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Abstract. We present techniques for importance sampling from distributions de-
fined by Relational Bayesian Networks. The methods operate directly on the ab-
stract representation language, and therefore can be applied in situations where
sampling from a standard Bayesian Network representation is infeasible. We de-
scribe experimental results from using standard, adaptive and backward sampling
strategies. Furthermore, we use in our experiments a model that illustrates a fully
general way of translating the recent framework of Markov Logic Networks into
Relational Bayesian Networks.

1 Introduction

Numerous representation languages have been proposed over the last 10 years that in-
tegrate logical or relational representations with probabilistic graphical models [21, 14,
15, 19, 10, 7, 13, 20]. For many of these languages the proposed method for probabilistic
inference is knowledge-based model construction (kbmc) [1]: for a particular instance
of the generic, logical model a Bayesian network is constructed on which inference
then is performed with standard Bayesian network algorithms. Unfortunately, Bayesian
networks representing such model instances tend to become very large and complex,
and so are often intractable for exact inference algorithms.

To address this problem, several different approaches have been investigated. The
most important breakthrough for the inference problem could be achieved by methods
that perform inference directly on the abstract level of the logical representation, in-
stead of propositionalizing, or grounding, every concrete model instance. Complexity
results given in [11] establish some limitations to the possible success of such meth-
ods. Poole [18], on the other hand, presents a first-order level inference technique, but
the practical applicability of this technique is as yet untested. In [2] a method is de-
scribed that expands the scope of problems manageable with kbmc: instead of apply-
ing standard inference techniques on the constructed Bayesian network, the network is
compiled into an arithmetic circuit, which is an often much more compact and efficient
support structure for inference than a junction tree [5].

In view of the inherent complexity of exact inference for logical models, the most
promising approach for practical problems lies in approximate inference techniques.
Approximate, sampling-based, inference techniques for probabilistic-logical models
have first been systematically studied in [4, 16]. In the present paper we present an
approximate inference method for relational Bayesian Networks (RBNs) based on im-
portance sampling. The distinguishing feature of this method is that while it operates on
a Bayesian network structure, it utilizes the underlying logical representation language
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for the specification of the conditional probability tables (cpts), and by that means can
operate on models for which methods based on standard cpt representations are not
applicable.

The methods we here develop are intended for inclusion in the public domain Prim-
ula system (www.cs.aau.dk/∼jaeger/Primula). An important design goal, therefore, is
that they are robustly applicable to the wide variety of models that can be specified in
the RBN language, and that they do not require special purpose techniques or heuristics
for every particular model.

In the following section we give a more detailed review of previous work, and re-
introduce a motivating example from [16].

2 Sampling on the BN

Based on a logical-relational representation language that supports kbmc one can di-
rectly run sampling algorithms on the constructed Bayesian networks. However, this
approach finds its limitations when the Bayesian networks becomes intractably large
due to nodes with a large number of parents. The following example, adopted from
Pasula and Russell [16] and going back to [17] illustrates the difficulties.

Example 21 Consider a domain consisting of professors and students. A professor has
attributes fame and funding, with funding depending probabilistically on fame. A stu-
dent has the attribute success, which depends probabilistically on the fame of his ad-
visor, where advisor is a probabilistic relation between students and professors. Exact
specifications of this probabilistic model can be given in a variety of representation lan-
guages. When kbmc is applied to the generic model and a concrete domain consisting
of 3 professors and 1 student, then a Bayesian network with the structure shown in fig-
ure 1 will be built. The node advisor(s1) has as possible values the possible advisors of
student s1, i.e. professors p1,p2,p3.

PSfrag replacements
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Fig. 1. Bayesian Network from KBMC

The problem with this network construction is evident: the number of parents of the
advisor and success nodes increases with the number of professors in the domain, and
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so the Bayesian network representation becomes exponential in the domain size when
explicit cpt representations are used for the specifications of the conditional distribu-
tions at the nodes. Thus, it is not possible to use generic Bayesian network sampling
algorithms for approximate inference for this model.

Pasula and Russell bypass this problem for this particular model using two strate-
gies: first, they observe that e.g. fame(p2) and fame(p3) can be removed as parents from
success(s1) when advisor(s1) is instantiated to p1. Given an instantiation of all other
nodes, the value of success(s1) can thus be always efficiently re-sampled from a low-
dimensional distribution. Secondly, they assume a particular functional form (a softmax
distribution) of the dependence of advisor(s1) on funding(p1)-funding(p3) , so that no
extensive cpt representations are needed for the re-sampling of advisor(s1).

The techniques in [16] are not based on any specific, well-defined representation
language, and often utilize specific features of the particular models under consider-
ation. They therefore do not translate into a generic approximate inference technique
for RBNs. Much closer to our needs, in that respect, are the sampling techniques for
Stochastic Logic Programs (SLPs) described in [4]. These techniques are fully general
for SLP models, and they operate on structures (proof trees) that directly utilize the
SLP language. On the other hand, SLPs and RBNs are most naturally used for the rep-
resentation of quite different types of models. Furthermore, the sampling methods for
SLPs cannot handle evidence (except via straightforward rejection sampling), whereas
sampling in the presence of unlikely evidence will be a key concern for our methods.

3 Relational Bayesian Networks

Relational Bayesian Networks [10] are a powerful representation language for for logi-
cal/relational models. The language is based on probability formulas that are associated
with each probabilistic relation. These probability formulas define for each ground atom
over the probabilistic relations both its dependence on other atoms, and the exact con-
ditional probability distribution. We illustrate the use of probability formulas with the
formula that defines the distribution for the probabilistic success relation of example 21:

(advisor(s,p):
         (fame(p):
             0.7,
             0.2
          ),
          0
)

n−or{ |p:professor(p)}
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funding(p2)
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fame(p1)

fame(p2)

fame(p3)

advisor(s1)

success(s1) (1)

The structured format used in (1) just highlights the syntactic components of the
formula, which, in reality, should be just seen as a linear string. The two dashed boxes
in the formula show two (nested) occurrences of the convex combination probability
formula construct. The solid box indicates an occurrence of the combination function
construct, here used with the noisy-or combination function. These two constructs, to-
gether with the base constructs of relational atoms and (numerical) constants consti-
tute the whole syntax of probability formulas (see [10, 12] for a full formal definition).
Probability formulas can be seen as a probabilistic analog of predicate logic formulas,
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with the convex combination construct (basically a probabilistic if-then-else construct)
corresponding to Boolean connectives, and the combination function construct corre-
sponding to quantification. Different combination functions can be used; the noisy-or
shown in our example is the probabilistic analog of existential quantification.

The probability formula for success contains atoms formed from the probabilistic
relations advisor,fame, and an atom formed from the predefined relation professor. A
predefined relation is required to be fully known for each concrete domain over which
the general model is instantiated. For the model of example 21 we require the two
predefined type or class predicates professor and student (the predefined relations in
the RBN framework correspond to the skeleton structures of [7]).

The probability formula for success, together with probability formulas for fame,
funding and advisor constitute a RBN representation of the model from example 21.
Given the general RBN model, and a domain with three professors and one student, one
can construct the Bayesian network shown in figure 2 (this kbmc procedure is imple-
mented in the Primula system). The network in figure 2 differs from the one in figure 1
in that the node advisor(s1) with possible values p1, p2, p3 has been decomposed into
three boolean nodes advisor(s1,p1),. . . ,advisor(s1,p3). This is because RBNs always
define joint probability distributions over ground relational atoms (seen as boolean ran-
dom variables). The specification of the joint distribution ensures that the three atoms
advisor(s1,p1),. . . ,advisor(s1,p3) behave like a functional selection, i.e. with probabil-
ity one exactly one of the three atoms will be true.
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Fig. 2. Bayesian Network from RBN representation

In the kbmc process from the RBN representation the cpt for the node success(s1)
is computed by substituting s1 for the free variable s in (1), and then recursively eval-
uating the resulting ground probability formula. This recursive evaluation first requires
that a list is produced of all objects p in the current domain that belong to the pred-
icate professor. In general it also is allowed that combination functions quantify over
boolean conditions involving several predefined relations, and therefore this processing
step is essentially a database query. Next, the elements of the computed list p1,p2,p3
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are substituted for the variable p in the sub-formula of (1) that consists of the outer con-
vex combination. This results in three different ground probability formulas, which are
evaluated recursively. The recursion stops with the evaluation of probability formulas
that are either constants or ground atoms. The set of all ground atoms encountered in
the recursive evaluation of the probability formula for success(s1) is the set of parents
of the success(s1) node in the constructed network.

4 Sampling Structure

We have seen in the preceding section how a ground probability formula compactly
represents all the information needed to construct the cpt for a ground atom node in
a Bayesian Network. When kbmc is performed to subsequently apply standard exact
inference algorithms, such standard table representations are required. However, when
we only want to sample from the network, then it is enough to represent the conditional
distributions with the original ground probability formulas. When the value of a ground
atom needs to be sampled, while truth values of its parents are given, then we only need
to evaluate its probability formula, which gives us the relevant conditional probability
for the truth of the current atom, given the existing instantiations.

Thus, we can construct a computational structure that supports sampling procedures
by constructing a standard Bayesian network structure as usual, but omitting the com-
putation of standard cpt representations, and labeling the nodes with ground probability
formulas instead. There is a problem with the sampling network constructed in this way,
however: consider, for example, a node labeled with a ground instance of (1). Each time
a value is sampled for this node, we need to perform the database query that gives us
the list of all professors p. The result of this query does not depend on the instantiations
of ground atoms in the current (partial) sample, and therefore the same, potentially
very costly, computation will be performed over and over again. Clearly, such dupli-
cated computations should be avoided. Obviously, any method for caching the results
of the database queries will solve this problem. However, probability formulas provide a
particularly simple solution: we can replace the original probability formula with a pre-
evaluated formula, in which all required substitutions for the quantified variables are
explicitly represented. Figure 3 shows the result of pre-evaluating (1) for s = s1 over
our example domain. These pre-evaluated formulas are still legitimate probability for-
mulas according to the original syntax, and their use does not require any extensions or
modifications of existing algorithms for handling probability formulas. Pre-evaluation
can be applied recursively also to probability formulas containing nested occurrences
of combination functions, and leads to probability formulas whose evaluation no longer
requires querying any of the predefined relations. The size of the pre-evaluated formula
can be much larger than the original formula, but always is polynomial in the size of
the domain.

It can be possible that a (pre-evaluated) formula is relatively complex, and its eval-
uation in the sampling process time consuming, even though it depends only on a small
number of ground atoms. In such cases it is more efficient to use a standard cpt represen-
tation for the conditional distribution at this node. We, thus, obtain three different levels
of representation: the original ground probability formula, the pre-evaluated probability
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formula, and the standard cpt. When moving from a higher to a lower level we are trad-
ing compactness of representation for faster evaluation. Representations from any of
the three levels can be the most useful ones under certain circumstances (in particular,
when the database query required to evaluate the original probability formula is simple
to compute, but gives a relatively large result, then pre-evaluation may not be advis-
able). In the current implementation, however, we use the following simple rule: when
a node has no more than 3 parents, then we use a cpt representation for its conditional
distribution; for nodes with more than 3 parents pre-evaluated probability formulas are
used.

n−or{ }

(advisor(s1,p1):

             0.7,
             0.2
          ),
          0
)

(advisor(s1,p2):

             0.7,
             0.2
          ),
          0
)

(advisor(s1,p3):

             0.7,
             0.2
          ),
          0
)

         (fame(p1):          (fame(p2):          (fame(p3):
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Fig. 3. Pre-evaluated Probability Formula

Typically we will want to sample from a network where some evidence nodes have
been instantiated to a known truth value. In many networks constructed from logi-
cal/relational models we find a large amount of determinism, i.e. 0/1-valued conditional
probabilities. These deterministic dependencies can be due to deterministic components
in the distribution of interest. In addition, the strictly binary encodings defined by RBN
representations generate further deterministic dependencies, e.g. the deterministic de-
pendencies between the advisor(s1,·) nodes in the network of figure 2. Due to these
deterministic dependencies, it will often be the case that the entered evidence strictly
implies the value of some other nodes. To improve the efficiency of sampling, it is
useful to first try to find as many as possible of such implied instantiations. For this
reason, we apply to the constructed sampling network as a further pre-processing step
the propagate deterministic procedure shown in table 1 (slightly simplified).

The is locally inconsistent(v,true) method checks whether instantiating v to true is
consistent with known instantiations for parents and children of v. The add neighbors-
to stack(v) method adds all nodes to the stack that are not instantiated already, and

which are either parents or children of v, or are parents of instantiated children of v.
While clearly not complete (detecting all deterministically implied instantiations is an
NP-hard problem), the propagate deterministic is quite successful in prop-
agating deterministic dependencies. It will, for example, set advisor(s1,p1) and advi-
sor(s1,p3) to false when advisor(s1,p2) is instantiated to true.

5 Importance Sampling

The sampling network whose construction was described in last section can be used
to support different sampling techniques. We focus here on different versions of im-
portance sampling, because importance sampling may be expected to be more robustly
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propagate deterministic
stack:= all instantiated nodes
while stack is nonempty

v:=stack.pop()
if is locally inconsistent(v,true)

v := false; newinst:=true
if is locally inconsistent(v,false)

v := true; newinst:=true
if newinst

add neighbors to stack(v)

Table 1. Deterministic Propagation

applicable to a wide variety of models than Markov-Chain-Monte-Carlo sampling. This
is because the often complex logical dependencies we find in our models make it very
difficult to devise generic proposal distributions that will lead to irreducible Markov
chains in Monte-Carlo sampling. When we are dealing with specific models, or re-
stricted classes of models, however, it can be expected that MCMC sampling with
carefully designed proposal distributions is more efficient than our generic importance
sampling.

In this paper we investigate three different versions of importance sampling: basic
importance forward sampling (also known as likelihood weighting [8]), adaptive for-
ward sampling [3], and backward sampling [9]. The techniques and results of this sec-
tion are not strictly linked to approximate inference for logical/relational models. They
are applicable to any large Bayesian networks, especially those with many 0/1-valued
parameters and/or nodes with many parents.

In the following we denote with X the set of all random variables (i.e. all ground
atoms of probabilistic relations) in an instance of a logical/relational model. P (x) is the
probability according to the model of an instantiation x of X. With E = e we denote an
instantiation of variables E to observed values e. In all versions of importance sampling
that we use, joint instantiations x are generated according to some distribution Q(x).
Q is such that Q(x) > 0 only if x is consistent with E = e, and for x that is consistent
with this evidence P (x) > 0 implies Q(x) > 0. The empirical mean of the importance
weights P (x)/Q(x) is an unbiased estimator for the marginal probability of E = e.
For a non-instantiated variable Z, the empirical mean of P (x)/Q(x)1Z=z(x) is an
estimator for the conditional probability of Z = z, given E = e, where 1Z=z(x) is a
function that returns value 1 or 0, according to whether Z = z in the sample x. This
estimator can be biased (see [3] for more information on bias in importance sampling).

In simple forward sampling nodes are sampled such that all parents of a node are
sampled before the node itself. An uninstantiated node is sampled according to P ,
whereas instantiated nodes E are deterministically set to their known values e.

In adaptive forward sampling one tries to learn in the course of the sampling process
sampling distributions for uninstantiated nodes that approximate the posterior distribu-
tion of the node given the evidence. In our implementation of adaptive sampling we
follow essentially [3]. The basic idea is to maintain for every node X a second impor-
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tance conditional probability table (icpt). Like the original cpt, the icpt has one row for
every configuration y of the parents Pa(X) of X . The table entry for y is an approxi-
mation for P (X = true | Pa(X) = y, E = e). It is maintained as

atwk(y)

atwk(y) + afwk(y)

where atwk(y) is the average importance weight among those of the first k samples that
instantiated Pa(X) = y and X = true; similarly for afwk(y) with X = false. The con-
ditional sampling distribution Qk(X | y) in the kth sample is a weighted combination
(1 − λ(k, y))cpt(y) + λ(k, y)icpt(y). A key problem is a good choice of the factors
λ(k), which should give increasing weight to the icpt entries as sampling progresses. In
our implementation we are currently using

λ(k, y) =
atwk(y) + afwk(y)

atwk(y) + afwk(y) + p
,

where p is a positive parameter (in our experiments set to p = 5). Thus, λ(k, y) con-
verges to 1 as the total weight of samples with parent configuration y increases.

The adaptation of the sampling distribution as described so far suffers from the
problem that we again require explicit representations of the icpt tables, and that these
tables, again, grow exponentially in the number of parents. Since, thus, this adaptation
technique is infeasible for nodes with many parents, we restrict it to nodes for which we
maintain explicitly cpt representations also for the underlying distribution P , i.e. nodes
with no more than three parents. Nodes whose conditional distribution is represented
with a (pre-evaluated) probability formula are sampled according to P (X | Pa(X) =
y).

Forward sampling techniques, whether simple or adaptive, will face difficulties
when we have many instantiated nodes near the leaves of the network. Backward sam-
pling has been proposed as a possible alternative in such cases [9]. In our version of
backward sampling we do not follow [9] very closely, neither in the construction of
the sampling order, nor in the definition of the conditional sampling distribution. Main
reason for this is that the method of [9] requires that in certain backward sampling steps
all non-instantiated parents of an instantiated node are simultaneously instantiated ac-
cording to likelihood of the current node values under different joint instantiations of
the parents. This requires consideration of all joint instantiations of the parents, which
is, yet again, infeasible in our networks.

We construct a sampling order for backward sampling as follows: first each node
that is an ancestor of some instantiated node is assigned a level, which is the length of
the shortest undirected path to the nearest instantiated node. These ancestor-of-evidence
nodes are sampled first, in an arbitrary order consistent with the level assignment. The
remaining nodes are then sampled in an arbitrary order consistent with the topological
order of the network.

An ancestor-of-evidence node X is sampled as follows: first, it is determined whether
both X = true and X = false are locally consistent as determined by the is locally in-
consistent method we already used in the propagation of evidence (cf. table 1). If neither
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value for X is consistent, then the current sample is abandoned. If only one of the values
is consistent, X is set to that value. If both values are consistent, then one is chosen ran-
domly with probability 1/2. Thus, in these sampling operations we do not try to utilize
at all the underlying distribution P . After each backward sampling step deterministic
implications of the new instantiation are propagated with the method of table 1.

6 Experiments

6.1 Models used

We used three different RBN models for our experiments. The first is the students and-
professors model from example 21. The other two are described below. The full RBN

encodings of the models that were used in the experiments can be found at
www.cs.aau.dk/∼jaeger/Primula/Examples.

Example 61 (Linkage) Our model linkage 1locus is a model for genetic linkage, which
describes the inheritance of genetic variations in a pedigree. In addition to random vari-
ables that describe the genotypes of the people in the pedigree, the model also contains
random variables that encode the exact trace of the gene variations in the pedigree. The
model is instantiated over specific pedigrees, which are given by predefined father and
mother relations. The Bayesian networks constructed for specific instances are similar
in structure to the Bayesian networks used in the Superlink system [6]. Instances of the
linkage 1locus model contain a high degree of inherent deterministic dependencies, due
to deterministic constraints on genotypes of related individuals.

Example 62 (Agent communication) This probabilistic toy model for communication
in a multi-agent system is instantiated by domains consisting of agents and and a time
structure. Figure 4 shows an example of a domain with eight agents and a time structure
consisting of five points in time. Some agents are connected with direct communica-
tion channels. In figure 4 these are shown by the connecting lines. An agent can have
the special attribute of being a source agent. In Figure 4 agent 1 is the single source
agent. A domain, thus, is specified by a number of objects, and the predefined rela-
tions agent,timepoint,connected,source,timeord, where timeord defines a linear order
on timepoints. The probabilistic model, now, is as follows: at time t1 a message is given
to all source agents in the system. At each point in time, each agent sets each of its
communication channels randomly (with equal probability) into receive-mode or send-
mode. If at some time point ti agent k sets its communication channel with agent j into
receive-mode, agent j sets that channel into send-mode, and agent j had the message at
time ti−1, then agent k will have the message at time ti. Once received, the message is
never forgotten by an agent, i.e. it can be transmitted to connected agents at all subse-
quent time points. This probabilitstic model is encoded by a relational Bayesian network
via the two probabilistic relations receivemode(a1, a2, t) and hasmessage(a, t), where
receivemode(a1, a2, t)=true means that a1 has set its channel with a2 into receive-mode,
receivemode(a1, a2, t)=false means that a1 has set its channel with a2 into send-mode,
and hasmessage(a, t)=true means that a has the message at time t.
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Fig. 4. Agent communication example

The next example is presented at greater length, because it includes a translation of
Markov Logic Networks int RBNs, which is of independent interest.

Example 63 The Markov Logic Networks of Richardson and Domingos [20] are an
intuitive and modular representation language that combines first-order logic and prob-
abilistic modeling in a very direct way. The language simply consists of weighted first-
order predicate logic formulas. Table 2 gives an example taken from [20]. The model
describes uncertainty over the relations Fr(iends),Sm(okes), and Ca(ncer). The weight
attached to a formula specifies a bias for ground instances of the formula to be satisfied
in a (logical) model of the knowledge base. More precisely, for a given finite domain
C = {c1, . . . , cn}, the MLN of table 2 defines a probability distribution over all possi-
ble worlds ω with domain C and relations Fr,Sm,Ca via

P (ω) =
1

Z

∏

i

eni(ω)wi (2)

where the index i ranges over the formulas in the MLN, wi is the weight of the ith
formula, ni(ω) is the number of true ground instances in ω of the ith formula, and Z is
a normalization constant. This distribution is equivalently specified by the log-odds of
pairs of possible worlds:

log(P (ω)/P (ω′)) =
∑

i

wi(ni(ω) − ni(ω
′)). (3)

To obtain an RBN encoding of this distribution, consider the Bayesian network
of figure 5. The node Ω represents a random variable ranging over possible worlds
ω. The nodes Wi(c) are boolean random variables (i = 1, . . . , 4; c ranging over all
ki-tuples of elements from C, where ki is the number of free variables of Fi). Their
conditional distribution given Ω is defined by the conditional probability table as shown
in table 3. Thus, the probability of Wi(c) being true only depends on whether ω satisfies
the ground formula Fi(c), and is either 1 or 1/ewi , accordingly.
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i Formula Fi ki Weight wi

1 Fr(x, y) ∧ Fr(y, z) ⇒ Fr(x, z) 2 0.7
2 ¬∃yFr(x, y) ⇒ Sm(x) 1 2.3
3 Sm(x) ⇒ Ca(x) 1 1.5
4 Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y)) 2 1.1

Table 2. MLN: friends and smokers

Now consider the conditional distribution on Ω, given that all Wi(c)-variables are
instantiated to true:

P (ω | W = t) =
P (ω)

P (W = t)
P (W = t | ω)

=
P (ω)

P (W = t)

∏

i

(1/ewi)n
ki−ni(ω)

The log-odds according to this conditional distribution are

log(P (ω | W = t)/P (ω′ | W = t))

= log(P (ω)/P (ω′)) +
∑

i

wi(ni(ω) − ni(ω
′)),

and thus are equal to (3) if the prior distribution on Ω is uniform.
A joint distribution of Ω and random variables Wi of the desired form can eas-

ily be encoded in a RBN. First, one defines a uniform distribution for Ω, which is
equivalent to a uniform joint distribution of the ground relational atoms Fr(c1, c1),
Fr(c1, c2),. . . ,Sm(cn). This is achieved with the three probability formulas

friends(x,y)=0.5
smokes(x)=0.5
cancer(x)=0.5
Next, we introduce for each formula Fi a probabilistic relation Wi. We illustrate the

general method for constructing the probability formula associated with Wi using F2

from table 2. The top-level structure of the formula for W2 is

(PF2(x) : 1, 0.1002),

where 0.1002 = 1/e2.3. PF2(x) is a sub-formula, such that PF2(c) evaluates to 1 for
c ∈ C exactly when the instantiations of the relations Fr,Sm,Ca make the formula
F2(c) true. Otherwise PF2(c) evaluates to 0. That it is generally possible to construct
such indicator formulas for first-order properties was shown in [10]. It is a simple
consequence of the close connection between the syntax of probability formulas and
the syntax of predicate logic, and only requires the use of the noisy-or combination
function. For our example formula F2 we obtain

PF2(x) = ((n-or{Fr(x, y)|y}: 0, 1) : Sm(x), 1).

This formula is composed of one combination function corresponding to the existen-
tial quantification in F2, and two convex combination constructs, which translate the
negation and implication in F2.
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Ω true false
ω |= Fi(c) 1 0
ω 6|= Fi(c) 1/ewi 1 − 1/ewi

Table 3. CPT for MLN translations

Similarly, one defines relations and probability formulas for the remaining formulas
F1, F3, F4. The joint distribution defined by the resulting RBN conditioned on all Wi

atoms being true is the original distribution defined by the MLN. That we obtain the
distribution of interest as a conditional distribution in a larger state space is of some
theoretical significance. For practical purposes, it does not seem to make an impor-
tant difference, as our additional random variables do not lead to larger computational
structures for inference. In fact, the moral graphs of the Bayesian networks we obtain
by kbmc from the RBN encoding are basically isomorphic to the Markov networks
Richardson and Domingos construct for inference from the MLN representation.

6.2 Results

The plots in figure 6 show results from sampling experiments on our four example
models. In the first experiment, the agent communication model was instantiated with
the domain shown in figure 4. The resulting model instance has 130 random vari-
ables) As evidence was entered hasmessage(6, t3) = true, hasmessage(2, t3) = true,
hasmessage(8, t5) = true. Plot (a) shows the convergence of the sample estimate of
the posterior probability for hasmessage(7, t4). This model is still accessible to exact
inference (it has , and the correct probability is computed as 0.5781. The plot shows
the estimates for five different sample sizes, where each estimate is averaged over 100
sample runs (thus, in effect, the mean value shown for sample size 200 is, in effect, the
estimate obtained in a sample of size 20000). The error bars show the standard devi-
ation of the estimate in the 100 samples. The results indicate a not dramatic, but still
significant, advantage of adaptive sampling, as here we observe a similar convergence
of the mean value, but a lower standard deviation. This advantage is further confirmed
by plot (b), which shows the average variance in the estimate for all (uninstantiated)
nodes. Backward sampling did not succeed on this model: even for large sample sizes
no samples with nonzero probability were produced.
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Fig. 6. Experimental results
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In the second experiment, the RBN for the friends and smokers model from exam-
ple 63 was instantiated over a domain domain of five individuals, leading to a model
instance with 195 nodes. Evidence was entered for five nodes. We are approximating
the posterior probability of smokes(mary). Again, this model instance is still amenable
to exact inference, and the true value of the target probability is computed as 0.953. Plot
(c) in figure 6 shows mean values and standard deviations obtained for 100 samples of
different. The results indicate that estimates are biased for small sample sizes, but with
increasing sample size the bias becomes negligible. In this experiment standard and
adaptive sampling show almost identical performance (also when the average variance
for all nodes is considered – not shown here). Because of the special 2-layer structure
of the network in this experiment, backward sampling was not used.

In the third experiment, the linkage model was instantiated with a pedigree of 31
individuals, and genotype information was entered for 5 individuals in the lower part of
the pedigree. Plot (d) shows the average variance in the estimates for the posterior prob-
abilities of the 226 un-instantiated nodes. In this model backward sampling produces
much better results for small sample sizes than either version of forward sampling. The
advantage is less pronounced when the higher time complexity of backward sampling
is taken into account, but also when plotting time against average variance (not shown
here) do we observe an advantage of backward sampling for smaller sample sizes. The
good performance of backward sampling, at first, is quite surprising in view of its fail-
ure in the experiment with the agent communication model. The two models appear
to be rather similar in structure, basically describing how information (genotypes, re-
spectively messages) propagates through a network. The crucial difference appears to
be that the linkage model permits more local propagations of implied instantiations:
when it is known, for example, that a person has genotype AA, then this implies that
neither of its parents has genotype aa, and this propagation is possible based on the lo-
cal information at the affected nodes. In contrast, in the agent communication example,
the entered evidence hasmessage(6, t3) = true implies that hasmessage(5, t2) = true,
but this implication cannot be detected by considering only the local neighborhood of
the instantiated node hasmessage(6, t3). One has to consider the whole structure of the
communication network, from which it follows that the only way agent 6 could have
received the message at t3 is via agent 5.

The results discussed so far relate to the computation of posterior marginals for
un-instantiated nodes. Another relevant quantity we compute by sampling is the mean
importance weight, which is an estimate for the probability of the entered evidence.
The marginal probability of the evidence in the experiment with the linkage model is
0.002128. Plots (e) and (f) show the mean and standard deviation of the estimate for
this quantity in the same experiment as reported in plot (d). Here no advantage of back-
ward sampling is observed. One, thus, sees that the choice of the best sampling strategy
depends on whether a simultaneous estimate of all posterior marginals is required, or
only the probability of the evidence is needed.

The last experiment uses the students and professors model to investigate the time
complexity of sampling. Model instances are given by domains containing certain num-
bers of students and professors. In our experiment we are measuring the time for draw-
ing a sample of size 100. This is done for two different types of domains: in the first
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type, the number of professors is held constant at 5, and the number of students in-
creased. In the second type the number of students is fixed at 5, and the number of
professor is varied. Note that in this model the number of ingoing edges into nodes,
and, correspondingly, the size of pre-evaluated probability formulas, grows only in the
number of professors. Plot (g) shows the time required for standard forward sampling
as a function of the total number of nodes in the sampling network. For domains with
a constant number of professors sampling time is linear in the number of nodes. For
domains with a growing number of professors sampling time is quadratic, which cor-
responds to the total size of the model instance with sizes of pre-evaluated probability
formulas taken into account. Neither in this nor in any other experiments did standard
and adaptive sampling have a noticeably different time complexity.

Overall, our results indicate that adaptive sampling is a good default strategy. It
tends to perform somewhat better than simple forward sampling, with no significantly
higher time complexity. Backward sampling is a rather brittle method that can perform
well in special situations, but also can fail completely.

6.3 Conclusion

We have developed importance sampling methods for RBNs. Main advantage of our
methods is that they operate directly on the abstract representation language, and that
they are directly applicable to every model given by an RBN representation. While,
surely, there exist models and evidence scenarios for which our importance sampling
methods will perform poorly, we have found that they perform well on a variety of
models, which were not originally proposed for RBN representations or RBN-based
sampling. As an additional result it was shown how to translate MLNs into RBNs.
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