BLOG: Probabilistic Models with Unknown
Objects

Brian Milch, Bhaskara Marthi, Stuart Russell,
David Sontag, Daniel L. Ong and Andrey Kolobov

UC Berkeley, Computer Science Div., Berkeley, CA 94720-1776, USA
{milch,bhaskara,russell,dsontag,dlong,karayal}@cs.berkeley.edu

Abstract. This paper introduces BLOG, a formal language for defining
probability models with unknown objects and identity uncertainty. A
BLOG model describes a generative process in which some steps add ob-
jects to the world, and others determine attributes and relations on these
objects. Subject to certain acyclicity constraints, a BLOG model specifies
a unique probability distribution over first-order model structures that
can contain varying and unbounded numbers of objects. Furthermore,
inference algorithms exist for a large class of BLOG models.

Keywords. Knowledge representation, probability, first-order logic, iden-
tity uncertainty

1 Introduction

Human beings and AI systems must make inferences about the entities and
events that underlie their observations. For instance, a system that builds a bib-
liographic database based on works-cited lists must reason about the researchers
and publications referred to by the observed citations. A radar tracking system
must reason about the aircraft that underlie the observed radar blips. No pre-
specified list of objects is given; the agent must infer the existence of objects that
were not known initially to exist. The agent also faces the problem of identity
uncertainty (also called record linkage or data association): determining when
two observations, such as citation strings or radar blips, correspond to the same
object.

Probability models for such tasks are not new: Bayesian models for data
association have been used since the 1960s. The models are written in math-
ematical English and converted by hand into special-purpose code. Recently,
formal representation languages such as graphical models have led to general
inference algorithms, more sophisticated models, and automated model selec-
tion (structure learning). However, there is not yet a formal language that can
describe probability models with unknown objects in a compact and intuitive
way. This paper introduces BLOG (Bayesian LOGic), a language that meets this
requirement; for a more complete discussion, see [1]. We begin with a motivating
example:

Dagstuhl Seminar Proceedings 05051
Probabilistic, Logical and Relational Learning - Towards a Synthesis
http://drops.dagstuhl.de/opus/volltexte/2006/416

2 Milch et al.

—_

type Aircraft; type Blip;

random R6Vector State(Aircraft, NaturalNum);
random R3Vector ApparentPos(Blip);

VN V]

nonrandom NaturalNum Pred(NaturalNum) = Predecessor;

generating Aircraft Source(Blip);
generating NaturalNum Time(Blip);

#Aircraft ~ NumAircraftDistrib();
State(a, t)

if t = 0 then ~ InitState()
10 else ~ StateTransition(State(a, Pred(t)));

© o ~ [erN]

11 #Blip: (Source, Time) -> (a, t)
12 ~ DetectionDistrib(State(a, t));

13 #Blip: (Time) -> (t)
14 ~ NumFalseAlarmsDistrib();

15 ApparentPos(r)
16 if (Source(r) = null) then ~ FalseAlarmDistrib()
17 else ~ ObsDistrib(State(Source(r), Time(r)));

Fig. 1. BLOG model for Ex. 1.

Ezample 1. An unknown number of aircraft are flying in some volume of airspace.
We observe the area with radar: aircraft appear as identical blips on a radar
screen. Each blip gives the approximate position of the aircraft that generated
it. However, some blips may be false detections, and some aircraft may not be de-
tected at a given time step. What aircraft exist, and what are their trajectories?
Are there any unobserved aircraft?

A BLOG model for this scenario is shown in Fig. 1. Intuitively, this BLOG
model describes the following generative process: first sample the number of air-
craft in the area. Then for each time step ¢ (starting at ¢ = 0), choose the state
(position and velocity) of each aircraft given its state at time ¢t — 1. Also, for each
aircraft a and time step ¢, possibly generate a radar blip r with Source(r) = a and
Time(r) =t. Whether a blip is generated or not depends on the state of the air-
craft. Also, at each step, generate some false alarm blips r’ with Source(r’) = null.
Finally, sample the position for each blip given the state of its source aircraft
(or using a default distribution for false alarms).

Different outcomes of this process include different sets of aircraft and radar
blips. Moreover, the generative process cannot simply be split into one stage that
chooses what objects exist and a second stage that chooses their attributes. The
existence of radar blips is determined at many separate steps in the generative
process (one for each aircraft and each time step), and depends on the positions
of the aircraft.

Probabilistic Models with Unknown Objects 3

2 Syntax and Semantics

A BLOG model defines a probability distribution over model structures of a cer-
tain typed first-order logical language. The first few statements in a BLOG model
define the particular logical language being used. For instance, Fig. 1 declares the
types Aircraft and Blip, and defines function symbols such as State(a, t), which
returns the state of aircraft a at time t. The aircraft state is an object of the
built-in type R6Vector.

A model structure of a typed first-order language specifies the set of objects
that exist of each type, and the value of each function symbol on each tuple of
arguments. A BLOG model defines a distribution over a particular set of model
structures, called the possible worlds. The possible worlds all contain certain
guaranteed objects (such as natural numbers and IR® vectors), and all assign the
same interpretations to nonrandom functions such as Pred (line 4). Given this
nonrandom starting point, a generative process constructs a complete possible
world step by step. The steps are of two kinds: some add new objects to the
structure, and others set the value of a function on some arguments. These two
kinds of steps are described by number statements and dependency statements.

Line 11 in Fig. 1 is a number statement. It says that for each aircraft ¢ and
time step ¢, there exist some number of radar blips r such that Source(r) = a
and Time(r) = t. The values of Source and Time are set when blips are added to
the world; thus these functions are declared as generating functions on lines 5—6.
The distribution over how many blips are added is given by the elementary con-
ditional probability distribution (CPD) DetectionDistrib, which takes State(a,t)
as an argument. On line 13, there is a number statement that generates “false
alarm” blips ' with Time(r’) = ¢ and Source(r’) = null. Line 7 is a very simple
number statement: it defines a distribution over the total number of aircraft.

Generative steps that set the values of functions are described by dependency
statements, such as the one for State(a, t) starting on line 8 of Fig. 1. A depen-
dency statement consists of a sequence of clauses, each of which consists of a
condition, an elementary CPD, and a sequence of CPD arguments. For a given
assignment of objects to the variables a, ¢, the clause that applies is the first one
whose condition is satisfied in the model structure constructed so far. The dis-
tribution over function values is determined by evaluating the CPD arguments
and passing them to the specified CPD.

We have presented BLOG semantics intuitively in terms of a generative pro-
cess. The full version of this paper [1] also includes declarative semantics for
BLoOG, defined in terms of the joint distribution of a set of basic random vari-
ables whose values uniquely specify a possible world.

Theorem 1. If a BLOG model satisfies certain acyclicity conditions described
in the full version of the paper, then it defines a unique probability distribution
over possible worlds.

4 Milch et al.

3 Inference

A BLOG model need not impose any upper bound on the number of objects that
exist. Thus, it appears that there are BLOG models where inference is not even
decidable. However, for a large class of BLOG models, we can apply a sampling-
based approximate inference algorithm that takes finite time per sampling step
and converges to the correct distribution. We illustrate this algorithm on a very
simple example.

Ezxample 2. An urn contains an unknown number of balls—say, a number chosen
from a Poisson distribution with mean 6. Balls are equally likely to be blue or
green. We draw 10 balls from the urn, observing the color of each and replacing
it. Observed colors are wrong with probability 0.2. Given that 5 drawn balls
appeared green and 5 appeared blue, what is the posterior distribution for the
number of balls in the urn?

An abbreviated BLOG model for this example is given in Fig. 2. To do infer-
ence in this model, we compile it into a contingent Bayesian network (CBN) [2]
with a variable for the number of balls, an infinite sequence of TrueColor variables
(we cannot limit this sequence to any finite length a priori because the number
of balls is unbounded), and BallDrawn and ObsColor variables for each of the
ten draws. We then apply the likelihood weighting algorithm described in [2].
In this case, the algorithm samples the number-of-balls variable first, then the
BallDrawn variables, and then the TrueColor variables for those balls that appear
as values for the BallDrawn variables. The algorithm detects that all the other
TrueColor variables are irrelevant in this context, and do not need to be sampled.
Thus, a sample is generated in finite time although the set of variables is infinite.
The results of five runs of this algorithm with 5 million samples each are shown
in Fig. 3; note that the five runs agree almost perfectly with each other and with
an (almost) exhaustive calculation. Milch et al. [2] give conditions under which
this algorithm is guaranteed to run in finite time per sampling step on a CBN;
in the full version of this paper [1], we discuss how those conditions can be lifted
to BLOG models.

guaranteed Color Blue, Green;
guaranteed Draw Drawl, Draw2, ..., DrawlO;

D =

#Ball ~ Poisson[6]();

B~ W

TrueColor(b) ~ TabularCPD[[0.5, 0.5]1Q);

Ut

BallDrawn(d) ~ UniformChoicel[]({Ball b});

ObsColor(d)
if (BallDrawn(d) !'= null) then
~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
(TrueColor (BallDrawn(d)));

Neo i\ Ne)

Fig. 2. BLOG model for the urn-and-balls scenario of Ex. 2.

Probabilistic Models with Unknown Objects 5

0.18
0.16 .
0.14 1
0.12]
0.1 r]
0.08]
0.06 |]
0.04]
0.02 ,

O ! ! ! ! !
2 4 6 8 10 12 14

Number of Balls

Probability

Fig. 3. Posterior probabilities for various numbers of balls (Ex. 2) from five
sampling runs (crosses) and an exact calculation (solid line).

Theorem 2. There is a convergent sampling algorithm that performs approxi-
mate inference in finite time per sampling step on any BLOG model that satisfies
certain technical conditions described in the full paper.

4 Conclusion

BLOG is a representation language for probability models with unknown objects.
It contributes to the solution of a very general problem in Al: intelligent systems
must represent and reason about objects, but those objects may not be known
a priori and may not be uniquely identified by sensors. A BLOG model defines
a generative process that creates first-order model structures by adding objects
and setting function values. The steps that add objects are defined by number
statements, which generalize existing approaches [3,4,5,6] by allowing the set of
objects generated to depend on the existence and attributes of other objects.
Much remains to be done, especially on inference: we expect to employ MCMC
with user-defined proposal distributions, and develop algorithms that exploit
interchangeability among objects.

References

1. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Prob-
abilistic models with unknown objects. In: Proc. 19th International Joint Conf. on
Al (2005) To appear.

2. Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D.L., Kolobov, A.: Approximate
inference for infinite contingent Bayesian networks. In: 10th International Workshop
on Al and Statistics. (2005)

Milch et al.

. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proc. 15th National
Conf. on AL (1998) 580587

. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of
relational structure. In: Proc. 18th International Conf. on Machine Learning. (2001)
170-177

. Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty and
citation matching. In: Advances in Neural Information Processing Systems 15. MIT
Press, Cambridge, MA (2003)

. Laskey, K.B.: MEBN: A logic for open-world probabilistic reasoning. Technical
report, George Mason Univ. (2004)

	BLOG: Probabilistic Models with Unknown Objects
	Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong and Andrey Kolobov

