 2. For any other point y, (u*, 2%,
isafeasible dual solution for scenario A, given the stage | vector y. So fa(y) > h™ - u¥ + (4 — Ty) - 2%
andwehave h(y) > w'-y+ 3 pa(h? -u + 54 2% —yT(TH)T2%). AsyT(T4) T2 isascaar, we can
replace it by its transpose((TA)szl)Ty ((T4)"2%) - y. Substituting above, and combining the terms
with y, we get that

y) > (w' —ZpA(TA)TZZ) -y+ZpA(hA-U’A+jA-ZZ)- (4)

Similarly, we have h(z) = (w! — 3, pA(TA)T 2z + ZApA(hA u¥ + 34 - 2%). Subtracting, we get
that h(y) — h(z) > d - (y — =) whered = w' — 3 , pa(T*)" 2%, showing that d |sasubgradient a .

For every scenario A € Awehave 2y > 0,s0d < w! since T4 > 0. Observe that the dual of the
scenario A (primal) optimization problem has the constraint (7%)Tz4 < w*. Since 27 is afeasible dual
solution, we have (T4)Tz < w? < Awl, and since 3 ,pa = 1, this shows that, d > w' — Aw!. So
we get that ||d| < A||w'||. Now by Claim 4.11 (which holds regardiess of the function A(.)), one can set
K = \|w'||, so that In K is polynomially bounded.

Finally to show part (iii), we proceed exactly asin Lemma4.9. h(y) — h( )>d-(y —x) =d- (y
)+ (d—d)-(y—z). Sincez,y >0,wehave (d—d) - (y—z) > —(d—d) -5 > —ww' -z > —wh(z
where the last inequality follows since f(x) > 0.

.\./l

So as before, using Lemma 4.12, one can compute an w-subgradient at any point z using T'(w) =
O(25 In(2)) samples,

Theorem 5.2 Procedure ConvOpt can be used to obtain a feasible solution to (Stoc-P) of objective function
value at most (1 + «) - OPT with probability at least 1 — 24, in time poly(input size, A, £, In(})).

'K

5.1 2-Stage Programswith a Continuous Distribution

We now consider the class of 2-stage programs specified by (Stoc-P) where the second stage scenario is
specified by a parameter ¢ that is continuously distributed with probability density function p(¢), and show
that procedure ConvOpt can be used to obtain a (1 + x)-optimal solution to this class of programs. Our
objective functionish(z) = w' -z + E¢ [ f(z,£)], where E¢ [ f (%, €)] = [p(&) f(z,€) d¢ and f(z, &) isthe
cost of scenario ¢ determined by the minimization problem in (Stoc-P) with parameters w(§), q(§&), h(§),
7(€), B(&), D(&) and T'(&). Asbefore we assume that at every feasible point 2 and scenario &, (a) T'(¢) >0)
(b) [ p(&)f(z,&)dE > 0, and that the primal and dual problems corresponding to f(z, ¢) arefeasible.
Notice that the proof of Lemma 5.1 (and hence that of Theorem 5.2) does not rely on the fact that
the probability distribution is discrete. Consequently, the statement and proof of Lemma 5.1 extend eas-
ily to the continuous setting by replacing each occurrence of the summation)_ , pa(...) by the inte-
gral [d¢p(€)(...). Atany point z, if (u*(f),z*(f)) is an optimal solution for the dual problem corre-
sponding to f(z, &) with z*(¢) being the dual multipliers for inequalities (3), then the vector d = o} —
[dep(&)T (€)1 2*(¢) isasubgradient at -, and parts (i) and (jii) of Lemma5.1 hold as is where we define
A to be max(l, supg g “’1(51)5 ) which we assume is known. One thus obtains a bound on the Lipschitz con-

stant, and the fact that w-égubgradients can be computed by sampling. Finally, under the assumption that at
every z € P and every &, either w' -z + f(z, &) > 1 or £(0,£) = mingep f(z,£), we can detect that OPT
islarge using Lemma4.8.
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Theorem 5.3 Procedure ConvOpt returns a feasible solution to (Stoc-P) with a continuous distribution, of
value at most (1 + x) - OPT in polynomial time.

6 Applications

We give a number of applications for which we prove the first known performance guarantees in the black-
box model without any restrictions on the costs in the two stages. Our guarantees generalize and, in many
cases, improve upon previous results that were obtained by placing restrictions either on the underlying
distribution, or on the costs of the two stages.

6.1 Multicommodity Flow Problems

We consider a stochastic version of the concurrent multicommodity flow problem where we are given a set
of commodities represented by source-sink pairs (s;, ¢;), and we need to buy capacity to install on the edges
so that in every scenario A, one can concurrently ship o;“ units of each commadity ¢ from its source s; to its
sink ¢;, where the scenario is generated by some probability distribution. We can either purchase capacity
on an edge in stage | paying alower price, or wait until the exact demands are known and buy capacity at
a higher price; the total amount of capacity that we can install on an edge is limited by . The goal isto
minimize the total (expected) cost of installing capacity. Let ¢ and ¢* denote the cost vectors for buying
capacity in stage | and in scenario A in stage I1. The 2-stage stochastic multicommodity flow problem can
be formulated as follows: minimize Y, ctz. + Y. 4c 4 Paga(z) (A isthe set of all scenarios) subject to
0 <z, < u, for each e, g4(x) isthe minimum val ue of Yoo c;f‘yA,e subject to the constraints that for each
i, the total flow for (s;, ¢;) isat least d{‘, for each edge e, the total flow on e isat most 2, + y4 ., and also at
most u, (thisensuresthat z. 4+ ya,. < u.).

Immorlica et a. [14] considered the single-commodity version of this problem and gave an algorithm
based on writing an LP that enumerates all scenarios, one for each possible demand value, and solving the
L P to compute the optimal first-stage decisions. Consequently, their running time depends on the maximum
demand D that may berealized. This approach suffersfrom the“ curse of dimensionality” and does not work
well in the multicommodity setting, since even if the maximum demand is 1, (.e., a scenario specifies a set
of source-sink pairs have to be connected to each other) there are till an exponential number of scenarios
to enumerate. Note that there are no integrality constraints, that is, one we can install fractional amounts of
capacity. Since we have formulated the problem as a convex program of the type handled by Theorem 5.2,
our fully polynomial approximation scheme can be applied. Whereas our running time depends on A, the
ratio of stage Il and stage | costs, it does not depend on D.

Theorem 6.1 For any e > 0, the stochastic concurrent multicommodity flow problem can be approximated
to within a factor of (1 + ¢) in polynomial time.

The agorithm in Figure 1 can be applied to solve other stochastic multicommodity flow variants in
polynomial time aswell. For example, one could consider a maximum multicommodity flow variant, where
ascenario A specifiesaset of active (s;, t;) pairs and we want to install capacity so as to ensure that the total
flow routed between the active pairsis at least some threshold &*. The only change hereisthat in the convex
program, the scenario A minimization problem contains a constraint stating that the net flow routed between
the active pairsin A is at least &* which replaces the concurrent flow constraints. This convex program can
be solved to near-optimality, yielding a (1 + €)-approximation algorithm for the problem, for any e > 0.
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6.2 Covering problems

Vertex cover. The stochastic vertex cover problem is a special case of the stochastic set cover problem
where we want to cover the edges of a graph by vertices. The edge set A (i.e, scenario) to be covered is
chosen from a probability distribution and is revealed only in stage Il; we may choose a vertex v either in
stage |, paying a cost of w}, or in stage |1 at a cost of w;' in scenario A. The previous results known for
this problem were an 8-approximation algorithm in the black-box model, a 3-approximation algorithm in
the setting where each edge isindependently activated, both under the restriction that uf' = Aw!, for each v

and scenario A, due to Gupta et al. [13]; Ravi and Sinha[22] gave a 2-approximation algorithm when there
are only polynomially many scenarios (but the second-stage costs may be scenario dependent).

Since the stochastic vertex cover problem is a special case of the stochastic set cover problem, and the
deterministic vertex cover LP is known to have an integrality gap of 2, by Corollary 2.2, we obtain, for any
e > 0, a(4 + ¢)-approximation algorithm for the stochastic version with black box probability distributions
and scenario-dependent second-stage costs. This is the first approximation algorithm in this more general
model with black box probability distributions.

Theorem 6.2 For any e > 0, thereis a (4 + €)-approximation algorithm for the stochastic vertex cover
problem with arbitrary probability distributions and scenario-dependent stage Il costs.

Minimum multicut problem on trees. In the deterministic minimum multicut problem on trees, we are
given atree with costs w, on the edges, and pairs of vertices (s;, t;). The goa isto remove a minimum-cost
set of edges so as to disconnect each (s;,¢;) pair. In the stochastic variant, the pairs to be disconnected
are reveaded only in the second stage, and we can choose either to “cut” an edge in stage | or in stage Il,
paying a cost of w! or w? in scenario A, respectively. The multicut problem is an instance of the case of
the set-cover problem, where we want to cover each (s;, t;) path. Garg, Vazirani & Yannakakis [11] gave a
primal-dual approximation a gorithm for the deterministic problem that showed that the natural covering LP
relaxation of this problem has an integrality gap of 2. Using their 2-approximation algorithm, and applying
Corollary 2.2, we get the following result.

Theorem 6.3 For any e > 0, thereisa (4+¢)-approximation algorithm for the stochastic minimum multicut
problem on trees.

General covering problems. Kolliopoulos and Young [17] consider general deterministic covering prob-
lems with multiplicity constraints, of the form minw - z subjectto Mz > r,z < b, = € Z}, where the

entries of w, M and r are al non-negative. An example of such a problem is the multiset multicover prob-
lem with multiplicity constraints, which is an extension of the set-cover problem where each element e is
required to be covered 7. times by the chosen sets; aset S can cover element e M, s times and may be cho-

sen at most bg times. Kolliopoulos and Young give bicriteria approximation algorithms for these problems.
We obtain generalizations of their results for the corresponding stochastic covering problem where copies
of aset S may be purchased either in stage | or in stage Il at a price of «} in stage | or w? in scenario

A in stage Il. We remark that due to the multiplicity constraints the convex programming relaxation of the
stochastic problem is not of the form SSC-P2 since the matrix 7% has negative entries; nevertheless one can

show that algorithm ConvOpt in Figure 1 can be used to obtain a (1 + «)-optimal solution, which can then
be rounded using the procedure detailed in Theorem 2.1.

6.3 Facility location problems

In the deterministic uncapacitated facility location (DUFL) problem, given a set of candidate facility loca
tions F and a set of clients D, we want to open facilities at a subset of the locations in F, and assign each
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client to an open facility. Opening afacility at location 7 incurs acost of £, and the cost of assigning client ;
to facility ¢ isd;c;; where d; is the demand of client j, c;; isthe distance between 7 and 7, and the distances
c;j form ametric. The goal isto minimize the total facility opening costs and client assignment costs.

In the deterministic problem one assumes that the client demands are precisely known in advance; the
2-stage stochastic uncapacitated facility location (SUFL) problem handles settings where there is uncertainty
in the demand, for example, due to macro-economic factors such as competition, technology, customer pur-
chasing power etc. We are given aprobability distribution ontuples (4, . . ., d|p|) whered; € {0,1,...,D}
specifies the demand of client 5 and D is some known upper bound on the demand. We can open some fa-
cilities in stage | paying a cost of f! for opening facility i, then the actual scenario A with demands a;“
is revealed, and we may choose to open some more facilities in stage |1, incurring a cost of f* for each
facility < that we open in scenario A. Asindicated by the notation, the recourse costs JfA may in general be
scenario-dependent.

For the special case where fiA = Af} foreachi € F and each scenario A, Gupta et al. [13] gave an
8.45-approximation algorithm in the black box model, and a 6-approximation algorithm in the setting where
each client is activated independently. Ravi and Sinha [22] gave an LP-rounding based 8-approximation
algorithm in for the polynomial scenarios setting that can handle scenario-dependent facility opening and
client assignment costs, where the assignment cost in scenario A iscs ;; = y*¢;; for al 4, j. Their rounding
agorithm needs to know the optimal fractional solution for each stage Il scenario which rendersit unsuitable
when there are exponentially many scenarios.

We improve upon all of these results. We consider a convex programming relaxation of the problem
and give a different rounding approach that decides which facilities to open in stage | based on only the
stage | fractional solution. Combined with our algorithm to solve the convex program, this yields a 3.225-
approximation algorithm in the black-box model with scenario-dependent costs. One can write thefollowing
convex program for SUFL. We use 7 to index the facilitiesin F, j to index the clientsin D, and .A to denote
the set of all possible scenarios.

min Z Flyi+ Z pagaly)  subjectto 0<y; <1  forali, (SUFL-P)
where g¢g4(y) = min Zfl yAl—i-Zd ZCiijvij

st. Z“,,-j >1 for all 5 such that d;' > 0,
i TAi; SYit YA forallie}',jwchthatdj‘>0,
ZTAijYa; =0 foral i, j.

Here y; indicates if facility < is opened in stage | and y, ; indicates if facility < is opened in the stage 1
scenario A. Thevariables x4 ;; are the usual assignment variables indicating whether client j is assigned to
facility 4. The minimization problem for a scenario A determines the cost, g4 (y), incurred for scenario A
and has constraints that enforce that each client j with positive demand c? has to be assigned to a facility
that is opened either in stage | or in scenario A. Thetermy , . s paga(y) is therefore the expected second
stage cost. Observe that (SUFL-P) liesin the class of 2-stage stochastic programs handled by Theorem 5.2,
and therefore one can use the algorithm in Figure 1 to obtain a solution y of cost a most (1 + €) times
the optimal in time polynomial in the size of the input and%. Let ppyrL denote the integrality gap of the
deterministic problem which is bounded by 1.52 [20].

Theorem 6.4 Thereisa (3.225 + ¢)-approximation algorithm for SUFL based on rounding a near-optimal
solution to (SUFL-P). Moreover, the integrality gap of (SUFL-P) isat most 2pyr. < 3.04. These results
hold even with scenario-dependent assignment costs ¢} = y*c;;.
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Proof : For notational simplicity, we shall focus on the case in which the demands (44 inany scenario A are
either O or 1, that is, a scenario A is now just a subset of the clients D that need to be assigned to facilities.
The extension to the setting with arbitrary demands requires only cosmetic notational changes.

We first show that the integrality gap of (SUFL-P) isat most 2ppyrL . The proof is aong the lines of the
proof of Theorem 2.1. Let y be an optimal solution to (SUFL-P) and (x4, y4) be the optimal solution for
scenario A given the first-stage decision vector y. Let OPT be the optimal solution value. We will show
that we can decouple the first-stage and second-stage decisions, so that one can get an integer solution by
separately solving aDUFL problem for stage | and a DUFL problem for each stage Il scenario. Fix ascenario
Aandaclientj € A. Let Fa; = {i: za4 > 0}. Wewritexa;; = 2!y ;; + 2}f ;; where 2y, < y; and
2l ij < Yage Since x4 < yi + ya,; We can always split ;5 in the above way. Observe that j must
be assigned to an extent of at least % either by the assignment {z, ;;} or by the assignment {z; .}, that is
either >, &Yy ;i > §or 3, alf ij 2 > 1. In the former case, we will assign j to a facility opened in stage |,
and in the latter casewewnl assign j to afacility opened in stage 11.

More precisely, for any client j, consider the set of scenarios § = {A C D : 3zl ;; > +}. For our
stage | decisions, we shall construct a feasible fractional solution for a DUFL instance in which the facility
costs are £}, the assignment costs are ci;, and each client j has ademand equal to ZAGS p4; we then round
this fractional solution to an integer solution using known algorithms for DUFL.

In fact, we first construct afeasible solution in which there is aclient (j, A) for each scenario A € §,
with demand p4, and then coalesce these scenario-dependent clients into one. Consider (j, A) such that
A € S;. We can obtain afeasible solution by sefting Z4 ;; = min(1, 2z, ;;) and §; = min(1, 2y;) for each
1 € F. (Notethat aclient may be assigned to an extent greater than 1.) However, the §; facility variables do
not depend on the scenario and given the ¢; values, we can re-optimize the fractional assignment for each
client j: first reset 24;; = 0 and then considering the facilities in non-decreasing order of the assignment
cost ¢;j, Set £.4,7; = min(gy,1 — >, £.4,;) for each facility ¢ Note that this new fractional assignment is
completely determined by the values of the fractional facility variables and does not depend on A, and so
we can now view al of these clients (j, A) asone client 5 with demandZAesj pa. Thefacility cost of this
fractional solution is at most 23", fly;, and the assignment cost is no more than the one for the scenario-
dependent clients, 23 ; ;> 4, pacizhy ;i <230, - Aes; PACijT A,ij- Using the fact that the integrality
gap of DUFL is ppyrL, given this DUFL instance with a fractional solution (Z,9), we can now obtain an
integer solution (&, ) of cost a most 2ppurL (3, flyi + Y i j ZAes PACi;T 4,;); this determines the set
of facilities to open in stage I, and for each client j takes care of the scenariosin §.

In any scenario A, each client 5 such that A € S; is assigned to the stage | facility given by the
assignment . To assign the remaining cIients we solve aDUFL instance with client set {j € A: A ¢
S;}. Since A ¢ S;, we have that ), xAU > 1 and hence if we reset #4;; = min(1, 23:“7) Ga; =
mm(l, QyA,l) for each i € F, we get afeasible solution for this set of clients. Again, we can get an integer
solution of cost at most 2ppurL (32, £/ 'ya,i + Zi,jeA:AgéSj cijza,ij). Thissolution tells us which facilities
to open in scenario A and how to assign the clients j in A with A ¢ ;. Hence, the overall cost of the
solution with first-stage facilities  is at most 2ppyeL - OPT, which implies that the integrality gap is at
most 2ppuFrL -

To obtain the approximation algorithm, we first obtain a near-optimal solution y in polynomial time.
The difficulty in converting the proof of the integrality gap into a rounding algorithm is that the algorithm
that shows that ppyr. < 1.52 due to [20] requires knowledge of the client demands, whereas we do not
know the demand ZAes pa Of aclient 5, and might not be able to even estimate it by sampling, since
the probability p4 could be extremely small. We therefore need an approximation algorithm for DUFL that
works without explicit knowledge of the client demands. Swamy [27] (see Section 2.4) gives an algorithm
with this property, improving upon the algorithm of [26] (which also has this property); the algorithm
converts any fractional solution to an integer solution increasing the cost by afactor of at most 1.705.
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We use this algorithm to obtain the approximation algorithm. We modify the definition of S slightly, so

asto balance the contribution from stages | and II. Let 0 = =:/ = LetS; = {AC D : Y 2y, > 0}

So now we have a fractiona solution in which we set ¢ = min(l, yi/e), and using the re-optimization
procedure described earlier, we can find the optimal fractional assignment z corresponding to the 3 values.
We round this using the algorithm of Swamy [27] to get asolution (., ) of cost at most%o‘r’ . (Zi flyi +
i 2AES; pACi;Ta,;). This determines the facilities to open in stage I. In any scenario A, each client
j € Asuchthat A € S; istaken care of by astage | facility. Next, we determine which facilities to open
in scenario A and how to assign the remaining clients in A by constructing a feasible fractional solution
for a deterministic subproblem with client set {j € A : A ¢ S;} and “rounding” this solution. We set
§a; = min(1,y4/(1—6)) andfor each client j € Asuchthat A ¢ S, set 4, = min(1,2% ;;/(1-6)).
We*“round” this solution using the algorithm of Mahdian et al. [20] (which isnot an LP rounding algorithm)
since the issue of the demands does not apply to this stage, to get an integer solution of cost at most}'%’g .
(X fi'yai + X jeaags; Cijta,ij)- Sothetotal cost incurred if we open the facilities given by  in stage
| isat most 3.225 - OPT. [

The algorithm remains unchanged if we have arbitrary demands d]“ and/or scenario-dependent assign-
ment costs c{‘j = yAcij. The only change in the analysis, isthat in the feasible fractional solution we exhibit
to bound the cost of the stage | decisions computed, we set the demand of aclient j equal to) ; , 5P Ad]‘-‘q/‘,
and in the fractional solution constructed for a stage Il scenario A, each client j € A suchthat A ¢ § has
demand dity4.

Remark 6.5 Itispossible to prove an integrality gap of at most 3 by adapting the primal-dua algorithm of
Jain & Vazirani [15]. Thiswas also observed by Mahdian [19] and Devanur (personal communication). But
this requires explicit knowledge of the probability of every scenario p4, and it seems difficult to obtain a
polynomial-time algorithm this way.

Extensions Our approach yields constant-factor approximation algorithms for various other stochastic fa-
cility location problems. In each case, we solve the relaxation of the stochastic integer program using the
algorithm in Figure 1, and round the near-optimal solution by using a rounding algorithm for the determin-
istic problem in conjunction with a variant of the rounding procedure detailed above. We obtain constant
performance guarantees for the stochastic versions of the facility location problem with penalties, or soft
capacities, or service instalation costs. The details may be found in [27].

7 Thedependence of therunning timeon A

We have remarked previously that the running time of our algorithm (and that of Gupta et al. [13]) depends
on the parameter )\, the maximum ratio between costs in the two stages. We first argue that in the black
box model, this is necessary, and then provide stronger conditions on the way in which the distribution is
specified that allows this dependence to be avoided.

We show the lower bound by considering a rather simple instance of SSC with asingle set and asingle
element. The example exposes the inherent limitation of using a black box to infer knowledge about the
probability distribution on scenarios; it is straightforward to generalize the example to construct lower bound
instances for other stochastic problems. Consider an instance of SSC with universe U = {e} and just one set
S = U, wherew} = 1, wl = \. Let p denote the probability that scenario {e} occurs (which is unknown
to the algorithm that samples from the distribution on scenarios). The only decision here is whether to buy
set S in stage | or to defer buying the set to stage Il. Let Ay denote an algorithm that draws exactly N
samples. Let O* denote the value of the integer optimum solution.
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Theorem 7.1 If Ay returns a (fractional) solution of cost at most ¢ - O with probability at least 1 — §
wherel < ¢ < 3, thenit must bethat N > (AIn(3 — 1)) /2¢. The bound applies even if Ay returnsonly a
fractional solution of cost at most ¢ - O*.

Proof : Let X bearandom variable that denotes the number of times scenario {e} occursinthe N samples.
If X =0, then Ay must choose to defer to stage 11 with probability at least 1 — ¢ (the algorithm may flip
coins), that is, it must return the integer solution z = 0 with probability at least 1 — §. Otherwise, with
p = 0, and hence, O* = 0, Ay will pick (a non-zero fraction of) set S in stage | with probability at least
0, and thus incur a non-zero cogt, that is, a cost greater than ¢ - OF with probability at least 6. Choose any
e > 0 such that ¢ < A/(2(1 + ¢)) and consider any € > 0 where ¢’ < e. Setp = (1 + €)c/A < 3
and define No(¢') = (Aln(3 — 1))/(2(1 + €)c). Letr = Pr[X = 0] = (1 —p)V > e %N (since
p < ). The optimal solution is to pick S in stage |, and incur a cost of 1. But if N < Ny(¢'), then
r > e~2PNo(¢) = 2 5o with probability at least (1 — §)r > 4, Ay will choose the solution = = 0 and
incur acost of (14 €)c > ¢ - O*. Therefore for Ay to satisfy the required performance guarantee we must
have N > Ny (€') for every € € (0,¢] whichimpliesthat N > (A In(3 — 1)) /2c. u

Corollary 7.2 If algorithm Ay returns a (fractional) solution of expected cost at most ¢ - OF where 1 <
¢ < 2, thenit must bethat N' > (AIn2)/6c.

Proof : By Markov’s inequality, Ay returns a solution of cost at most 3¢ - O* with probability at least %
The claim now follows from Theorem 7.1. [

Now suppose that for the stochastic set cover problem, for every element e, @) we know its activation
probability p. = 3 4 17.cc 4 P4, @nd b) we can sample scenarios conditioned on the fact that e is activated,
that is, scenarios from {A C UU : e € A} with scenario A generated with probability ps/pe. It is easy
to see if the elements have independent probabilities of being activated (as considered in [14, 13]), then
these conditions are satisfied. More generally, consider the subclass of problems mentioned in Section 5
where B4 > 0 for every scenario A, the parameters w*, ¢, D4, T do not depend on the scenario, and
D4 = D > 0. Fix an indexing of the rows of 7" (and D, 5). The columns of T play the role of setsin the
set cover problem, while the rows play the role of elements, and following the notation used in the set cover
problem, we will use S to index the columns of T' (and the components of x,r4), and e to index the rows
of T' (and the components of j* and the dual vector z4). We also require that in every scenario A, 72 is
either 0 or afixed quantity j.. Suppose that @) we know the “activation” probability p. = ZAGA:].£>O DA,
and b) we can sample scenarios conditioned on the event that #* > 0. As mentioned above, the set cover
example fits into this framework with T' as the element-set incidence matrix, rows representing elements
and columns representing sets, and vector 54 given by j2 = 1if e € A, 0 otherwise. Using this additional
structure we obtain the following result.

Lemma 7.3 Atany point 2 € P, an w-subgradient of i(.) can be computed with probability at least 1 — ¢
in time polynomial intheinput size, 2, and In(}).

Proof : Let n denote the number of rows of 7', so jA € R" for each scenario A. The dual of the scenario
A minimization problem is the following:

max A4 -ug+ (G —Tx) - 24 (DP)
st. (BA)TUA +D%z4 <gq (5)
TT24 < w! (6)

ua,za >0,
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where j4, 24 € R*,q € R*, T € R™™, and D € R***. Let A, denote the set of scenarios {A € A :
72 > 0}, that is, there are the scenarios where element e is activated. Let (u, 27%) be an optimal solution
to (DP). Note that since B#, D, T > 0, one may assume without loss of generality that if (74 — T'z), < 0
then 2y, = 0, and that h* - u¥y > 0. Let T = (t5). By Lemma5.1 we know that the vector d with
components ds = w — Y. 4 pa Y., te,527 , ISasubgradient at z. Since j;' < 0 for A ¢ A, we can write
ds = wIS - Ze pete,S ZAE.Ae I;)_j ’ Z:Z,e'

The proof isinthree parts. First, we show by adapting the proof of part (i) of Lemmab.1, that if (4, 2/4)
isa (1 — e)-optimal solution to (DP), then the vector d with components dy = w§ — >, Pete,s 2. ac 4. Ea.
EN e is an e-subgradient at z. Next, our goal will be to get structured near-optimal solutions (i, 24) for
each scenario A, so that one can estimate the quantity - o 4 © p -2, for each element e to within acertain
accuracy. We will show that one can get (1 — ¢)-optimal solutions (uA,zA) to (DP) (for asuitable €) such
that for every element e, the variation in the 24 . valuesfor A € A, is polynomially bounded. Finally, we
will estimate D - 4 4. Z_f -z, for each element e to within a factor of (1 + €) with high probability, and
argue that these estimates induce a near-optimal solution to (DP) for each scenario A, and thereby yield an
w-subgradient of A(.) at x

Let (u/4,2',) beany (1 — €)-optimal solution to (DP). Consider any point y € P. Since (u,,2/;) isa
feasible dual solution for scenario A with y asthe first-stage vector, asin Lemmab5.1 we have

Bly) > (w' =3 paT 2 ) -y + D palh - uly + 57 2)), (7)
A A
Also since thevalue of (v, 2/,) isat least (1 — €) timesthat of (u, z%),
h(z) <w' -z + ZpA<hA culy + (= Ta) - 24 +e(h - uly + (54 — T) z}))
A

S(wI—ZpATTz'A> -:E—t—ZpA(hA-u'A + 54 2)) + eh(x). (8)
A A

Subtracting (8) from (7), we get that h(y) — h(z ) >d - (y—z)— eh(z) whered = w' — ZApATTz’A
with components ds = wi — 3 pete.s Doaca, -7y, Sod isan e-subgradient of h(.) at

Now we obtain a specific structured (1 — ¢)- opt| mal solution to (DP) for each scenario A We use i
I
to index the columns of D. Let D = (d,;). For each element e, define ¢, = mln(mml 7=, ming ZU )

Since B4 > 0, constraints (5) imply that 7 < ming gi/d. ;. Similarly constraints (6) |mpIy that 2% e <
ming wy /t, 5, SO Wehave 2y, < c, for every element e. Let € = w/3. We assume that e < 4 without Ioss
of generality. Set 24, = (1 — €) (2}, + <) if (j* — Tx), = j! = Y gte,s75 > 0and0 otherwise, and
a4 = (1 —e)uy. Notethat 24 > (1 — )z since 25y , = 0if (j* — Tz), < 0.

Sincej;;‘ = j. for every scenario A € A,, either 2,4 . = 0 for every scenario in A, (if je — > g te,s25 <
0), or 24 . > 0 for every scenario in A.. In the latter case, for any scenario A € A., 24 > % > e
and 2. < ce smcezAe < ¢, S0 that the variation in 24 . is polynomially bounded. Itlsclearthat thevalue
of (ia,24) isat least (1 — €) times the optimum value of (DP); we show that (4, 24) isafeasible solution
to (DP). Constraints (6) are satisfied since

D tesiae < (1—¢) (Zte,sz;e Zte Sce> (1—¢) (ws +— Zw ) < wy,
e e

where the second inequality follows since ¢, < = Stmrlarly, one can show that inegqualities (5) hold, so
(g, 24) isafeasible solution.
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Setpe = Y- pca. ’;—: - Za,c. Weestimate p, by Y, asfollows. If jo — " ¢ t. szg < 0, then we know that
pie = 0 and weset Y, = 0. Otherwise, wesample N = % In(2) = O(Z In(})) timesfrom the conditional
distribution on A., and for each sampled scenario A compute 24 . as above. Let Y, fork = 1,..., N
denote the value of the £ sample. Let Y/ = (320, Vi) /N; weset Y, = Y/(1—¢). Sincescenario A € A,
is generated with probability pa/pe, E[Y,)] = E[Y. ] isprecisely p.. Notethat each Y, , € [$=,c.] and
SO f1e > €ce/2n. So by standard Chernoff bounds we have Pr[|Y! — | > epe] < 2 - exp(—Ng‘sz) <d/n
which impliesthat Y, > pe(1 — €)% > pe(l —2¢) and Y, < (1 — €2)pe < pe With probability at least
1—4/n.

Finally, we show that vector d with components given by ds = w¥ — 3, pete sYe is an w-subgradient
with probability at least 1 — §. From the above analysis, we know that Pr[Ve, Y, € [ue(1—2€), p]] > 196,
so we may assume that this event happens. We will show that the ¥, valuesinduce a (1 —3¢)-optimal solution
(4, Z4) to (DP) for each scenario A, such that ZAGAB f’;—: - Za,. = Ye. Therefore, as shown before, we get
that d is an w-subgradient of A(.) at the point x.

To prove the claim, consider the solution 4y = 44 and 24, = %QA,Q for every scenario A, element e.
Clearly 24 (1 —2¢) < Za, < Z2a,, and sofor every scenario A, (4, Z4) isafeasible solution to (DP) and
itsvalueisat least (1 — 2¢) timesthe value of (4, 24) (since h* -4 > 0) and hence at least (1 — 3¢) times
the value of (u%, 2%). |

Using Lemma 7.3 to compute the subgradient at any point x, we can implement procedure FindOpt
in Figure 1 to run in time that does not depend on A, and return a point z of objective function value
OPT /(1 — ~y) + e with probability at least 1 — 6. Combining this with amodified ConvOpt procedure, we
obtain the following theorem.

Theorem 7.4 For the above subclass of problems, given this extra information about the distribution, one
can compute a (1 + «)-optimal solution with probability at least 1 — & in time poly(input size, £,1n(5)).

Proof : Using the additional information about the probability distribution, we can now detect with
probability 1, if OPT is “large”, without any sampling in step C1 of ConvOpt. Define a “null sce-
nario” as a scenario A with j& = 0 for al elements e. Let S be the set of al non-null scenarios.
Assuming that we incur atotal cost of at least 1 for every non-null scenario, OPT >3, spa. Ob-
servethat ) cspaisatleast Yo .4 pa = pe for any element e, and is a most ), pe, since event
{some A € Sisrealized} implies that some element is activated. So if max,p. > ;% then OPT > L,
and we can set p = % in step C3 of ConvOpt, and call procedure FindOpt setting -y, € appropriately; other-
wise Pr[{some A € S isredized}] < } whichimpliesthat z = 0 isan optimal solution and we return this
solution. Thusthe entire algorithm runs in time that does not depend on . [

8 Conclusions and discussion

We presented an algorithm to solve a large class of 2-stage stochastic linear programs to within a factor
of (1 + €) of the optimum, for any e > 0, in time polynomial in % the size of the input, and the ratio A
between the second- and first-stage costs. The a gorithm worksfor both discrete and continuous distributions
and requires only a black box to draw independent samples from the underlying probability distribution on
scenarios. We show that A is an inherent lower bound on the number of samples required in the black-
box model; to the best of our knowledge, this is is the first result that shows that a broad class of 2-stage
stochastic L Ps can be solved in time polynomial in the input size and A. We used our algorithm to devise the
first approximation algorithms for avariety of 2-stage stochastic integer optimization problems in the black-
box model and without any assumptions about the cost structure of the input. The performance guarantees
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are obtained by first solving a fractional relaxation of the problem using our algorithm to solve stochastic
linear programs, and then rounding the near-optimal fractional solution. We show that this rounding step
can be performed by utilizing existing algorithms for the deterministic analogue of the problem, thereby
reducing, in some sense, the stochastic problem to its deterministic counterpart.

Our agorithm for solving stochastic LPs is based on solving a convex-programming relaxation of the
problem by adapting the ellipsoid method. One obvious question is whether one can obtain more efficient
algorithms, in theory and/or practice, to solve 2-stage stochastic programs by adapting other techniques
used for deterministic convex optimization, for example, interior-point methods, projection methods. From
apractical perspective, it would be useful to investigate whether one can use the notion of approximate sub-
gradients as defined in this paper, which one can compute efficiently via sampling, within the framework of
acutting plane algorithm, possibly along with a column generation procedure (since we have an exponential
number of variables), to get an efficient heuristic for solving stochastic linear programs.

The sample average approximation (SAA) method is an appealing approach that is most often used in
practice. This method consists of replacing the original stochastic program, where the underlying scenario
distribution may have an exponentially large support, by the sample average problem which is a (smaller)
linear program of size polynomia in the number of samples; this LP can then be solved efficiently using
one's favorite LP solver. Theissue here isthe number of samples required to ensure that an optimal (or near-
optimal) solution to the sample average problem is, with high probability, a provably near-optimal solution
to the original stochastic problem. As mentioned in the Introduction, Kleywegt et al. [16] show that for
genera stochastic programs the sample size required can be bounded by a polynomial in the dimension of
the problem, and the variance of a certain quantity, however this variance need not be polynomially bounded,
even for our structured class of LPs. Following our work, various researchers have suggested that it might be
possible to argue that the SAA method actually yields an approximation scheme; in forthcoming work [28],
we show that this indeed is true. We show that the convergence proof of our agorithm can be adapted to
prove a convergence theorem for the SAA method. We show that for the class of problems considered in
this paper, the SAA method converges to a (1 + ¢)-optimal solution to the true problem using a number of
samples that is polynomial in the input size, % and \.

Independent of our work, Shapiro and Nemirovski [24] have shown that in the black-box model, the
bounds on the sample size proved in [16] for the SAA method, are tight, up to polynomial factors, for
arbitrary 2-stage stochastic programs. In this paper (and in [28]), we consider a structured class (Stoc-P)
of 2-stage stochastic LPs that is rich enough to capture the fractional versions of avariety of combinatorial
optimization problems; by exploiting this structure we prove a bound on the sample size that is significantly
better than the bound in [16]. In particular, even for the class (Stoc-P) and with small values of A, the sample
size bound in [16] can be exponentially large, whereas we require a number of samples that is polynomial
in A. Most recently, in an effort to reconcile the contrast between their lower bounds and our results (as they
appeared in apreliminary version [25]), Nemirovski and Shapiro (personal communication) showed that for
the 2-stage stochastic set cover problem with non-scenario-dependent costs, if one preprocesses the input
to eliminate certain first-stage decisions, then the upper bound of [16] for the SAA method applied to this
modified problem, becomes polynomial in A.
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