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Abstract. The presence of autocorrelation provides strong motivation
for using relational techniques for learning and inference. Autocorrela-
tion is a statistical dependency between the values of the same variable
on related entities and is a nearly ubiquitous characteristic of relational
data sets. Recent research has explored the use of collective inference
techniques to exploit this phenomenon. These techniques achieve signif-
icant performance gains by modeling observed correlations among class
labels of related instances, but the models fail to capture a frequent cause
of autocorrelation—the presence of underlying groups that influence the
attributes on a set of entities. We propose a latent group model (LGM)
for relational data, which discovers and exploits the hidden structures
responsible for the observed autocorrelation among class labels. Mod-
eling the latent group structure improves model performance, increases
inference efficiency, and enhances our understanding of the datasets. We
evaluate performance on three relational classification tasks and show
that LGM outperforms models that ignore latent group structure when
there is little known information with which to seed inference.

Keywords. Statistical relational learning, probabilistic relational mod-
els, latent variable models, autocorrelation, collective inference

1 Introduction

Autocorrelation is a statistical dependency between the values of the same vari-
able on related entities, which is a nearly ubiquitous characteristic of relational
datasets. For example, hyperlinked web pages are more likely to share the same
topic than randomly selected pages [1], and movies made by the same studio are
more likely to have similar box-office returns than randomly selected movies [2].
More formally, autocorrelation is defined with respect to a set of related instance
pairs (zi, zj) ∈ Z; it is the correlation between the values of a variable X on the
instance pairs (zi.x, zj .x).

Despite the challenges to learning, the presence of autocorrelation offers a
unique opportunity to improve model performance, as autocorrelation enables
inferences about one object to be used to improve inferences about related ob-
jects. Indeed, recent work in relational domains has shown that collective infer-
ence over an entire dataset results in more accurate predictions than conditional
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inference over each instance independently [3,1] and that the gains over condi-
tional models widen as autocorrelation increases [4].

Collective inference techniques exploit autocorrelation by reasoning with col-
lective models that represent the dependencies among class labels of related
instances. Collective models have lower variance than models that represent au-
tocorrelation dependencies indirectly through dependencies on other attributes
of related instances [4]. Collective inference techniques use these low variance
models to propagate information throughout the dataset and improve the over-
all set of predictions.

Modeling the correlations among class labels directly, however, fails to cap-
ture a frequent cause of autocorrelation—the presence of underlying groups,
conditions, or events that influence the attributes on a set of entities. For ex-
ample, in the cinematic domain, it is likely that studios cause the observed
autocorrelation among movie returns. Movie-goers are unlikely to choose movies
based on the success of other movies from the same studio. It is more likely that
movie success is influenced by some unobserved properties of the studio (e.g.,
advertising budget). In this case, the class labels of movies are conditionally in-
dependent given studio type (e.g., high-budget studio). Latent-variable models
that represent the correlation of unobserved group properties (e.g., studio type)
with attribute values (e.g., movie returns) may be able to express density func-
tions more accurately and compactly than approaches that directly model the
observed autocorrelation.

When the groups are observable (e.g., movies made by the same studio),
we can model the latent structure with a relatively simple application of the
expectation-maximization (EM) algorithm. A similar approach is used in in-
formation retrieval where latent-unigram models represent each document as a
group of word occurrences1 that are conditionally independent given the topic of
the document [5]. In many relational datasets, however, group membership is un-
observed and must be inferred from the relations and attributes. For example, the
World Wide Web contains communities—groups of hyperlinked pages with sim-
ilar topics. Although we can not directly observe which community a web page
belongs to, intra-community citations are more frequent than inter-community
citations so hyperlinks are evidence of the underlying community structure. To
continue the document retrieval metaphor, it is as if we have word occurrence
information (attribute values) and noisy indicators of word co-occurrence within
documents (link information) but we do not know the document boundaries or
the topic distributions. In these situations, a joint model of attributes and links
is needed to recover group membership and infer latent group properties.

In this work, we propose a latent group model (LGM) for relational data,
which is a joint model of links, attributes, and groups for unipartite relational
graphs. The model addresses a number of weaknesses of current collective mod-
els. First, collective models, which model autocorrelation dependencies directly,
generally require computationally-complex, approximate inference techniques

1 However, the “vocabulary” is much smaller in relational domains—we generally have
less than 10 class values, whereas documents have thousands of unique words.
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because inference is over a large, cyclic graphical model. If, however, the instances
are conditionally independent given the underlying group structure, then exact
inference is not only feasible but much more efficient. Second, collective models
typically restrict their representation to the dependencies among instances that
are directly linked in the data. Linkage is generally sparse2, so this restriction
constrains the space of possible dependencies to a reasonable size and prevents
useful information from being drowned out by noise. However, modeling the
dependencies among neighboring but unlinked instances (e.g., transitive rela-
tionships) allows information to propagate in a more elaborate manner during
inference. Group models are a natural way to extend the representation to im-
prove model performance without fully representing the O(N2) dependencies
between all pairs of instances. Finally, latent-variable models recover the un-
derlying groups and identify their associated density functions. This attempt to
model the true cause of autocorrelation will improve domain understanding and
motivate development of additional modeling techniques.

Our initial evaluation of LGMs are on out-of-sample classification tasks. More
specifically, we aim to learn LGMs of datasets where the attributes and links are
fully observed, and group structure is unobserved, and then apply the model to
classify instances in new datasets, where the attributes are partially observed,
links are fully observed and the groups are again unobserved. This approach is
suited for domains with large, nearly disconnected graph structures. For example,
in gene prediction tasks, models of proteins and how they interact to perform
certain functions in the cell can be learned in one genome and then applied to
classify the proteins in new genomes. In addition, this approach is suited for
dynamic network domains, where groups emerge and and disband over time.
For example, fraud detection efforts usually analyze a single dataset that is
evolving over time. The data contain demographic information about individuals
and transactional links (e.g., bank deposits, telephone calls) that can indicate
the underlying organizations. In these domains, LGMs could be used to detect
group formation and use a few hand-labeled examples to seed inference about
the classifications of new group members.

In the remainder of the paper, we outline LGM, our initial algorithms for
learning and inference, and related work in statistical relational learning. We
present empirical evaluation on three classification tasks to demonstrate the
capabilities of the model, showing that LGMs perform better than models that
ignore latent groups when there is little known information with which to seed
inference. Finally, we conclude with directions for future work.

2 Latent Group Models

Latent group models specify a generative probabilistic model for the attributes
and link structure of a relational dataset. The model posits groups of objects
in the data of various type. Membership in these groups influences the observed
2 In the datasets we have analyzed, existing links account for 1-10% of the O(N2)

possible dependencies.
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attributes of objects, as well as the existence of relationships (links) among
objects.

For this initial investigation of LGMs, we make several simplifying assump-
tions about the data. More specifically, we assume a unipartite relational data
graph (single object type) with binary, undirected links, and at most one link
between any pair of objects. We also assume the number of objects, groups, and
group types are fixed and known. However, it is relatively straightforward to
extend the model to accommodate deviations from these assumptions.

The model assumes the following generative process for a dataset with NO

objects and NG groups:

1. For each group g, 1 ≤ g ≤ NG:
(a) Choose a value for group type tg from p(T ), a multinomial prob-

ability distribution with k values.
2. For each object o, 1 ≤ o ≤ NO:

(a) Choose a group go uniformly from the range [1, NG].
(b) For each attribute A ∈ AM:

i. Choose a value for ao from p(A|G, T ), a multinomial proba-
bility conditioned on the object’s group type tgo .

3. For each object i, 1 ≤ i ≤ NO:
(a) For each object j, i < j ≤ NO:

i. Choose a value for eij from p(E|Gi = Gj , Ti, Tj), a Bernoulli
probability conditioned on the two objects’ groups types and
whether they are in the same group.

This generative model specifies that attribute values and link existence are
conditionally independent given group membership and type information. More
specifically, the class labels of objects are conditionally independent.

The joint distribution of the dataset D, with groups NG, objects NO, and
links L, is thus given by:

p(D) =
∏

g∈NG

p(tg)
∏

A∈A

∏
o∈NO

p(ao|go, tgo
) ·∏

lij∈L

p(eij=1|gi=gj , tgi , tgj )
∏

lij /∈L

p(eij=0|gi=gj , tgi , tgj )

See figure 1 for a graphical representation of LGM. The model is similar
to hierarchical Bayesian models but extended to a relational domain where the
generative process is responsible for generating both attributes and links. More
specifically the model is a form of probabilistic relational model (PRM) [6] that
combines a directed relational Bayesian network, link existence uncertainty, and
hierarchical latent variables.

2.1 Learning

Learning an LGM consists of learning the parameters of the distribution and
inferring the latent variables on both objects (group membership) and groups
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Fig. 1. LGM graphical model representation. The plates represent replicates:
NG groups; NO objects, each with M attributes; and NO(NO − 1)/2 possible
binary links. The shaded nodes are observed variables: A are object attributes, E
is a binary variable indicating link existence. The unshaded nodes are unobserved
variables: T is the group’s type, G is the object’s group membership. The dashed
line indicates the underlying link relationships in the data, which each involve
two objects; consequently each E will be influenced by two G and two T variables
in the unrolled Bayes net.

(group type). Ideally, we could learn the model using a straightforward appli-
cation of the EM algorithm—iterating between inferring the latent variables
(E-step) and estimating the parameters (M-step). Unfortunately, there are dif-
ficulties with this approach. First, there are NO latent group variables with NG

possible values and NG latent type variables with k possible values. When the
average group size is small (NG = O(NO)), we expect that EM will be very sen-
sitive to the start state. Furthermore, the E-step requires that we run inference
over a large, complex, rolled-out Bayes net with 2NO|AM | + 4NO(NO − 1)/2
edges, where objects’ group memberships are all interdependent (given the link
observations). Exact inference in this situation is impractical, although approx-
imate inference techniques such as loopy belief propagation or variational meth-
ods may allow accurate inference. However, given the number of latent variables
and their dependency on sparse link information (L � NO(NO−1)/2), the like-
lihood function will have many local (suboptimal) maxima and we expect that
EM will not converge to a reasonable solution.

Because collective models propagate information only on existing links, we
expect the autocorrelated groups will have more intra-group links than inter-
groups links. We exploit this characteristic to decouple the group discovery from
the remainder of the estimation process and propose the following approximate
learning algorithm:

1. Hypothesize group membership for objects based on the observed link
structure alone.

2. Use EM to infer group types and estimate the remaining parameters of
the model.
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A hard clustering approach, which assigns each object to a single group,
greatly simplifies the estimation problem—we only need to estimate the latent
group type variables and parameters of p(T ) and p(A|G, T ). To this end, we
employ a recursive spectral decompostion algorithm with a norm-cut objective
function [7] to cluster the objects into groups with high inter-group and low intra-
group linkage. Our approach appears to work well in practice, but refinements
that iterate the clustering and EM steps, or incorporate soft clusterings, may
improve results even further.

2.2 Inference

There are two ways to apply LGMs to relational data. First, given a dataset
with observed attributes and links, we can use the model to cluster objects into
groups with similar attribute values and patterns of linkage. Second, we can ap-
ply the model to a new unseen dataset with partially observed attributes and/or
links to infer both the group memberships and the unobserved attributes/links.
This approach exploits the underlying group structure to improve predictions by
jointly inferring the latent groups, their types, and the unknown attributes/links.
Our initial investigation of LGMs has focused primarily on this latter task to
enable an objective comparison of LGMs with current, alternative techniques.
In the experiments reported below, we learn the model on a dataset with fully
observed attributes and links, then we apply the model to a new dataset with
partially observed attributes and fully observed links to jointly infer the group
memberships and unknown attributes. We designed our learning algorithm with
this out-of-sample classification task in mind. When classifying a new dataset
with partially observed attributes, we can cluster the objects into groups using
the observed links and then use the learned model to jointly infer the group
types and the unobserved attributes.

3 Related Work

There are two types of statistical relational models related to LGMs: models
that represent joint distributions of attributes conditioned on link structure, and
models that cluster objects into groups based on link and attribute structure.

3.1 Joint models

The first category consists of models that represent a joint distribution of the
attributes of set of instances. Relational Markov networks (RMNs) [1] and rela-
tional dependency networks (RDNs) [8] model autocorrelation in a procedural
fashion. RMNs use clique templates to model the pairwise correlations among
class labels of related instances, whereas RDNs use aggregated features. These
techniques model the autocorrelation dependencies at a global level—the au-
tocorrelation dependencies are assumed to be uniform across each link in the
data and parameters of features are tied across the entire dataset. As such,
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these models will not be able to distinguish among regions with varying levels
of autocorrelation.

Probabilistic relational models (PRMs) [6] are also able to model autocor-
relation relationships, but only if the autocorrelation can be structured to be
acyclic (e.g., with temporal constraints). The use of latent variables in PRMs
has been explored in limited settings where the groups are known and repre-
sented as objects in the data [9]. For example, in the cinematic domain we could
use a PRM with a latent variable on studios to model the autocorrelation of
movie returns. However, latent groups are not posited by the model and group
variables are not conditioned on the observed link structure.

3.2 Cluster models

The second category consists of models that cluster relational data into groups.
Popescul and Ungar [10] cluster relational database tables and use the cluster
IDs as features in individual classification models that reason about each in-
stance independently. This approach has been shown to improve classification
performance, but it can only be employed in situations where the test set in-
stances link into the clusters used during training because the features use the
identity of the clusters rather than generalizing over the properties of the groups.

Kubica, Moore, Schneider and Yang [11] use a latent variable model that is
a special case our proposed model to cluster objects into groups based on their
attribute values and link structure. Their approach is geared toward clustering
data with multiple transactional links (e.g., phone calls, email and meetings)
where the links patterns are homogeneous with respect to the groups. In other
words, it is assumed that all groups have the same distribution of intra- and inter-
group linkage. A situation where the patterns of linkage differ among groups
is, however, easy to imagine. For example, consider machine learning papers:
Reinforcement learning papers tend to cite papers in optimization, operations
research, and theory, but genetic algorithm papers cite primarily other genetic
algorithm papers. Allowing the link probabilities to vary among groups will be
important for modeling group structures in large heterogeneous domains.

3.3 Discussion

Consider the case where there are k group types, C class values, and each object
has a latent variable. There is a spectrum of group models ranging from k =C
to k = NG. RMNs can reason at one end of the spectrum (k = C) by tying the
parameters across all links and creating a feature for each class. Techniques that
cluster the data for features to use in conditional models (e.g., [10]), can reason
at the other end of the spectrum (k=NG) by using the identity of each cluster.
The approach of [11] uses k=1 in the sense that it ties the parameters of intra-
and inter-group link probabilities across all groups.

When group size is large there may be enough data to reason about each
group independently, setting k = NG. For example, in the cinematic domain,
once a studio has made a sufficient number of movies, we can reason about the
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likely returns of its next movie independent of the rest of the data. However,
when group size is small, assuming that all groups are drawn from the same
distribution, and setting k = C, will offset the limited data available for each
group. A model that can smoothly vary k can be thought of as a backoff model,
where we smooth to the background signal when we don’t have enough data to
estimate about a group’s type in isolation. LGMs offer a principled framework
within which to explore this spectrum.

One of the primary advantages of LGMs is that influence can propagate be-
tween pairs of objects that are not directly linked but are close in graph space
(e.g., in the same group). In RMNs and RDNs, the features of an object specify
its Markov blanket. This limits influence propagation because features are gen-
erally constructed over the attributes of objects one or at most two links away
in the data. Influence can only propagate farther by influencing the probability
estimates of attribute values on each object in a path sequentially. An obvious
way to address this issue is to model the O(N2

O) dependencies among all pairs
of objects in the data, but dataset size and sparse link information makes this
approach infeasible for most datasets. PRMs with existence uncertainty [12] are
the only current models that consider the full range of dependencies and their
influence on observed attributes. LGMs are a natural way to expand current
representations while limiting the number of dependencies to model. LGMs can
aggregate influence over a local neighborhood, instead of only passing on auto-
correlation information through changes to the probability distributions of each
object in a path sequentially.

4 Experimental Results

The experiments in this section demonstrate the utility of latent group models
in relational domains. Using three classification tasks, we evaluate whether the
models can leverage autocorrelation to improve model accuracy and illustrate
the conditions under which the models will perform well.

We present results for two variations of LGM. The first variation, LGM-k,
sets the number of group types to the number of class label values, k = C
(e.g., for binary tasks, k = 2); the second variation, LGM-2k, sets k = 2C.
We compare the LGM to four alternative models. The first two are individual
classification models that reason about each instance independently and do not
use the class labels of related instances: the relational probability tree (RPT)
model [13] is a decision tree model and the relational Bayesian classifier (RBC)
model [14] is a naive Bayes model. The third model is a relational dependency
network (RDN) [8] that reasons about networks of instances collectively. The
fourth model (RDN-ceil) is a probabilistic ceiling for the RDN model, where we
allow the true labels of related instances to be used during inference. This model
shows the level of performance possible if the RDN model could infer the true
labels of related instances with perfect accuracy.

To limit the confounding effects of feature construction and model selection,
we consider the restricted task of predicting class labels using only the class la-
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bels of related instances and/or the group membership. For the RPT and RBC
models, we clustered the training and test sets together and used cluster ID as
the sole attribute in the model. The performance of these baseline models il-
lustrates the baseline utility of clustering without typing the groups and serves
as a comparison to previous work [10], which clusters the data to generate ad-
ditional features for classification. For the LGM, RDN and RDN-ceil, we used
the class label of related instances as the sole attribute available for modeling.
When possible, we used exact inference but RDNs require approximate infer-
ence techniques. In the RDN experiments, we used Gibbs with chains of length
500 and burn-in of 100. (At this length, acccuracy and AUC had converged.)
During inference we varied the number of known class labels available to seed
the inference process. We expect performance to be similar when other infor-
mation serves to seed the inference process—either when some labels can be
inferred from intrinsic attributes, or when weak predictions about many related
instances serve to constrain the system.

4.1 Data and Tasks

The first data set is drawn from the Internet Movie Database (www.imdb.com).
We used a sample of 1,382 movies released in the U.S. between 1996 and 2001.
The binary classification task was to predict movie opening weekend returns
(>$2million). Based on past work that showed movie receipts to be autocor-
related through studios [2], we considered a unipartite graph of movies, where
links indicate movies that are made by a common studio.

The second data set is drawn from Cora, a database of computer science
research papers extracted automatically from the Web using machine learning
techniques [15]. We considered the unipartite co-citation graph of 4,330 machine-
learning papers. The classification task was to predict paper topic. There are
seven topics including Neural Networks and Reinforcement Learning.

The third data set was collected by the WebKB Project [16]. The data consist
of a set of 3,877 web pages from four computer science departments, manually
labeled with the categories: course, faculty, staff, student, research project, or
other. We considered the unipartite co-citation web graph. The classification task
was to predict page category. As in previous work on this dataset, we do not try
to predict the category Other ; we remove them from the data after creating the
co-citation graph.

4.2 Results

Figure 2a-c shows area under the ROC curve (AUC) results for each of the
models on the three classification tasks3. The graph shows AUC for the most
prevalent class, averaged over 4-5 training/test splits. For IMDb and Cora, we
used temporal samples where we learned the model on one year and applied
the model to the subsequent year. For WebKB, we used cross-validation by
3 Accuracy results, over all classes, show similar behavior.
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department, learning on three departments and testing on the fourth. For each
training/test split we ran 10 trials at each level of labeling, except the RDNs
where we ran 5 trials due to relative inefficiency of RDN inference. The error
bars indicate the standard error of the AUC estimates for a single training/test
split, averaged across the training/test splits. This illustrates the variability of
performance within a particular sample, given the random initial labeling.
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Fig. 2. Model performance as the proportion of labeled instances during infer-
ence is varied.

The results show that LGM performance quickly reaches performance levels
comparable to RDN-ceil. (Note that RDNs and LGMs cannot be expected to do
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better than random at 0% labeled.) On IMDb and WebKB, LGM performance
asymptotes at less than 40% known labels, indicating that the model is able
to exploit group structure when there is enough information to accurately infer
the group type. The RDN doesn’t converge as quickly to the ceiling level of
performance. There are two explanations for this effect. First, when there are few
constraints on the labeling space (e.g., fewer known labels), RDN inference may
not be able to fully explore the space of labelings. Although we saw performance
plateau for Gibbs chains of length 500-2000, it is possible that longer chains, or
alternative inference techniques, could further improve RDN performance. The
second explanation is that joint models are disadvantaged by the data’s sparse
linkage. When there are few labeled instances, influence may not be able to
propagate to distant objects over the existing links in the data. A group model
that allow influences to propagate in more elaborate ways may be able to exploit
the seed information more successfully. Future work will attempt to quantify the
amount of error due to each of these sources.

LGM performance does not reach that of RDN-ceil in Cora. Although the
LGM outperforms the RDN when there is little know information, eventually
the RDN takes over as it converges to RDN-ceil performance. We conjecture that
this effect is due to the quality of the clusters recovered in Cora. The distribution
of cluster sizes has high variance—ranging from large clusters with more than
100 papers to small clusters with 2-3 papers. LGM is not able to model papers
in the large clusters as accurately as the RDN because the distribution of class
labels within these groups is too uniform. The clustering technique has likely
conflated several groups and returned them as one cluster when they should be
partitioned. A technique the iterates over clustering and model estimation may
be more robust in this situation.

RPT performance is near random on all three datasets. This is because the
RPT algorithm uses feature selection and there is significant correlation between
only a few cluster IDs and the class label. This indicates that there is little
evidence to support generalization about cluster identities themselves. The RBC,
on the other hand, does not do any feature selection, it simply uses cluster
IDs without regard to their support in data. On IMDb and Cora, the RBC
significantly outperforms all other models. However, these are the two samples
where the test set instances link into the training set. In the third dataset, where
the training and test sets are nearly disjoint, the RBC does no better than
random. To further explore this effect, we partitioned the IMDb data into five
disjoint training/test splits using snowball sampling of movies through studios.
Figure 2d graphs performance on this view of the IMDb. RBC performance drops
to random when the training and test sets are nearly disjoint.

For a subjective evaluation of the clustering abilities of LGM, table 1 lists
the studios associated with the IMDb clusters. We group the clusters by their
(inferred) type values and present a sample of the associated studios and the
estimated probability distribution of movie returns.
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Table 1. Studios associated with IMDb groups

Group type 1 (6 clusters): P (returns>$2mil|G)=0.90
Paramount Pictures, Universal Pictures, Buena Vista Pic-
tures, New Line Cinema, DreamWorks, MGM
Group type 2 (24 clusters): P (returns>$2mil|G)=0.59
Columbia Pictures, Warner Bros., 20th Century Fox, Desti-
nation Films, Lot 47 Films, Margin Films
Group type 3 (7 clusters): P (returns>$2mil|G)=0.30
Artisan Entertainment, Miramax, Gramercy Pictures, Sony
Pictures, RCV Film Distribution, United Artists, Trimark
Pictures
Group type 4 (32 clusters): P (returns>$2mil|G)=1.5e−4
Seventh Art Releasing, Strand Releasing, Zeitgeist Films,
October Films, The Shooting Gallery, Curb Entertainment

5 Discussion and Conclusions

This paper presents a latent group model that reasons jointly about attribute
information and link structure to improve reasoning in relational domains. To
date, work on statistical relational models has focused on models of attributes
conditioned on the link structure (e.g., [1]), or on models of link structure con-
ditioned on the attributes (e.g., [12]). These restrictions to the model space
make learning and inference more tractable but limit the manner in which influ-
ence can propagate in the data. However, as our initial investigation has shown,
modeling the interaction among links and attributes promises to improve model
generalization and interpretability.

Latent group models are a natural means to model the attribute and link
structure simultaneously. The groups decouple the link and attribute structure,
thereby offering a way to learn joint models tractably. Preliminary investiga-
tions of latent variable models in the social networks community for link pre-
diction [17,18], and in the relational learning community for clustering [11] and
augmentation of classification models [9] show promise. However, the power and
range of applicability of these models is yet to be fully explored. Our analysis
has shown that group models outperform collective models when there is little
information to seed inference. This is likely because a smaller amount of infor-
mation in needed to infer group type than is needed to propagate information
throughout sparse relational graphs. This suggests active inference as an inter-
esting new research direction—where techniques choose which instances to label
based on estimated improvement to the collective predictions.

Latent group models extend the manner in which collective models exploit
autocorrelation to improve model performance. One of the reasons collective
inference approaches work is that the class labels are at the “right” level of
abstraction—they summarize the attribute information that is relevant to re-
lated objects. Group models also summarize the information but at higher level of
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abstraction (e.g., group membership and type). Positing the existence of groups
decouples the search space into a set of biased abstractions and could be con-
sidered a form of predicate invention [19]. This allows the model to consider a
wider range of dependencies to reduce bias while limiting potential increases in
variance and promises to unleash the full power of statistical relational models.
Indeed, the results we report for LGMs use only the class labels and the link
information but they achieve nearly the same level of performance reported by
relational models in the recent literature.
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