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Abstract. Stochastic optimization problems provide a means to model
uncertainty in the input data where the uncertainty is modeled by a prob-
ability distribution over the possible realizations of the data. We consider
the well-studied paradigm of stochastic recourse models, in which the
realized input is revealed through a series of stages and one can take
decisions in each stage in response to the new information learned. We
obtain the first approximation algorithms for a variety of 2-stage and
k-stage stochastic linear and integer optimization problems where the
underlying random data is given by a “black box” and no restrictions
are placed on the recourse costs: one can merely sample data from this
distribution, but no direct information about the distributions is given.
Our contributions are twofold. First, we give a fully polynomial approx-
imation scheme for solving a broad class of 2-stage and k-stage linear
programs, where k is not part of the input, that is, we show that us-
ing only sampling access to the underlying distribution, one can, for any
ε > 0, compute a solution of cost guaranteed to be within a (1+ ε) factor
of the optimum, in time polynomial in 1

ε
and the size of the input. To

the best of our knowledge, this is the first such result that shows that (a
class) of multi-stage stochastic programs can be solved to near-optimality
in polynomial time. Second, we give a rounding approach for stochastic
integer programs that shows that approximation algorithms for a de-
terministic analogue yields, with a small constant-factor loss, provably
near-optimal solutions for the stochastic generalization. Thus we obtain
approximation algorithms for several stochastic problems, including the
stochastic versions of the set cover, vertex cover, facility location, multi-
cut (on trees) and multicommodity flow problems.

Keywords. Algorithms, approximation algorithms, randomized algo-
rithms, stochastic optimization, convex optimization.

1 Introduction

Stochastic optimization problems attempt to handle uncertainty in the input
data by modeling the uncertainty by a probability distribution over possible re-
alizations of the actual data called scenarios. We shall consider a broad class
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of these problems, called multi-stage stochastic programming problems with re-
course, where the uncertainty evolves through a series of stages and one take
decisions in each stage in response to the new information learned. Multi-stage
stochastic programming is an area that has received a great deal of attention
within the Operations Research community, both in terms of asymptotic con-
vergence results, as well as computational work in a wide variety of application
domains. These problems are often computationally quite difficult, both from a
practical perspective, as well from the point of view of computational complexity
theory with even extremely specialized (sub)problems being #P -complete [4].

Our Results We obtain the first approximation algorithms for a variety of multi-
stage stochastic linear and integer optimization problems without placing any
restrictions on the underlying probability distribution or on the cost structure
of the input. Our results are obtained in the “black-box” model where one is
only provided with sampling access to the distribution, but no direct information
about the distributions is given. For multi-stage problems, we require a procedure
that can generate, given a series of outcomes for the initial stages, a sample of
the input according to the conditional distribution (given those outcomes). The
results mentioned here are taken from two papers [13,16] and a note [17].

Our results have two principal components. First, for a broad class of 2-stage
and k-stage stochastic linear programs (LPs), where k is not part of the input, we
devise an algorithm, that given any ε > 0, computes a solution of objective func-
tion value within (1+ε) of the optimum, in time polynomial in 1

ε , the input size,
and a parameter λ that is the ratio of the cost of the same action in successive
stages, which is a lower bound on sample complexity in the black-box model.
The class of LPs considered is rich enough to capture the fractional versions
of a variety of combinatorial optimization problems, such as, multicommodity
flow problems, covering problems, facility location problems, connectivity prob-
lems. The algorithm in [13] for 2-stage programs, is based on reformulating the
stochastic linear program, which has both an exponential number of variables
and an exponential number of constraints, as a compact convex program, and
adapting the ellipsoid method from convex optimization to solve the resulting
program to near optimality. In doing so, a significant difficulty that we must
overcome is that even evaluating the objective function of this convex program
at a given point may be quite difficult and provably hard. This algorithm uses
a suitably defined approximate subgradient, which we show is computable in
polynomial time using samples from the distribution, to generate cutting planes
for use in the ellipsoid method.

More recently, in [17], using this notion of an approximate subgradient, we
show that the Sample Average Approximation (SAA) method, which is the algo-
rithm of choice in the computational stochastic programming literature, is also
a polynomial time algorithm for the class of 2-stage problems considered in [13].
The SAA method is a natural approach to computing solutions in the black-box
model where one first samples from the distribution some N times, and then
solves a sample average problem where the actual distribution is approximated
by the distribution induced by the samples. By arguing that the subgradient of
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the sample average objective function is an approximate subgradient of the true
function, we are able to show that for any ε > 0, the sample size required for
guaranteeing a near-optimal solution is polynomially bounded in the input size,
1
ε , and λ, thereby obtaining a more efficient procedure for the 2-stage problem.
Our proof technique is different from that of Kleywegt, Shapiro, and Homem-
De-Mello [8], and yields a much better bound on the sample size than the bound
in [8] for 2-stage problems.

Furthermore, using the framework of establishing closeness in subgradients,
we were able to show recently [16] that the SAA method converges in poly-
nomial time even for (our class of) multi-stage stochastic programs with an
arbitrary distribution. To the best of our knowledge, in the black-box model, no
bounds were known previously on the sample size required to guarantee near-
optimality for multi-stage programs with arbitrary distributions, either for the
SAA method, or for any other algorithm. The only work we are aware of is a
recent result of Shapiro [12] which proves bounds on the sample size required
by the SAA method under the strong assumption that the distributions in the
different stages are independent.

Complementing our results on stochastic linear programming, we give a gen-
eral rounding approach to convert a fractional solution to the stochastic LP
to an integer solution, that shows that any LP-based approximation guarantee
for the deterministic analogue (where all the data is known is advance) yields
a guarantee for the stochastic generalization with only a small constant-factor
loss in the guarantee. Thus, we can lift existing algorithms and guarantees for
deterministic integer problems to obtain approximation algorithms for stochas-
tic integer optimization problems. We thereby obtain approximation algorithms
for several 2-stage and multi-stage problems, including the stochastic versions
of the set cover, vertex cover, facility location, multicut (on trees) and multi-
commodity flow problems. Moreover, the performance guarantees we obtain, in
several applications, improve upon previous results that were obtained in weaker
models [2,10,7,5].

Related Work Although stochastic recourse problems, both linear and inte-
ger programs, have been extensively studied, relatively little is known about
polynomial-time algorithms that deliver provably near-optimal solutions to the
stochastic linear or integer program. We briefly review some of the work that
deals with proving such worst-case results; for a more detailed account, the reader
is referred to the papers [13,16], Swamy [15], Birge and Louveaux [1], and the
survey by Stougie and van der Vlerk [14].

In the stochastic programming literature, it is common to distinguish between
the 2-stage setting and the multi-stage setting. The SAA method for solving 2-
stage stochastic programs has been well-studied in the stochastic programming
literature, but relatively fewer results are known that bound the the sample size
required to obtain a near-optimal solution (with high probability). Kleywegt,
Shapiro, and Homem-De-Mello [8] (see also [11]) prove a bound that is polyno-
mial in the dimension of the problem, but depends on the variance of a certain
quantity (calculated using the scenario distribution) that might be exponential
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in the input size and the parameter λ, even for our structured class of LPs. The
dependence on λ is unavoidable in the black-box model; ours is the first result to
show an upper bound on the sample size that is polynomial in the input size and
λ. In an effort to reconcile the contrast between our results and the bounds in [8],
Nemirovski and Shapiro (personal communication) recently showed that for the
2-stage stochastic set cover problem with non-scenario-dependent costs, if one
preprocesses the input to eliminate certain first-stage decisions, then the upper
bound of [8] becomes polynomial in λ. Nesterov and Vial [9], and Dyer, Kan-
nan, and Stougie [3] also give algorithms for solving stochastic linear programs;
both these results require a number of samples that depends on the maximum
variation in the objective function value, which in general is not polynomially
bounded.

The study of 2-stage stochastic integer programs from the perspective of ap-
proximation algorithms design is a relatively new area. Prior to our results, all
work in this area was restricted to models where there are limitations imposed
either on the class of probability distributions, or on the cost structure of the
two stages. The first approximation result appears to be due to Dye, Stougie,
and Tomasgard [2], who consider a resource provisioning problem in the setting
where the uncertainty in the data is limited to a polynomial number of scenarios.
Subsequently, there has been a series of recent papers in the Computer Science
literature that has considered the stochastic versions of various (integer) com-
binatorial optimization problems [10,7,5]. Whereas [10,7] work with a restricted
class of distributions, Gupta et al. [5] consider the “black-box” model but impose
a restriction on the recourse costs.

Much less is known about multi-stage stochastic programs, both in the linear
and integer case. To the best of our knowledge, other than the work of [12] on
multi-stage programs where the different stages are independent, we are not
aware of any previous work that proves bounds on the sample size required in
the black-box model, either using the SAA method or any other method, to
solve the multi-stage linear program to near-optimality. Our bounds establish
the first convergence rate results for the SAA method for (a class of) multi-stage
stochastic LPs with arbitrary distributions. For multi-stage integer problems
with recourse, the only prior work is due to Hayrapetyan, Swamy, and Tardos [6],
who give an approximation algorithm for a k-stage version of the Steiner tree
problem in the black-box model, but with a somewhat restricted cost structure.
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