
Combining Bayesian Networks with Higher-Order Data
Representations

Elias Gyftodimos and Peter A. Flach

Computer Science Department, University of Bristol, UK�
E.Gyftodimos, Peter.Flach � @bristol.ac.uk

Abstract. This paper introduces Higher-Order Bayesian Networks, a probabilis-
tic reasoning formalism which combines the efficient reasoning mechanisms of
Bayesian Networks with the expressive power of higher-order logics. We discuss
how the proposed graphical model is used in order to define a probability distribu-
tion semantics over particular families of higher-order terms. We give an example
of the application of our method on the Mutagenesis domain, a popular dataset
from the Inductive Logic Programming community, showing how we employ
probabilistic inference and model learning for the construction of a probabilistic
classifier based on Higher-Order Bayesian Networks.

1 Introduction

In the past years there has been an increasing interest on methods for learning and rea-
soning for structured data. Real-world problem domains often cannot be expressed with
propositional, “single-table” relational representations. Probabilistic models, popular
on propositional domains, have started being proposed for structured domains, giving
rise to a new area of research referred to as probabilistic inductive logic programming
or probabilistic/statistical relational learning. At an earlier stage of our research [4, 5]
we have introduced Hierarchical Bayesian Networks, which define probability distribu-
tions over structured types consisting of nested tuples, lists and sets. In this paper we
introduce Higher-Order Bayesian Networks (HOBNs), a probabilistic graphical model
formalism which is applying methods inspired by Bayesian Networks to complex data
structures represented as terms in higher-order logics. We substantially expand our pre-
vious research, presenting a detailed formalism for dealing with a much broader family
of higher-order terms. The novelty of our approach with respect to existing research on
the field consists in the explicit handling of higher-order structures such as sets, rather
than emulating these using first-order constructs.

The outline of the paper is as follows. The following section gives a brief overview
of the higher-order logic we use for data representation. Section 3 contains the for-
mal definitions of the proposed model, and section 4 defines the derived probability
distribution over higher-order terms. Section 5 presents experimental results on a pop-
ular real-world benchmark dataset, briefly explaining how inference, model learning
and classification is performed under the proposed framework. Section 6 gives a brief
overview of existing related approaches. Finally, we summarise our main conclusions
and discuss our perspective for further research.

Dagstuhl Seminar Proceedings 05051
Probabilistic, Logical and Relational Learning - Towards a Synthesis
http://drops.dagstuhl.de/opus/volltexte/2006/413

2 Representation of Individuals

Basic terms[9] are a family of typed higher-order terms that can be used for the intu-
itive representation of structured individuals. Constructs described by basic terms fall
into three categories: The first is called basic tuples and includes individuals of the
form � t1 ��������� tn � , where each of the ti is also a basic term. The second, basic structures,
describes first-order structures such as lists or trees. A basic structure is a term of the
form Ct1 ���	� tn, where C is a data constructor (functor) of arity n and the ti are basic
terms. E.g. in order to define lists as in the LISP programming language, we need two
data constructors, “cons” and “nil” of arity two and zero respectively, and the list with
elements 1, 2, and 3 is written as “ � cons 1 � cons 2 � cons 3 nil ���	� ”. The third category,
basic abstractions, is suitable for the description of higher-order structures such as sets
and multisets. A set of elements from a domain D can be viewed as a function of type
f : D
���
 ����� where f � x ����� if and only if x is a member of the set. In general, a
basic abstraction defines the characteristic function of an individual, and is a term t of
the form

λx � � i f x � t1 then s1 else ���	� else i f x � tn then sn else s0 �
where the ti and si are basic terms and s0 is a default term, i.e. a special term that is
the default value of the characteristic function for a particular kind of basic abstraction
(zero for multisets,
 for sets, etc). The set supp � t ��� � s1 �	�	����� sn � is called the support
set of t. The cardinality of supp � t � will be called the size of the abstraction. The value
of the application of the term t to a term u is denoted as V � t u � . The formal definition
of basic terms also contains a definition of the class of default terms as well as the
definition of a total order on basic terms so that a basic abstraction can be written in a
unique manner with t1 ���	����� tn.

Types are used to describe domains of basic terms. A basic tuple type is a Cartesian
product τ1 � �	�	� � τn of simpler types to which the elements of a tuple belong. A type
of basic structures is defined by a type constructor, to which are associated a set of
data constructors that define terms of that type. E.g. we can define the type L of lists of
elements from a type τ, with two associated data constructors cons and nil. Data con-
structors are also typed; for instance cons has a function type, accepting two arguments
of types τ � L respectively, and its value is of type L. This is noted as cons : τ
 L
 L.
The type of a basic abstraction is a function type α
 β, where α is the type of the ar-
gument and β is the type of the value domain of the abstraction. The formal definitions
of higher-order types and basic terms can be sought at [9] and go beyond the scope of
this paper.

Additionally to standard basic terms, in the present paper we will refer to atomic
terms and types. An atomic type is a domain of constants. It can be seen as a special
case of a type constructor, to which all the associated data constructors have arity zero.
An example of an atomic type is the type of booleans. An atomic term is a member of
an atomic type.

We will now define a type tree, which is a tree describing the domain of an individual
term.

Definition 1 (Type tree). The type tree corresponding to a type τ is a tree t such that:

2

– If τ is an atomic type, t is a single leaf labelled τ.
– If τ is a basic tuple type � τ1 � ���	� � τn � , then t has root τ and as children the type

trees that correspond to all the τi.
– If τ is a basic structure type with associated data constructors Ci : τi1
 ���	�
 τim

τ � i � 1 �	���	��� n, then t has root τ. The children of τ are a finite set S of type trees. Every
argument τi j is mapped to either an element of S or to τ. If two arguments τi j � τkl

are equal types they may be mapped to the same c � S. If an argument τi j is equal
to the type τ it may be mapped to the root τ. The tree corresponding to each τi j is
denoted as cτ � i � j � .

– If τ is a basic abstraction type β
 γ, then t has root τ and children the type trees
corresponding to β and γ.

3 Higher-Order Bayesian Networks: Preliminaries

A standard Bayesian Network is a graphical model that encodes the conditional in-
dependences among a set of variables. It consists of two parts: the structural part, a
directed acyclic graph in which nodes stand for random variables and edges for direct
conditional dependence between them; and the probabilistic part that quantifies the con-
ditional dependence. Higher-Order Bayesian Networks (HOBNs) are a generalisation
of standard Bayesian Networks for basic terms. The structural part of an HOBN is a
type tree over the domain, and a set of edges between nodes of the type tree that model
correlations between them. The probabilistic part contains the parameters that quantify
those correlations. We work under the assumption that domains are discrete. Our ex-
ample domain comes from the Mutagenesis dataset [12]. Instances in this domain are
molecular structures classified as “mutagenic” or “non-mutagenic”, and each one is de-
scribed by four propositional attributes and a set of atoms. The atoms themselves are
characterised by three propositional attributes and two sets of “incoming” and “outgo-
ing” chemical bonds. Figure 1 shows an HOBN over that domain. Here AtomMap is a
boolean variable that corresponds to the target domain of the abstraction Atoms.

We will refer to two distinct types of relationships between nodes of an HOBN.
Firstly, relationships in the type tree called t-relationships. Secondly, relationships that
are formed by the probabilistic dependence links (p-relationships). We will make use
of everyday terminology for both kinds of relationships, and refer to parents, ances-
tors, siblings, nephews etc. in the obvious meaning. The t-parent and the p-parents of
a node are subsequently used for defining the sets of higher-level parents (h-parents)
and variable parents (v-parents) for each node, which in turn are used for the defini-
tion of the probabilistic part of the model. In figure 1 node Molecule has five t-children
(Atoms, IndA, Ind1, Lumo, LogP) while node Element has one p-parent (ToBonds) and
two p-children (AtomType, Charge).

Definition 2 (HOBN node and HOBN leaf). An HOBN node associated to a type τ
corresponds to a random variable of that type. We will refer to the HOBN node and the
corresponding variable interchangeably. If τ is atomic, the associated HOBN node is
called an HOBN leaf.

Definition 3 (HOBN structure). Let τ be a type, and t its corresponding type tree. An
HOBN structure T over the type tree t, is a triplet � R � V � E � where

3

Element AtomType Charge FromBonds ToBonds

Class Molecule
=(Atoms,IndA,Ind1,Lumo,LogP)

LogPAtoms
={Atom}

Ind1 LumoIndA

Atom
=(Element,AtomType,Charge,FromBonds,ToBonds)

={FromBond} ={ToBond}

=(Class,Molecule)
Instance

AtomMap

ToBondFBM TBMFromBond

Fig. 1. HOBN structure for the mutagenesis domain.

– R is the root of the structure, and corresponds to a random variable of type τ.
– V is a set of HOBN structures called the t-children of R. If τ is an atomic type then

this set is empty, otherwise it is the set of HOBN structures over the children of τ
in t. R is also called the t-parent of the elements of V .

– Let V � be the set of t-descendants of R. E V � V � is a set of directed edges
between nodes of the HOBN structure. For � v � v � � � E we say that v is a p-parent of
v � .
Intuitively, a node may be the p-parent of its t-siblings and t-nephews, but of no other

nodes. There are two additional constraints that a legal HOBN structure must satisfy.
One is that if τ is a type β
 γ corresponding to a basic abstraction, then the set of
p-relationships E for the subtree under τ always contains the p-relationship � γ � β � . The
second constraint is that the structure needs to be acyclic. This is similar to the acyclicity
property in Bayesian Networks, taking into account the propagation of the probabilistic
dependence through the type tree. The formal definition of this property follows after
the definition of the the notions of higher-level parents and leaf parents, which explain
the propagation of the probabilistic dependence introduced by p-relationships down to
the leaves of the HOBN structure, so that all dependence can be expressed among pairs
of HOBN leaves.

Definition 4 (Higher-level parents and leaf parents). The higher-level parents (h-
parents) of a node t whose t-parent is t � , are (i) its p-parents and (ii) the h-parents of
t � . The leaf parents (l-parents) of a node are the HOBN leaves that are either (i) its
h-parents or (ii) t-descendants of its h-parents.

It is now possible to define the acyclicity property that was mentioned above:

Definition 5 (Acyclic HOBN structure). An HOBN structure is acyclic if no HOBN
leaf in the structure is an l-ancestor of itself.

4

The probabilistic part of an HOBN contains the parameters that quantify the respec-
tive joint probabilities, and that are used in deriving a probability over the domain of
basic terms that are described by the type tree.

Definition 6. The probabilistic part related to an HOBN structure T consists of a set
of joint probability distributions, defined for some HOBN nodes in T , joint with the
respective l-parents of each node. The following probability distributions are contained
in the probabilistic part:

1. A joint probability distribution over each HOBN leaf X of type α, and its l-parents
X1 �	�	����� Xn, of types α1 �	�	���	� αn respectively. For every type ξ � αi1 � �	��� � αim , where
all i j are distinct, the conditional probability over the type α given the type ξ is
derived by this joint probability and is denoted by Pα ! ξ.

2. For each node X associated to a type of basic abstractions τ, a joint probability
distribution over the sizes of the basic abstractions that belong to τ , and the l-
parents of X, namely X1 �	���	�"� Xn, of types α1 ���	����� αn respectively. For every type
ξ � αi1 � �	��� � αim , where all i j are distinct, the conditional probability over the
size of the abstractions of type τ given the type ξ is derived by this joint probability
and is denoted by Psizeτ ! ξ.

3. For each node X associated to a type of basic structures τ, a joint probability dis-
tribution over the domain consτ which contains the data constructors associated to
that type, and the l-parents of X, namely X1 ���	���	� Xn, of types α1 �	���	�"� αn respectively.
For every type ξ � αi1 � �	��� � αim , where all i j are distinct, the conditional proba-
bility over the size of the abstractions of type τ given the type ξ is derived by this
joint probability and is denoted by Pconsτ ! ξ.

As a trivial case when a node has no l-parents the Cartesian product ξ corresponds
to the nullary tuple type, and the conditional probability distribution reduces to an
unconditional probability distribution.

We can now give the definition of an HOBN:

Definition 7. A Higher Order Bayesian Network is a triplet � T � Θ � t � where t is a type
tree, T � � R � V � E � is an HOBN structure over t and Θ is the probabilistic part related
to T .

4 Probability over basic terms

In this section a probability function over basic terms belonging to a type α is defined,
using an HOBN over that type and exploiting the conditional independence assumptions
that it introduces. As with standard Bayesian Networks, the joint probability is decom-
posed to a product of conditional probabilities using the chain rule, and the independent
variables are eliminated from the posterior. In HOBNs the probability is defined recur-
sively from the root to the leaves of the type tree, and the probability of a type in each
node is expressed using the probabilities of its t-children. Before the formal definition,
a short intuitive explanation of the distribution is given, describing how different cases
of basic terms are treated.

5

We are using the notation Pα ! ξ � t # c � as the probability of a term t of type α, condi-
tional on some context c of type ξ. The definition has two parts: In the first part it is
shown how to decompose the probability of t as a product of probabilities of simpler
terms Pαi ! ξ $ � ti # c � � , which have types that correspond to the children of α in the type tree.
At this stage the conditional part is possibly augmented with additional knowledge on
the p-parents of ti. In the second part of the definition it is shown how in a similar way
the probability under the conditional context c is expressed as a product of probabilities
under simpler contexts whose types correspond to the children of ξ in the type tree.

The first part of the definition has three different cases, according to t being a ba-
sic tuple, basic structure or basic abstraction. In the first case where t � � t1 ���	����� tn � , the
probability of the term t is defined as the product of the probabilities of the terms ti of
type αi � i � 1 ���	����� n. The conditional independence statements that are derived from the
HOBN structure are employed in order to simplify each posterior. In the second case
where t � Ct1 �	��� tn, a similar decomposition as with the tuple case is taking place. Each
ti is of a type αi � i � 1 ���	���	� n, which is either one of the t-children of α or is α itself, for
recursive data structures. The probability of t is defined as the product of the probabil-
ities of the ti conditional on the values of the respective p-parents Pαi ! ξ $ � ti # c � π � ti �	� , also
multiplied by the probability of the constructor C � Pconsα ! ξ � C # c � . In the third case, where
t � λx � � i f x � t1 then v1 �	�	� else i f x � tn then vn else v0 � the result is based on the
product of the probabilities of each ti conditional on the respective vi, as is determined
by the p-relationship in the HOBN structure.

The second part of the definition assumes that α is an atomic type. The conditional
probability is recursively decomposed to a product where the context is replaced by its
t-children, until the leaves of the type tree are reached. At each point when deriving
the probability Pα ! ξ � t # u � c � , the context is a tuple of terms. The definition introduces a
rotation of the tuple elements, by selecting the first element u in the tuple, and creating a
new context which is the rest of the tuple with the t-children of the first element attached
to the end. This gives a systematic way of reaching the point where the context is a tuple
of atomic types. As in the first part of the definition, there are separate cases according
to the type of the term in the context that is being decomposed, i.e. the element that
is in the first position of the context tuple. If this term is a tuple u � � u1 ���	����� un � , then
the probability Pα ! ξ � t # u � c � is simplified to Pα ! ξ $ � t # c � u1 �	���	�"� un � , where α � ξ � ξ � are the
appropriate types. If the term is a basic structure u � C u1 �	�	����� un, then the probability
is defined using the probabilities Pα ! ξi

� t # c � ui � . If the term is a basic abstraction u �
λx � � i f x � u1 then v1 �	�	� else i f x � u % then v % else v0 � , then the probability is defined
using the probabilities Pα ! ξ $ � t # c � ui � vi � . In the course of applying the first part of the
definition, a conditional context is introduced for the variable t. This conditional context
contains the p-parents of the node corresponding to t. Subsequently t is decomposed to
its t-descendents that lay on the leaves of the type tree. The p-parents of t are h-parents
of those leaves. Finally, each of those h-parents is replaced by its t-descendents down
to the leaves of the type tree. Therefore, after all the decomposition steps, the context
is a tuple of atomic types which are the l-parents of α, so the respective conditional
probability is contained in the probabilistic part of the model, least a permutation of the
l-parents in the context.

6

Definition 8. Let t be a basic term whose type α is associated to a node A of the HOBN.
By π � t � we denote a basic tuple that contains the values of the p-parents of A. The
conditional probability function Pα ! ξ � t # c � , where c is a term of type ξ (initially a nullary
tuple, then determined by earlier recursive steps), is defined as follows:

1 If α is a non-atomic type, corresponding to either a basic tuple, basic structure or
basic abstraction domain, then:

1.a If α � α1 � �	��� � αn and t � � t1 �	�	����� tn � , then

Pα ! ξ � t # c �&�
n

∏
i ' 1

Pαi ! ξ $ � ti # c � π � ti ���
where ξ � is the type of the tuple � c � π � ti ��� .

1.b If t is a basic structure, t � Cit1 ���	� tn, where Ci is the i-th data constructor associ-
ated to the type α and is of type α1
 ���	�
 αn
 α , then

Pα ! ξ � t # c ��� Pconsα ! ξ � Ci # c �
n

∏
j ' 1

Pcα (i) j *+! ξ $ � t j # c � π � t j ���
where ξ � is the type of the tuple � c � π � t j �	� and cα � i � j � is the t-child of α which is
mapped to the argument t j of the data constructor.

1.c If t is a basic abstraction of type α � β
 γ with t � λx � � i f x � t1 then v1 ���	� else i f x �
t % then v % else v0 � , then

Pα ! ξ � t # c ���
, ∞

∑% $ ' % ∑-/. � !Psizeα ! ξ � . � # c �
%

∏
i ' 1

� Pβ ! ξ $ � ti # c � vi � Pγ ! ξ � vi # c �	� xi

xi!

where ξ � is the type of the tuples � c � vi � and the summation marked with �10 � is over
all different integer solutions of the equation x1 23�	���12 x % � . � under the constraints
xi 4 0 � i � 1 �	�	���	� . .

2 If α is either atomic, abstraction size, or the domain of associated data constructors
of a type, then Pα ! ξ � t # c � is defined as follows (c � may trivially be a nullary tuple):

2.a If c is a tuple of atomic types or a nullary tuple, then Pα ! ξ � t # c � is given in the HOBN
probabilistic part.

2.b If c � � u � c � �5� ξ � υ � ξ � , where u is atomic but c � contains non-atomic terms, then

Pα ! υ 6 ξ $ � t # u � c � ��� Pα ! ξ $ 6 υ � t # c � � u �
2.c If c � � u � c � �5� ξ � υ � ξ � , where u is a basic tuple � u1 �	���	�"� un � of type υ � υ1 � ���	� �

υn, then
Pα !υ 6 ξ $ � t # u � c � �&� Pα ! ξ $76 υ1 698 8 8:6 υn � t # c � � u1 ���	�	�"� un �

2.d If c � � u � c � �;� ξ � υ � ξ � , where u is a basic structure Ciu1 ���	� un, and Ci is the i-th
data constructor associated to the type υ and is of type υ1
 ���	�
 υn
 υ, then

Pα ! υ 6 ξ $ � t # u � c � �<� Pα ! ξ $ � t # c � �
n

∏
j ' 1

Pα ! ξ $ 6 cυ (i) j *�6 υ $ j � t # c � � u j � π � u j �	�
Pα ! ξ $ 6 υ $ j � t # c � � π � u j �	�

where υ � j is the type of π � u j � and cυ � i � j � is the t-child of υ which is mapped to the
argument u j of the data constructor.

7

2.e If c � � u � c � �5� ξ � υ � ξ � , where u is a basic abstraction of type υ � β
 γ with
u � λx � � i f x � u1 then v1 �	��� else i f x � u % then v % else v0 � , then

Pα !υ 6 ξ $ � t # u � c � �&� Pα ! ξ $ � t # c � �
, ∞

∑% $ ' % ∑-
%

∏
i ' 1

� Pα ! ξ $ 6 β 6 γ � t # c � � ui � vi �
Pα ! ξ $ � t # c � � � xi

where the summation marked with �+0 � is over all different integer solutions of the
equation x1 2=���	�	2 x % � . � under the constraints xi 4 0 � i � 1 �	�	���	� . .
This completes the definition for distributions over basic terms based on an HOBN.

Proposition 1. The function Pα ! ξ given in definition 8 is a well-defined probability over
basic terms of type α, under the assumption that the conditional independence state-
ments employed hold given the relevant context.

The proof of the above proposition cannot be presented here due to space con-
straints. It is derived by applying in each case the chain rule of conditional probability,
Bayes’ theorem, and using standard combinatorics.

5 Experimental evaluation

We present here the results of the application of our method on a real-world dataset, the
Mutagenesis domain [12] described earlier, consisting of a total of 188 instances. The
task is to predict whether particular molecules are mutagenic or not. We used 10-fold
cross-validation which is customary on this dataset.

The first important issue concerning the application of HOBNs on data analysis
is the problem of probabilistic inference, i.e. the calculation of a probability P � Q #E �
where Q and E (“query” and “evidence”, respectively), are instantiated subsets of the
problem domain. The method we are using in HOBNs is a straightforward extension
of an approximate inference method for standard BNs: The graphical model is used
as a generator of random instances on the domain. If we generate a sufficiently large
number of such instantiations, the relative frequency of the cases where both Q and
E hold divided by the relative frequency of the cases where E holds will converge to
P � Q #E � . Probabilistic classification is a direct application of inference, where for each
possible class Ci for a test instance T , the value of P � Ci # T � is computed and the Ci

which maximises that expression is the respective predicted value of the class. Finally,
an area of great interest concerns the construction of an appropriate model given a set of
training observations on the domain. In our analysis, we assume that the type tree is an
inherent characteristic of the data and therefore is known. What we are learning is the
p-relationships between the HOBN nodes, and the parameters of the model. When the
HOBN structure is known (i.e. both the type tree and the p-relationships), training the
parameters of the model is straightforward when there are no missing values in the data,
using the relative frequencies of events in the database in order to estimate the values
of the respective joint probabilities. Our approach for structure learning is based on a
scoring function for candidate structures. Given such a function we employ a greedy
best-first search method, starting from an initial structure (either empty or containing

8

some p-links which are a priori known to be useful) and adding at a time the p-link
which optimises the most the scoring function, until no further improvement occurs.
The scoring function used in the present experiment was the accuracy of the model
on the training data, using cross-validation to avoid over-fitting. The initial structure
corresponds to a “naive Bayes” assumption, i.e. that all attributes are mutually indepen-
dent given the class. This is established by the p-link Class
 Molecule in the HOBN
structure. Table 1 summarises the accuracies obtained in this dataset. We conclude that
HOBNs approach the performance of state-of-the-art algorithms in the domain. It is
also important that the learning algorithm employed gives a significant improvement
compared to a naive Bayes approach.

Classifier Accuracy

Default 66.5%
Best 89.9%

Naive HOBN 77.7%
Extended HOBN 88.8%

Table 1. Accuracy on the Mutagenesis dataset.

6 Related research

Several logic-based probabilistic models have been proposed in the past. Stochastic
Logic Programs [2, 10] use clausal logic, where clauses of a prolog program are anno-
tated with probabilities in order to define a distribution over the Herbrand base of the
program. Bayesian Logic Programs [6] are also based on clausal logic, and associate
predicates to conditional probability distributions. Independent Choice Logic [11] is
another combination of Bayesian Networks and first-order logics. Probabilistic Rela-
tional Models (PRMs) [7], that are a combination of Bayesian Networks and relational
models, are also closely related to HBNs. PRMs are based on an instantiation of a re-
lational schema in order to create a multi-layered Bayesian Network, where layers are
derived from different entries in a relational database, and use particular aggregation
functions in order to model conditional probabilities between elements of different ta-
bles. Ceci et al. [1] have proposed a naive Bayes classification method for structured
data in relational representations. Flach and Lachiche [3, 8] have proposed the systems
1BC and 1BC2 which implement naive Bayes classification for first-order domains. To
our knowledge, Higher-Order Bayesian Networks is the first attempt to build a general
probabilistic reasoning model over higher-order logic-based representations.

7 Conclusions and Further Work

In this paper we have introduced Higher Order Bayesian Networks, a framework for in-
ference and learning from structured data. We demonstrated how inference and learning
methods can be employed for probabilistic classification under this framework.

9

Current results are encouraging for further development of HOBNs. More efficient
methods for inference, inspired from methods applied to standard Bayesian Networks
need to be researched, since these may boost the computational efficiency of the ap-
proach. Gradient methods for model training, generalising on the EM method that we
are currently investigating, are likely to improve the performance of the model under
the presence of missing values.

References

1. Michelangelo Ceci, Annalisa Appice, and Donato Malerba. Mr-sbc: A multi-relational naive
bayes classifier. In Nada Lavrač, Dragan Gamberger, Ljupčo Todorovski, and Hendrik Bloc-
keel, editors, Proceedings of the 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD 2003). Springer, 2003.

2. James Cussens. Parameter estimation in stochastic logic programs. Machine Learning,
44(3):245–271, 2001.

3. Peter A. Flach and Nicolas Lachiche. 1BC: a first-order Bayesian classifier. In S. Džeroski
and P. Flach, editors, Proceedings of the 9th International Conference on Inductive Logic
Programming, pages 92–103. Springer-Verlag, 1999.

4. Elias Gyftodimos and Peter Flach. Learning hierarchical bayesian networks for human skill
modelling. In Jonathan M. Rossiter and Trevor P. Martin, editors, Proceedings of the 2003
UK workshop on Computational Intelligence (UKCI-2003). University of Bristol, 2003.

5. Elias Gyftodimos and Peter Flach. Hierarchical bayesian networks: An approach to classifi-
cation and learning for structured data. In George A. Vouros and Themis Panayiotopoulos,
editors, Methods and Applications of Artificial Intelligence, Third Hellenic Conference on AI
(SETN 2004), Proceedings. Springer, 2004.

6. Kristian Kersting and Luc De Raedt. Bayesian logic programs. Technical report, Institute
for Computer Science, Machine Learning Lab, University of Freiburg, Germany, 2000.

7. Daphne Koller. Probabilistic relational models. In Sašo Džeroski and Peter A. Flach, editors,
Inductive Logic Programming, 9th International Workshop (ILP-99). Springer Verlag, 1999.

8. Nicolas Lachiche and Peter A. Flach. 1BC2: a true first-order Bayesian classifier. In
S. Matwin and C. Sammut, editors, Proceedings of the 12th International Conference on
Inductive Logic Programming, pages 133–148. Springer-Verlag, 2002.

9. John W. Lloyd. Logic for Learning: Learning Comprehensible theories from Structured
Data. Springer, 2003.

10. Stephen Muggleton. Stochastic logic programs. In Luc de Raedt, editor, Advances in induc-
tive logic programming, pages 254–264. IOS press, 1996.

11. David Poole. Logic, knowledge representation, and bayesian decision theory. In
John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia
Palamidessi, Luı́s Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Computa-
tional Logic, First International Conference (CL-2000), Proceedings. Springer, 2000.

12. A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg. Mutagenesis: ILP exper-
iments in a non-determinate biological domain. In S. Wrobel, editor, Proceedings of the
4th International Workshop on Inductive Logic Programming, volume 237, pages 217–232.
Gesellschaft für Mathematik und Datenverarbeitung MBH, 1994.

10

