
Exploiting Structural Similarity For Effective Web

Information Extraction

Sergio Flesca1, Giuseppe Manco2, Elio Masciari2, Luigi Pontieri2, and Andrea Pugliese1

1 DEIS, University of Calabria

2 ICAR-CNR

Abstract. In this paper we propose an architecture that exploit web pages stuc-

tural information for the extraction of relevant information from them. In this

architecture, a primary role played by a distance-based classification methodology

is devised. Such a methodology is based on an efficient and effective technique for

detecting structural similarities among semistructured documents, which signifi-

cantly differs from standard methods based on graph-matching algorithms. The

technique is based on the idea of representing the structure of a document as a

time series in which each occurrence of a tag corresponds to a given impulse. By

analyzing the frequencies of the corresponding Fourier transform, we can hence

state the degree of similarity between documents. Experiments on real data show

the effectiveness of the proposed technique.

1 Introduction

The huge amount of information available on the Web offers new perspectives for on-line

applications which can be profitably exploited for various purposes. Information extrac-

tion agents can be developed for investigating and collecting data available from Web

sites, in order to effectively exploit such data for business purposes. Typical scenarios

include, e.g., competitors monitoring, automatic news filtering, product finding and price

comparing, etc. In order to make Web information effectively available, it is suitable to

manage it through an enterprise information system. When it is a priori known which

pages the desired information must be collected from, it is possible to use ad hoc HTML

to XML wrappers [3, 11, 6, 10], to extract information from sets of HTML pages having

a similar structure. The extracted information, encoded in XML, can be exploited by

the enterprise information system to help decision makers or simply to offer new ser-

vices to the customers. Thus, the use of HTML wrappers allows for making high-quality

semistructured data available for various purposes, with the major advantage of a low

human effort needed to extract the desired information. Provided with several sets of

similarly structured HTML pages, the wrapper designer must generate an HTML/XML

Dagstuhl Seminar Proceedings 05061
Foundations of Semistructured Data
http://drops.dagstuhl.de/opus/volltexte/2005/230

wrapper for each set. Once these wrappers have been generated, they can continuously

extract information from pages, and it is only necessary to monitor the extraction pro-

cess in order to handle possible extraction exceptions. A main issue arises when it is

not a priori known where interesting information is located, so it is necessary to crawl

the Web [9, 8, 14]. In this case, pages collected by crawlers are not necessarily similarly

structured, and, as a consequence, they cannot be automatically handled by wrapper pro-

grams. Moreover, most of currently available tools only permit the extraction of textual

information. Thus, a company interested in exploiting this information needs a relevant

human effort to restructure the available data and detect significant information.

A main problem when characterizing the structure of Web documents is the need

to refer to a precise application context. Indeed, even if tags are the basis for detecting

the structure of a document, they only express its syntactic structure, disregarding the

semantics of the data contained in the document. Finding heterogeneous representations

of semantically similar information is a very common situation in the Web. Different

tags and different combinations of them could be used to represent similar information

sources. Worst, similar markup tags could be used to structure different information

sources. Such a problem is even more critical when document are written in HTML, that

is a language specifically designed to address presentation issues and, thus, providing little

expressiveness from a semantic point of view.

However, to the best of our knowledge, most wrapper languages [6, 11, 10] use only

the syntactic structure of Web pages to define how to extract information, while only a

few [3] have semantic facilities (actually very limited). Thus, in the following we mainly

concentrate on syntactic similarity, as defined by the formatting structure of HTML tags.

Despite the limited number of HTML tag names and their lack of explicit semantics, we

believe that such a simple approach can be successful in recognizing homogeneous groups

of data-intensive HTML documents. As a matter of fact, we experienced that recognizing

syntactically homogeneous groups of documents is sufficient for inducing and selecting

the most suitable wrappers for them. Indeed, a wrapper is able to process only pages

that exhibit almost the same syntactic structure, at least in their portion containing

the relevant data to be extracted. Obviously, other portions of the pages, for instance

those containing advertisements, can exhibit very different syntactic structures. We can

nevertheless look at the overall syntactic structure since usually the irrelevant parts of the

pages are smaller than the ones containing relevant data. Furthermore, irrelevant parts

are likely to have different structure even in unrelated pages.

2

The technique proposed in this paper represents the structure of a document as a tree

of elements. The tagging structure in well-formed XML documents naturally induces such

a kind of representation; HTML pages on the Web, instead, are often not well-formed,

i.e. the end tag is not always required to appear. However, most HTML parsers are able

to parse not well-formed documents and represent them as a tree of elements.

In such a context, data mining techniques can be profitably exploited to classify Web

pages made available by a Web crawler. Indeed, the capability of automatically recog-

nizing whether the contents of a Web source can be suitably processed by an available

wrapper facilitates the task of extracting relevant information. Moreover, the capability

of automatically detecting and collecting similarly structured pages which do not fit to

any available wrapper model, but which may, in principle, contain significant information,

can help the expert in building ad-hoc wrappers for them.

Main Contribution. In this paper we address the problem of integrating and enhancing

crawling and wrapping systems in order to avoid (or reduce) the human effort necessary

to deal with the potentially huge amount of pages found by crawlers. The main contribu-

tion of this work is twofold:

1. we propose an architecture for the extraction of information from the Web and its

storage into an enterprise information system, where crawling and wrapping modules,

with specifically designed document categorization modules, are integrated to speed

up the wrapping task;

2. we develop a technique aimed at HTML document categorization, which allows for

both classifying found pages w.r.t. the set of available wrappers and identifying new

sets of similarly structured pages, for which new wrappers can be defined.

We point out that our architechture is flexible (any wrapper or crawler can be exploited

as it will be clear in the next section) and adopts an efficient and effective technique for

measuring the structural similarity between semistructured documents. This technique

represents the structure of a document as a time series in which each occurrence of a tag

corresponds to a given impulse. By analyzing the frequencies of the corresponding Fourier

Transform, we can hence state the degree of (structural) similarity between documents.

The efficiency of this approach (it works in O(nlog(n))) is compelling when compared to

other approaches defined in the literature [12, 4]. Moreover, the technique is particularly

attractive for its effectiveness. As a matter of fact, the use of the Fourier Transform

to check similarities among time series is not completely new (see, e.g., [1]), and was

3

proven successful. The main contribution of our approach is the systematic development

of effective encoding strategies for web documents, in a way that makes the use of the

Fourier Transform extremely profitable.

2 Wrapping and Crawling the Web Through Structural

Document Categorization

The possibility of automatically processing Web pages permits to reduce the costs of

extracting relevant information from them. In the following subsections we first propose

an architecture where crawling and wrapping systems are integrated in order to reduce

the human efforts needed to extract semistructured information from the Web. As this

architecture exploits document categorization algorithms to detect structurally similar

pages, and to select (or build) a suitable wrapper program to process them, we next

introduce the problem of structural document categorization.

2.1 An Architecture for Integrating Crawling and Wrapping

The proposed architecture, shown in Fig. 1, is devoted to extract interesting information

from the Web and to store it into an enterprise information system. As discussed above,

the aim of this architecture is to provide usable semistructured information.

The module which is responsible for finding interesting information on the Web is the

Web crawler. This module continuously crawls the Web yielding new interesting pages.

Once such pages have been found, the page classifier module classifies them w.r.t. the

available wrapper programs. Wrappers are software modules that convert data implicitly

stored in (a class of) Web documents into semi-structured data. Each class of similarly

structured pages is then forwarded to the chosen wrapper program that translates the

information they contain and stores them.

Obviously, not all the pages found by the crawler can be properly classified. In the

proposed architecture, information from unclassified pages can be manually extracted, but

such pages can be also used to build new wrappers. To this purpose, this set of pages is

forwarded to the wrapper designer that processes them using the wrapper designer suite.

During the wrapper design process, document categorization techniques are exploited

to automatically identify clusters of similarly structured pages that can be handled by

the same wrapper. The output of this process is a new set of wrapper definitions that

can be used both for classifying new interesting pages and for automatically extracting

information.

4

Notice that, in the proposed architecture, the processes of crawling, classifying and

wrapping Web pages are kept separate, and no particular assumption is made about

them. Therefore, it is possible to integrate into this architecture any kind of crawling

technique [9, 8, 14] and wrapper generation system [6, 3, 11, 10] defined in the literature.

Fig. 1. Architecture of the information extraction system

2.2 Structural Document Categorization

The complexity of wrapper generation systems is strongly related to the structuring level

of the Web pages they deal with. Usually, a wrapper is designed for a specific set of Web

pages exhibiting inherently similar features. Such features typically define the context in

which the relevant data to extract is located. A typical example is a set of HTML pages

containing details (e.g., price, description, picture, etc.) about a given set of products

which can be purchased on-line. If such pages are referred to the same product category, or

even if they are extracted from the same service provider, it is likely that the information

they provide is structured in a similar way (e.g., each product is represented as a row in

a table, in which the first cell contains either the product name or the product picture).

Thus, in order to design a wrapper for extracting pricing data from these pages, one has

to assume that all the pages under consideration have a similar structure.

5

The capability of recognizing structures within Web pages is fundamental in the con-

text of the architecture shown in Fig. 1. In particular, the page classifier and the wrapper

design suite are mainly based on the structural categorization of documents according to

their structure, which can be summarized as follows.

Let w be a wrapper, and Tw = {p1, . . . , pm} the set of Web pages used to generate

w (the training set for w). For a well-defined wrapper, it is assumed that the structural

similarity between each pair pi and pj is high. The tasks performed by the page classifier

and the wrapper generation suite can be described as follows. Given a set w1, . . .wn of

available wrappers, a new page p is associated with Twi if (i) the structural similarity

between p and each q ∈ Twi is acceptable, i.e., it is higher than a given threshold, and (ii)

no other set Twj
exhibits a higher structural similarity. If no wi exists such that p can

be associated with wi, p is labelled as unclassified. Then, a set U of unclassified pages is

worth further consideration if it is possible to define a partition of U in k clusters, where

each cluster Ci can be exploited as a training set for learning a new wrapper wCi
. Notice

that the former task can be efficiently accomplished by means of k-Nearest Neighbor

techniques, while the latter is mainly a clustering problem, for which many similarity-

based approaches can be defined. Nevertheless, a major issue is the definition of the notion

of similarity among Web documents according to the structure they exhibit.

3 Detecting Structural Similarity Among Documents

The concept of structural similarity is difficult to understand by itself. Intuitively, two

documents are said to have a similar structure if they correspond in the type of elements

they contain and in the way these elements are combined in the two documents. Observe

that even if it is easy to detect whether the structure of two documents is exactly the same,

this test is not useful for our aims. Indeed we would like to quantify the similarity between

the structures of two documents emphasizing the differences that are more relevant in

defining a completely different structure. For instance we would like to consider similar

two documents that have the same features with different regularities. In this respect,

two HTML documents are similar if it is possible to identify equivalent subparts, even if

they appear in the two documents with different frequencies.

The current literature has devoted much attention to the problem of detecting struc-

tural similarity between complex objects. In particular, several methods for detecting the

similarity of XML documents [5, 12] have been recently proposed. All these methods are

based on the concept of edit distance and use graph-matching algorithms to calculate

a (minimum cost) edit script that contains the updates necessary to transform a docu-

6

ment into another. These techniques are generally computationally expensive, i.e. at least

O(N2), where N is the number of elements in the two documents.

In this section we propose a different approach, which is essentially based on the idea

of associating each document with a time series representing its structure (document en-

coding). By exploiting such an encoding, we check the structural similarities of documents

by looking at the corresponding time series. As we shall see, this approach is both efficient

and effective.

The approach was initially designed to detect structural similarities between XML

documents[7]. However, when dealing with HTML documents, some issues arise which

need to be tackled. In the following, we briefly introduce our technique for encoding and

measuring the similarity of XML documents according to their structure then we show

how the technique can be adapted to deal with HTML documents. Further details on the

encoding techniques for XML and on the similarity measures for time series associated

with the documents can be found in [7].

3.1 Document Encoding

An XML document is structured as a tree of elements, where each element is associated

with a relevant piece of information. To our purposes, the structure of the tree shall

represent the structure of the document, and in this section we define several ways of

associating a time series with such a structure. In principle, we would like to flatten the

tree structure into a time series which summarizes the relevant features of the original

document. Notice that exploiting injective flattenings is not sufficient: since we are in-

terested in directly comparing two time series, we would like to make this comparison as

effective as possible, giving greater weights to the more relevant structural characteristics

of the documents.

We begin by fixing some notation. Given an XML document d, we denote by tags(d)

the tag set of the document d, i.e. the set of all the tags occurring within d; moreover,

tnames(d) denotes the set of all the distinct tag names appearing in d. Furthermore, for

an element el of d, we denote by els the starting tag of el and by ele the ending tag of el.

Given a tag t with tag name tn, the type of t is its tag name tn if t is a start tag or /tn

if t is an end tag. The skeleton of d (denoted by sk(d)) is the sequence of tags appearing

within d, the sequence [t0, t1, · · · , tn] such that ti ∈ sk(d) ⇔ ti ∈ tags(d) and ti precedes

tj within d if and only if i < j. Intuitively, the skeleton of an XML document represents

a description of the sole document structure. For a tag t ∈ sk(d), we define nestd(t) as

the set of the start tags els in d occurring before t and for which there is no end tag

7

ele matching els and appearing before t. The path name of an element el is defined as

the concatenation of the names of the element that enclose it in d. We also denote by lt

the nesting level of the tag t, i.e. lt = |nestd(t)|. Finally, for a given set D of documents,

maxdepth(D) denotes the maximum nesting level of tags appearing in a document d ∈ D.

We define a document encoding as a combination of a tag encoding function and

a document encoding function. The effectiveness of the document encoding is strongly

influenced by the choices in the functions to adopt. Intuitively, a tag encoding function

provides a numerical encoding of a tag appearing in the skeleton of a document, by looking

at the “internal” properties of the tag. On the other side, a document encoding function

aims at encoding a sequence of tags, by looking mainly at the features of the sequence

seen as a whole. In a sense, a tag encoding corresponds to the analysis of the locality of

a tag, while the nesting of different tags within the whole document provides a overall

perspective; we look at the document as a globally uniform entity.

Tag Encoding Functions. Given a set D of XML documents, a function γ from tags(D)

to IR is a tag encoding function for D. γ is said to be symmetric iff for each document

d ∈ D and for each element el ∈ d, γ(ele) = −γ(els). Moreover, it is null if γ(ele) = 0. We

can assign a number n to each tag in several different ways: for instance, by generating

it randomly, or using a hash function. Obviously, a good tag encoding function should

at least ensure to be injective w.r.t. tag names. The encoding functions presented in the

following mainly differ for their capability to contextualize a given tag, i.e., to capture

information about its neighbors.

The simplest tag encoding function we consider is named Direct tag encoding (γd) and

is defined below. Given a set D of XML documents, we build a sequence of distinct tag

names [tn1, tn2, · · · , tnk] by considering a (randomly chosen) linear order on tnames(D).

Given an element el, the direct encoding simply associates each start tag els with the

position n of the tag name tn of el in the sequence (γd(els) = n). We complete the

above definition by distinguishing between two possible encoding strategies for end tags:

symmetric and null.

A simple extension of the above strategy consists in assigning a value to each tag by

relating such value to the subsequent one. We denote by cpairs(D) the pairs of types

of tags < tni, tni+1 > such that there exists a pair of tags < ti, ti+1 >, resp. of type

tni, tni+1, that appear consecutively in a document d ∈ D. We associate an integer

number P<tni,tni+1> with each pair of types of tags < tni, tni+1 > by considering a

randomly chosen linear order on cpairs(D). Given a pair of tags ti, ti+1 (resp. of type

8

tni, tni+1) appearing consecutively in a document d, the Pairwise tag encoding function

(γpw(ti)) associates with ti the number P<tni,tni+1>.

The last strategy we propose encodes a tag on the basis of its path name. Con-

sider a set of documents D, and let pnames(D) be the set of path names associated

with the elements appearing in a document d ∈ D. Again, we use a sequence of path

names [pn1, pn2, · · · , pnk] obtained by considering a randomly generated linear order on

pnames(D), and we associate each path name pni with its position i (denoted as pos(pni))

in the sequence. Given a start tag els appearing in a document d with corresponding path

name pn, the Nested tag encoding function γpt(t) is defined by associating els with pos(pn).

Again, we distinguish between symmetric and null version of this encoding.

Document Encoding Functions. Let D be a set of XML documents. A document

encoding is a function enc that associates each d ∈ D with a sequence of real numbers,

i.e. enc(d) = h0, h1, · · · , hn. In the following we concentrate on three different document

encoding functions. Notice that all these functions are defined w.r.t. a tag encoding func-

tion that associates tags to numbers. In particular, we assume a set of XML documents

D, a document d ∈ D with sk(d) = [t0, · · · , tn] and a tag encoding function γ.

A trivial encoding of d (tenc(d)) is a sequence [S0, S1, · · · , Sn], where Si = γ(ti). This

encoding simply applies a tag encoding function to each tag appearing in the skeleton of

the document.

A linear encoding of d (lenc(d)) is a sequence [S0, S1, · · · , Sn], where S0 = γ(t0) and

Si =
∑

k≤i γ(tk). The main idea underlying this type of encoding is that each element e

of the time series associated with a document should encode more than the information

corresponding to a single tag. Indeed, it computes a linear combination of the codes of

the tags that appear before t in the document.

A multilevel encoding of d (mlenc(d)) is a sequence [S0, S1, · · · , Sn], where Si =

γ(ti)×Bmaxdepth(D)−lti +
∑

tj∈nestd(ti)
γ(tj)×Bmaxdepth(D)−ltj . This encoding func-

tion assumes that the contribution of a tag t to the document encoding must depend

on the nesting level of the tag. Intuitively, we encode t according to a basis B which

takes into account both its nesting level and the path from the root to t. We usually set

B = |tnames(D)| + 1 to avoid “mixing” the contributions of different nesting levels. In

Example 1 we illustrate the application of the various encoding functions proposed here

to a simple XML document.

Example 1. In this example we show the application of the concepts introduced in section

3 to the toy XML document shown below, and referred to as book.

9

<xml>

<book year="1997">

<title> A First Course in Database Systems </title>

<author> Ullman </author>

<author> Widom </author>

<publisher> Prentice-Hall </publisher>

</book>

</xml>

The tag set of the book document is: {<xml>, <book>, <title>, </title>, <author>,

</author>, <author>, </author>, <publisher>, </publisher>, </book>, </xml>}.

For the same document tnames = {xml, book, title, author, publisher}. Observe that tags

with the same name are not considered to be the same object, so that <author> appears

twice in the tag set, whereas the set of tag names does not contain duplicates.

Finally, the skeleton of the document is: <xml>, <book>, <title>, </title>,

<author>, </author>, <author>, </author>, <publisher>, </publisher>, </book>, </xml>.

Figure 2 shows the output of the tag and document encoding functions described in

Section 3 when applied to the book document shown above.

Fig. 2. Tag and document encodings for the book document.

10

3.2 Similarity Measures

Faced with the above definitions, we can now detail the similarity measure for XML

documents. Observe that a document encoding function provides us with a particular

view of the structure of a document d, corresponding to the preorder visit of the tree-

structure of d starting from an initial time t0. Considering an encoding function, we also

assume that each node (tag) is found after a fixed time interval ∆. The total time spent

to visit the document is t0 + N∆, where N is the size of tags(d). During the visit, as we

find a start-tag, we produce an impulse, that depends on a given tag encoding e and the

overall structure of the document, as it is represented by the selected document encoding

enc. As a result of the above physical simulation, the visit of the document produces a

signal hd(t) that varies, in the time interval [t0, t0 + N∆).

Comparing two such signals can be as difficult as comparing the original documents.

Indeed, (i) comparing documents having different lengths requires too costly resizing and

alignment operations, and (ii) stretching (or narrowing) signals is not a solution, since

such operations heavily affect the corresponding document structure.

These drawbacks can be avoided if the structural properties of the signals associated

with two XML documents are compared by examining their DFT transforms, which reveal

much about the distribution and relevance of signal frequencies. Given a document d, we

denote as DFT(enc(d)) the Discrete Fourier Transform of the time series resulting from

the encoding. In order to compare two documents we propose to consider the difference

in the magnitude of frequency components, that allows us (i) to abstract from the length

of the document, and (ii) to know whether a given subsequence (representing a subtree

in the XML document) exhibits a certain regularity, no matter where it is located within

the signal. The overall computation of the dissimilarity between documents can be done

as follows. Let d1, d2 be two XML documents, and enc be a document encoding, such

that h1 = enc(d1) and h2 = enc(d2). We define the Discrete Fourier Transform distance

of the documents as an approximation of the squared difference of the magnitudes of the

two signals:

distDFT(d1, d2) =

M/2∑
k=1

(∣∣[˜DFT(h1)](k)
∣∣− ∣∣[˜DFT(h2)](k)

∣∣)2

 1
2

where ˜DFT is an interpolation of DFT to the frequencies appearing in both d1 and d2

(and M is the total number of points appearing in the interpolation). Interpolation in

frequency domain is here exploited to allow for comparing sequences with different lengths.

11

This can be seen as an efficient method to approximate a zero-padding [13] operation on

the sequences. The approximation error due to interpolation is inversely related to the

lengths of the sequences.

It is worth noticing that, when comparing two documents with length N , our method

requires O(N log N), since computing their transforms is O(N log N) that is compelling

w.r.t. other approaches (e.g., graph-based techniques).

4 Experimental Results

In this section, we present some experiments we conducted to evaluate the effectiveness of

the proposed approaches in measuring structural similarity among HTML documents. The

experiments were performed on real HTML documents, gathered from different sources

in the Internet. From now on, we will denote a group of documents coming from the same

source as a class. The documents we used in our tests are about 400 and belong to 16

classes, which can be grouped into the following 4 high-level categories (each of them

corresponding to a distinct application domain): 1) E-commerce, containing 102 HTML

documents and consisting of 4 classes, named E1, E2, E3 and E4, corresponding to 4

e-commerce Web sites; 2) Museums, 96 HTML documents coming from 4 classes, named

M1, M2, M3 and M4, corresponding to the Web sites of 4 museums; 3) Newspapers, 111

HTML documents, grouped in 4 classes, named N1, N2, N3, N4, corresponding to the

Web sites of 4 newspapers; 4) Universities, 94 HTML documents, grouped in 4 classes,

named U1, U2, U3, U4, corresponding to the Web sites of 4 Universities.

The evaluation of the results in each test relies on some a priori knowledge about the

used data set. In fact, we remember that the data considered in our tests belong to a

predefined number of classes, i.e., documents’ groups, each of them related to a given

data source. The immediate result of each test is a similarity matrix S representing the

degree of structural similarity for every pair of documents.

A natural quality measure can be the error rate of a k-Nearest Neighbor classifier.

Indeed, for each document, we can measure whether the dominant class of the k most

similar elements allows to correctly predict the actual class of the document, and con-

sider the total number of documents correctly predicted as a measure for evaluating the

effectiveness of the similarity. This measure can be refined by evaluating the average num-

ber of elements, in a range of k elements, having the same class of the document under

consideration. Practically, we define qk, as the average percentage of documents in the

k-neighborhood of a generic document which belong to the same class of that document.

12

Formally:

qk(S) =
1

N

N∑
i=1

|Fk(i) ∩ Cl(i)|
min(k, |Cl(i)|)

where N is the total number of documents, Cl(i) represents the class associated with the i-th

document in the collection, and Fk(i), is the set of k documents having the lowest distances from

di, according to the similarity measure at hand. In principle, a Nearest Neighbor classifier tends

to have a good performance when qk is high. Furthermore, qk provides a measure of the stability

of a Nearest-Neighbor: high values of qk make a kNN classifier less sensitive to increasing values

k of neighbors considered.

The sensitivity of the similarity measure can also be measured by considering, for a given

group of documents x, y, z, the probability that x and y belong to the same class and z belongs

to a different class, but z is more similar to x than y is. We denote this probability by ε(S),

which is estimated as

ε(S) =
1

N
×

N∑
i=1

 1

(ni − 1)× (N − ni)
×

∑
j 6=i,Cl(j)=Cl(i)

∑
Cl(k) 6=Cl(i)

δS(i, j, k)

where δS is 1 if S(i, j) < S(i, k), and 0 otherwise.

4.1 Detailed Results

In this section we describe in detail the results obtained over the data set Newspapers, which is

composed of 4 disjoint document classes, namely N1, N2, N3, and N4. Each class corresponds to

a news Web site and contains the documents extracted from it.

We recall that the direct result of each test is a similarity matrix S. In order to allow for

an immediate feeling of the similarity relationships, we will visualize the similarity matrix as an

image, using a scale of colors which range from white to black through several tones of yellow,

first, and red, after. The color tone of each pixel in such an image is proportional to the value

stored in the corresponding cell of the matrix (i.e., darker pixels correspond to higher similarity

values). In the case of highly dense subrange of similarity values, suitable distortions will be

applied to the color scale, in order to emphasize the differences among such values.

The average values of all the intra-class similarities and inter-class similarities in S are sum-

marized into a matrix CS to support a simple quantitative analysis. In particular, given a set of

documents belonging to n prior classes and a similarity matrix S defined on those documents,

an n× n matrix CS is produced, where the generic element CS(i, j) is computed as follows:

CS(i, j) =

∑

x,y∈Ci,x 6=y
S(x,y)

|Ci|×(|Ci|−1)
iff i = j∑

x∈Ci,y∈Cj
S(x,y)

|Ci|×|Cj |
otherwise

For each of the encoding strategies presented above, we will show a graphical representation

of the similarity matrix, the average of all intra-class and inter-class similarities, and the values

13

obtained for the error ε and the quality measure qk. We notice that for the latter a neighborhood

size equal to 22, the minimum class cardinality, is considered.

(a)

N1 N2 N3 N4

N1 0.0608 0.0039 0.0068 0.0094

N2 0.0039 0.0053 0.0045 0.0039

N3 0.0068 0.0045 0.0095 0.0065

N4 0.0094 0.0039 0.0065 0.1536

(b)

measure value

ε 0.0351

qk 0.9546

(c)

Fig. 3. Similarity matrix (a), average similarities (b) and quality measures (c) for Trivial en-

coding scheme

Trivial. At a first glance at Fig. 3.(a), the Trivial scheme seems not to be able to suitably

distinguish the prior classes in the data set. In fact, while the classes N1 and N4 are clearly

recognized, the other ones show a quite low internal similarity.

However, the quantitative results shown in Fig. 3 reveal that the Trivial scheme performs

surprisingly well. Indeed, for all classes the intra-class similarity values are sufficiently higher

than the inter-class ones, thus allowing for separating all classes from each other. In particular,

adopting an iterative approach, we can first extract classes N1 and N4, which exhibit the highest

intra-class similarity. After the removal of these classes, the average similarities lower of about

an order of magnitude, allowing the separation of class N3 . Finally, the second class, with the

lowest intra-class similarity, can be identified.

Linear. The results shown in the right-hand side of Fig. 4 demonstrate a slight improvement

in recognizing the prior classes which Linear scheme gains with respect to Trivial. As in the

previous case, the last class looks as the most homogeneous one, while the second exhibits the

minimum average intra-class similarity. The good performance of Linear scheme is supported by

the graphical representation of the similarity matrix in Fig. 4.(a), where blocks corresponding to

the intra-class similarities can be clearly individuated.

14

(a)

N1 N2 N3 N4

N1 0.0650 0.0047 0.0064 0.0056

N2 0.0047 0.0076 0.0044 0.0042

N3 0.0064 0.0044 0.0108 0.0051

N4 0.0056 0.0042 0.0051 0.1779

(b)

measure value

ε 0.0021

qk 0.9914

(c)

Fig. 4. Similarity matrix (a), average similarities (b) and quality measures (c) for Linear en-

coding scheme

Nested. Both the optimal values for the overall similarity measures, shown in Fig. 5.(c), and

the similarity matrix, depicted in Fig. 5.(a), prove the ability of Nested scheme to adequately

evaluate structural similarity over the considered data set. Also in this case, classes N1 and N4

can be neatly recognized, while the other ones show lower similarity, as Fig. 5.(c) confirms. It is

worth noticing that this scheme emphasizes such a general trend, but it is also able to reduce

the inter-class similarities relatively to the intra-class one, thus allowing for better distinguishing

the classes.

Multilevel. The results produced by the Multilevel scheme appreciably differ from those pre-

sented so far, mainly because all the average similarities in Fig. 6.(b) are rather close to the

maximum value of similarity allowed.

These results can be explained by taking into account the nature of the names and positions

of tags inside HTML documents, as well as the strategy of the Multilevel document encoding

function, which associates each tag with a linear combination of the codes related to all the tags

enclosing it. In particular, more external is the tag the higher is the weight associated with it

and computed by means of a function which exponentially depends on the nesting level of the

tag. On the other side, the external levels, in any HTML document, are usually occupied by a

few tag names, such as html, head, body, but not only. Therefore, when Multilevel scheme is

applied to HTML documents, the obtained time series tend to have roughly similar shapes, thus

motivating the high values of similarity detected among every pair of documents.

In spite of this phenomenon, the quality measures shown in Fig. 6.(c) prove that the perfor-

mances of Multilevel scheme are good enough. Indeed, in the same figure we can observe that

the intra-class similarities are yet higher than the inter-class ones and allow for separating the

15

(a)

N1 N2 N3 N4

N1 0.0935 0.0023 0.0025 0.0060

N2 0.0023 0.0055 0.0027 0.0025

N3 0.0025 0.0027 0.0057 0.0030

N4 0.0060 0.0025 0.0030 0.1518

(b)

measure value

ε 0

qk 1

(c)

Fig. 5. Similarity matrix (a), average similarities (b) and quality measures (c) for Nested en-

coding scheme

classes, as it is confirmed by Fig. 6.(a) (produced by applying a suitable distortion effect to the

color scale in order to emphasize the differences).

Pairwise. The similarity matrix in Fig. 7.(a) looks rather similar to the one produced by the

Multilevel encoding scheme. Furthermore, high similarities among most of the documents can

still be noticed, even when they belong to different classes. This behavior is essentially due to the

Multilevel document encoding, where each tag occurrence is associated with a linear combination

of the codes assigned by a given tag encoding function to the tags enclosing that occurrence. In

particular, the weight associated with each tag in such a combination is a power function, where

the base is the number of distinct tag codes globally generated by the tag encoding function and

the exponent depends on the nesting level of the tag in an inverse manner. Since the Pairwise tag

encoding strategy considers all the distinct pairs of consecutive tags, it is likely to produce a high

number of tag codes, so emphasizing the differences in the weights that tags at different levels

are assigned to. Combining the Multilevel document encoding and the Pairwise tag encoding

functions, hence, makes the similarity between two generic documents essentially depend on how

they appear in most external elements, which we have noticed to be nearly invariant over HTML

documents.

Such an effect determines some decrease on the quality of the performed similarity analysis

with respect to most of the other methods, as confirmed by the global measures in Fig. 7.(c).

However, even in this case the results are globally satisfactory since all the classes can be

distinguished from each other, in spite of the high inter-classes similarities and the quite low

homogeneity of class N2, which yet once exhibits the minimum average intra-class similarity.

16

(a)

N1 N2 N3 N4

N1 0.9993 0.9930 0.9932 0.9808

N2 0.9930 0.9969 0.9932 0.9940

N3 0.9932 0.9932 0.9990 0.9921

N4 0.9808 0.9940 0.9921 0.9993

(b)

measure value

ε 0.0142

qk 0.9643

(c)

Fig. 6. Similarity matrix (a), average similarities (b) and quality measures (c) for Multilevel

encoding scheme

Remarks. In these experiments we examined a number of ways for encoding Web documents,

obtained by combining a document encodings with a tag encodings. Tables 1 and 2 summarize

the quality values obtained when using the above defined encoding schemes. To compute qk, in

each test we chose a neighborhood size equal to the minimum class cardinality w.r.t. the classes

considered in the test.

test document classes Trivial Linear Nested Multilevel Pairwise

1 E1, E2, E3, E4 0.0114 0.0379 0.0067 0.0212 0.0329

2 M1, M2, M3, M4 0.0442 0.0314 0 0.1218 0.0829

3 N1, N2, N3, N4 0.0351 0.0021 0 0.0142 0.0430

4 U1, U2, U3, U4 0.0796 0.0375 0.0515 0.0498 0.0413

5 E2, M3, N2, U2 0.0148 0.0053 0.0002 0.0167 0.0687

6 E3, M2, N3, U3 0.0251 0.0165 0.0552 0.0436 0.0349

7 E4, M4, N4, U1 0.0002 0.0038 0.0318 0.0075 0.0160

Table 1. Error ε for several data sets and methods

The shown results are very interesting as a whole, as they prove the effectiveness of our

Fourier-based similarity analysis on HTML documents, whatever encoding scheme is chosen

among the ones previously described. In particular, as proved by a closer look inside any test, all

the considered classes are recognized as sufficiently homogeneous from a structural point of view,

i.e. the similarities inside any class are generally higher than similarities between documents of

17

(a)

N1 N2 N3 N4

N1 1.0000 0.9997 0.9998 0.9997

N2 0.9997 0.9998 0.9996 0.9997

N3 0.9998 0.9996 0.9999 0.9995

N4 0.9997 0.9995 0.9996 0.9999

(b)

measure value

ε 0.0430

qk 0.9287

(c)

Fig. 7. Similarity matrix (a), average similarities (b) and quality measures (c) for Pairwise

encoding scheme

test document classes Trivial Linear Nested Multilevel Pairwise

1 E1, E2, E3, E4 0.9768 0.9162 0.9808 0.9666 0.9643

2 M1, M2, M3, M4 0.9501 0.9518 1 0.8300 0.9211

3 N1, N2, N3, N4 0.9546 0.9914 1 0.9643 0.9287

4 U1, U2, U3, U4 0.9064 0.9665 0.9144 0.9106 0.9154

5 E2, M3, N2, U2 0.9640 0.9798 0.9988 0.9786 0.8871

6 E3, M2, N3, U3 0.9803 0.9857 0.9529 0.9265 0.9578

7 E4, M4, N4, U1 1 0.9924 0.9271 0.9710 0.9595

Table 2. Quality measure qk for several data sets and methods

that class and the ones of the other classes. These generally good performances are surprising

enough, especially if we consider that HTML tag names belong to a rather small set of predefined

terms, and do not express semantics.

A comparative analysis of the encoding strategies is not straightforward, due to the very low

differences in the quality values shown in tables 1 and 2.

Certainly, we can point out that the encoding schemes based on Multilevel document encod-

ing function, i.e. Multilevel and Pairwise, do not exhibit as brilliant results as they do over pure

XML documents [7]. In a few cases, see test 2 for Multilevel and test 5 for Pairwise, they per-

form yet worse than other encoding techniques. This behavior essentially come from the fact that

the multilevel document encoding function, used in both these two schemes, mainly focuses on

structural differences localized at most external levels, which tend to be rather similar in HTML

documents. Taking advantage of this observation, we could straightforwardly improve these ap-

18

proaches by decreasing their dependence on the first levels of the document structure. However,

due to space limitations and considering the overall satisfactoriness of the results achieved even

by these encoding schemes, we will omit further investigations on this issue.

On the contrary, very good results are obtained by Nested and, surprisingly enough, by the

rather simple schemes Trivial and Linear. In particular, Nested tends to perform best when

applied to classes from the same category, namely in tests 1 to 4, whereas in other cases it is

Trivial and Linear that obtain appreciably good results.

The dissimilar behaviors of the encoding schemes mainly depends on the different ways they

deal with the context of a tag when encoding the skeleton of a document into a time series.

We can further observe that when the examined data set contains classes coming from very

different categories (applicative or semantic contexts) it is likely to have a number of distinctive

tag names which characterize each category, i.e. they are very frequent in any document of that

category but they appear rarely, or do not appear at all inside documents of the other categories.

This is the case, as an example, of the tag names table, tr, td, form, input and option for the

category E-commerce, as evidenced by a simple statistic analysis we performed on the data set. In

such a situation a simple recognition of characteristic tag names or repetitive sequences of them,

as the one carried out by both Trivial and Linear encodings, may be more profitable than the

finer encoding strategies adopted by the encoding schemes Nested, Multilevel and Pairwise. In

fact, the tag context information these strategies encode is not so useful in such cases and, rather,

it introduces an excessive level of detail which, acting as a sort of noise, could make less evident

the massive presence of some frequent and distinctive tag names. In particular, while in Nested,

Multilevel and Pairwise schemes different occurrences of such tag names can be associated with

different codes in the resulting time series, all those occurrences would be encoded in almost the

same way by the Trivial and Linear approaches. In fact, the Fourier-based similarity measure

applied to the time series scales down the differences between the two latter approaches.

5 Conclusions

In this paper we proposed an architecture for integrating crawling and wrapping of Web pages,

by exploiting structural document categorization. Document categorization is possible due to

a notion of structural similarity developed and analyzed throughout the paper. The technique,

originally developed for XML documents, was successfully adapted to HTML documents, allow-

ing for a “syntactic” structural similarity analysis. Indeed, in specific application domains, the

technique has been proved effective in collecting homogeneous structures for wrapper induction.

However, the proposed structural similarity measure can be improved by exploiting information

retrieval techniques [2]. In particular, the combination of the distance measure we propose with

traditional text processing techniques can be extremely profitable.

19

References

1. R. Agrawal, C. Faloutsos, and A. Swami. Efficient Similarity Search in Sequence Databases.

In Procs. 4th Int’l Conf. on Foundations of Data Organization, 1993.

2. R. Baeza-Yates and B. Ribeiro Neto. Modern Information Retrieval. Addison Wesley-ACM

Press, 1999.

3. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction with Lixto.

In Procs. 27th VLDB Conf., 2001.

4. E. Bertino, G. Guerrini, and M. Mesiti. Matching an XML Document against a Set of DTDs.

In Procs. ISMIS 2002, pages 412–422, 2002.

5. G. Cobena, S. Abiteboul, and A. Marian. Detecting Changes in XML Document. In 18th

Int.l Conf. on Data Engineering (ICDE 2002), 2002.

6. V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards Automatic Data Extraction

from Large Web Sites. In Procs. of the 27th VLDB Conf., 2001.

7. S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Fast detection of xml struc-

tural similarity. IEEE Transaction on Knowledge Data Engeneering 17(2), pages 160–175,

2005.

8. C. Junghooa, H. Garcia-Molinaa, and L. Pagea. Efficient crawling through URL ordering .

Computer Networks and ISDN Systems, 30(1-7):161–172, 1998.

9. T. Kistler and H. Marais. WebL - A Programming Language for the Web. Computer

Networks and ISDN Systems, 30(1-7):259–270, 1998.

10. N. Kusmerick. Wrapper Induction: Efficiency and expressiveness. Artificial Intellegence

Journal, 118(1-2):15–68, 2000.

11. I. Muslea, S. Minton, and C. Knoblock. Hierarchical Wrapper Induction for Semistructured

Information Sources. Autonomous Agents and Multi-Agent Systems, 4:93–114, 2001.

12. A. Nierman and H.V. Jagadish. Evaluating Structural Similarity in XML Documents. In

Procs. of WebDB 2002, 2002.

13. A.V. Oppenheim and R.W. Shafer. Discrete-Time Signal Processing. Prentice Hall, 1999.

14. S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In Procs. of the 27th VLDB

Conf., 2001.

20

