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ABSTRACT
We introduce a family of numbering schemes for the nodes
of tree databases that are based on a structural summary
for the database, such as the DataGuide. Using such a
scheme, given the node IDs of two database nodes and the
corresponding nodes in the structural summary we may de-
cide the extended XPath relations Child, Child+, Child∗,
Following, NextSibling, NextSibling+, NextSibling∗ for the
nodes without access to the database. Similarly we can
reconstruct the parent node and neighboured siblings of a
given node. All decision and reconstruction steps are based
on simple arithmetic operations. The BIRD scheme offers
high expressivity and needs modest storage capacities. Com-
pared to other identification schemes with similar expressiv-
ity, BIRD performs best in terms of both storage consump-
tion and execution time for decision and reconstruction. A
very attractive feature of the BIRD scheme is that all ex-
tended XPath relations can be decided and reconstructed in
constant time, i.e. independent of tree position and distance
of the nodes involved.

1. INTRODUCTION
Tree databases are important for many reasons. Since

trees provide a formal model for XML, HTML, and LDAP
directories, query formalisms for tree databases help to pro-
cess data on the web, to extract and integrate data from dis-
tinct repositories and sites [13], to organize the exchange of
commercial and scientific data, and to access user-specified
corporate resources. Query formalisms for XML, represent-
ing a combination of information retrieval and database tech-
niques, are paramount in the future development of search
engines for the web and for digital libraries. Further appli-
cations arise in the field of computational linguistics, where
tree databases are used for representing parsed fragments of
natural language [30].

In the meantime, an impressive number of query formalisms
for tree databases and XML have been proposed [6, 19, 5,
1, 11, 3, 4, 31, 20] and many systems have been developed
that offer distinct functionalities for querying trees and XML
[23, 16, 29, 26]. In most of these cases, the underlying eval-
uation algorithms use a characteristic set of fundamental
operational steps that may be described as “decision” or
“reconstruction” of tree relations:

• Decision. Given two database nodes and a binary
tree relation, decide if the relation holds between the
nodes.

• Reconstruction. Given a database node and a func-
tional1 tree relation R, compute the R-image of the
node.

Unlike decision, where potential ancestors, siblings etc. to
be checked are already known, reconstruction starts from a
given node and reproduces those nodes in its tree neighbour-
hood having a specific relation to that node. Standard rela-
tions for describing unranked ordered trees are the “general-
ized XPath axes” [5, 14]: Child, NextSibling, their inverses
Parent, PreviousSibling , the (reflexive-) transitive closures
of these relations, as well as Following and its inverse. The
relations Parent, NextSibling and PreviousSibling are func-
tional. Examples and details that explain the use of decision
and reconstruction operations for generalized XPath axes in
query evaluation are given in Section 2.

Since most of the above query formalisms and systems
have to deal with large data sets, efficiency of the underly-
ing evaluation algorithms is a central concern. We focus on
the question how special conventions for assigning unique
identifiers to the nodes of a tree database (also called node
identification or numbering schemes) can help to solve de-
cision and reconstruction problems efficiently for the above
generalized XPath axes without access to the tree database,
thus avoiding I/O-operations. Node identification schemes
are largely complementary to other optimization techniques
for tree queries such as special-purpose index structures and
join algorithms. Hence the latter can benefit from intel-
ligent identification schemes. The most basic numbering
scheme for tree data, which assigns IDs in ascending pre-
order, clearly does not meet this end. For judging the qual-
ity of a naming scheme, three properties are essential:

• Expressivity. Which decision and reconstruction prob-
lems are supported by the scheme in the sense that
explicit access to the database can be avoided, given
node identifiers?

• Runtime performance. How long does it take to solve
the decision and reconstruction problems that are sup-

1A binary tree relation R is functional iff for every node n
there exists at most one node m such that R(n, m) holds.
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ported? Are there any dependencies on properties of
the nodes involved, e.g., their depth or distance?

• Storage consumption. Which storage capabilities are
needed for realizing the identification scheme, given a
large tree database?

• Robustness. Is is possible to add new nodes to the
database without spoiling the IDs already assigned to
the existing parts of the documents?

Main Contribution. In this paper we suggest a new node
identification scheme for tree databases. Node identifiers
are integers, called BIRD numbers (Balanced Index-based
numbering scheme for Reconstruction and Decision). BIRD
numbering is compatible with preorder enumeration in the
sense that nodes that come later in the preorder traversal
have larger BIRD numbers, but not all possible numbers
are used in the BIRD scheme. In addition, each node has
a weight. Deciding (reconstructing) tree relations boils down
to trivial arithmetic tests (calculations) based on BIRD num-
bers and weights.
As an illustration, consider

Figure 1: BIRD numbering:
BIRD numbers and weights (in
brackets).

the tree shown in Figure 1.
Each node n is annotated
with its BIRD number Id(n)
(in bold) and with its weight
w(n) (in brackets). For
any descendant n′ of a node
n we have Id(n) < Id(n′) <
Id(n) + w(n). Decision
problems for any XPath
axis can be solved based
on the following observa-
tions: node n′ is a descen-
dant of a given node n iff Id(n′) − (Id(n′) mod w(n)) =
Id(n).2 To check if node n′ is a following sibling of n we
test if Id(n) < Id(n′) and n, n′ have the same father (fathers
are reconstructed, s.b.). Node n′ follows n (in the sense of
XPath’s following relation) iff Id(n′) ≥ Id(n)+w(n′). Fur-
thermore, once we know the weight b of the unknown father
of a given node n, then we can reconstruct the BIRD number
of the father, which is Id(n) − (Id(n) mod b). This briefly
indicates how BIRD identification may be used to decide
generalized XPath axes for two given nodes and to partially
reconstruct tree neighbourhood (here: parent). Reconstruc-
tion along other functional axes is discussed below.

We shall see that the BIRD scheme supports decision
(reconstruction) of all (functional) generalized XPath axes.
The triviality of the above arithmetic operations shows that
high efficiency can be guaranteed if we have fast access to
weights. To this end, BIRD weights are stored in a tree-
formed structural summary or index (e.g., the DataGuide
[12] of the database) that is held in main memory. Matters
of storage requirements are considered by introducing vari-
ous variants of BIRD numbering schemes that offer distinct
compromises between expressivity of the scheme and the size
of the resulting BIRD numbers. This size is also influenced
by the choice of the structural summary. In this sense, BIRD
identification defines a family of possible schemes. Evalua-
tion results (see Section 9) show that BIRD outperforms
other node identification schemes for tree databases: using
BIRD, basic decision and reconstruction steps are solved
faster than with other schemes.
2For integers k, l (l 6= 0), let k mod l denote the unique
number m ≡ k modulo l s.th. 0 ≤ m < l.

Further Contributions

• We provide an abstract view on query formalisms for
XML and tree databases that helps to explain the role
of decision and reconstruction operations for tree re-
lations. We show how to place existing systems and
techniques in this picture.

• We review various node identification schemes for tree
databases known from the literature and classify these
schemes in terms of the decision and reconstruction
steps that are supported, looking at a list of important
relations on trees.

• We present the results of an extensive evaluation ex-
periment, where various node identification schemes
have been applied to four XML databases ranging from
small (1.3 MByte) to big (8.4 GByte) size. The com-
putation time with BIRD is almost always faster than
that of other schemes, up to two orders of magnitude.
A thorough profiling of all test runs quantifies the im-
pact of individual evaluation stages on the overall per-
formance of all schemes.

The structure of the paper is as follows. Section 2 briefly ex-
plains the use of decision and reconstruction steps in query
formalisms for tree databases and XML. Section 3 provides
some formal background. Section 4 introduces the family
of BIRD numbering schemes. In Section 5 we show that
BIRD numbering supports reconstruction of all functional
generalized XPath axes. In Section 6 we show that BIRD
numbering supports decision of all generalized XPath axes
mentioned above. Section 7 reviews and analyzes other iden-
tification schemes for tree databases suggested in the litera-
ture and compares their expressivity. Section 9 describes the
experimental evaluation of selected schemes, both in terms
of their efficiency in decision and reconstruction and their
storage consumption.

In this paper, a considerable number of binary relations
on trees are considered. For definitions and notational con-
ventions we refer to Section 3.

2. MOTIVATING DECISION AND RECON-
STRUCTION

Looking at the core functionalities and abstracting from
specific details, queries against tree databases and XML typ-
ically are built using unary predicates (e.g., labeling condi-
tions, name tests in XPath) and binary tree relations. Query
plans for evaluating such queries cover a spectrum of strate-
gies with the following two extreme positions:

1. We may use the unary conditions to fetch a set of
candidate image nodes for every single query node. In
a second step, pairs of candidates from distinct sets
are combined using joins, which amounts to solving a
decision problem for the respective generalized XPath
axis.

2. Since candidate sets for unselective unary predicates
may be very large, we may alternatively fetch only the
candidate sets for highly restricted query nodes (e.g.,
query leaves with selective keywords). From these
nodes, candidates for other query nodes are obtained
via reconstruction.
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Reconstruction steps are particularly interesting along bi-
nary relations R that are functional (Parent, PreviousSibling ,
NextSibling, i-th-Child for i ≥ 1, or any composition of
these relations) or selective in the sense that database nodes
typically have a small set of possible R-successors (transitive
or reflexive-transitive closures of Parent, PreviousSibling ,
NextSibling). Given a query containing a condition R(x, y)
for such a relation R, if we already have a small candidate
set for x, then reconstruction along R efficiently computes
all relevant candidates for y. By contrast, if the unary con-
ditions for y is weak, obtaining a consistent candidate set
for x and y via decision might be costly.

Different query plans which are more or less close to ei-
ther of the above positions are explained in [24]. The eval-
uation strategies described in [22, 34, 15, 2, 8] follow the
first paradigm, whereas [7, 26, 29] adhere to the second
paradigm. In either case, the use of an appropriate node
identification scheme is a reliable means to improve on query
performance. As shown in Sections 7 and 9, the identifica-
tion schemes proposed in the literature differ in how many
and which relations can be decided and reconstructed based
on node IDs only, and also in how fast this can be done un-
der specific circumstances. The following sections introduce
the BIRD scheme as a new numbering scheme with efficient
support for deciding and reconstructing all extended XPath
axes.

3. FORMAL BACKGROUND
Let Σ denote a finite alphabet, called the alphabet of labels.

Definition 3.1. A database is a finite ordered rooted tree
DB = 〈N, nr, Child, NextSibling, L〉 where N is the finite
and non-empty set of nodes, Child is a binary relation on N
such that 〈N, Child, nr〉 is an unordered rooted tree with root
nr, NextSibling ⊆ N ×N relates a child with its immediate
right sibling in the obvious way, and L : N → Σ assigns a
label L(n) ∈ Σ to each node n ∈ N .

Besides Child and NextSibling, a considerable number of
further tree relations will be touched: Parent = Child−1,
PreviousSibling = NextSibling−1, NextInDocOrder (relat-
ing a node to the next node in a pre-left traversal), the
(reflexive and) transitive closures of the above relations,
Following , for i ≥ 1 the proximity relations Parenti (=
ancestor::*[i] in XPath notation), Childi, NextSiblingi,
PreviousSiblingi, as well as i-th-Following and i-th-Child
(=following::*[i] and child::*[i], respectively). All re-
lations are defined as usual. The functional relations Parent,
PreviousSibling , and NextSibling define functions parent,
prevSibling , and nextSibling in a canonic way.

Definition 3.2. Let DB be a database with set of nodes
N . A structural summary for DB is a finite (not necessarily
ordered) rooted tree Ind with set of nodes M , together with
a surjective mapping Φ : N → M that preserves roots and
Child-relationship in the obvious sense. Φ is called the index
mapping. For m ∈ M , the set Φ−1(m) is called the set of
database nodes with index node m.

A structural summary can be considered as a special kind
of index structure. In what follows, by an index, we always
mean a structural summary. The DataGuide [12] (or 1-Index
[27], being equivalent to the DataGuide for tree databases)
will serve as our standard example of a structural summary.
Note, however, that BIRD may well be used with other index

structures (see also the final remark in Section 9.1). To
introduce the DataGuide, the following notions are needed.

Definition 3.3. Let DB = 〈N, Child, NextSibling, L, nr〉
be a database. A string π ∈ Σ+ is called a label path of
DB iff there exists a sequence of nodes n0, n1, . . . , nk ∈ N
(k ≥ 0) such that n0 = nr, 〈ni, ni+1〉 ∈ Child for 0 ≤ i < k
and π = L(n0)L(n1) · · ·L(nk). In this situation, π is called
the label path of nk, we write π = lp(nk). The length of π
is k. A label path π of DB is maximal iff π is not a proper
prefix of any label path % of DB.

Note that each label path π is non-empty and starts with
L(nr). LP(DB) denotes the set of all label paths of the
database DB.

Definition 3.4. The height of a database DB is the max-
imal length of a label path of DB.

Definition 3.5. Let DB = 〈N, Child, NextSibling, L, nr〉
be a database with root nr. The DataGuide of DB is the fi-
nite rooted unordered node-labeled tree DG(DB) with set of
nodes LP(DB) L(nr) is the root of DG(DB), % ∈ LP(DB)
is a child of π ∈ LP(DB) iff there exists a label l ∈ Σ such
that % = πl, and the label of π ∈ LP(DB) is the last symbol
of π.

It is easy to see that for each database DB there exists
exactly one DataGuide DG(DB) of the above form. Ob-
viously, DG(DB) represents a structural summary for DB
with index mapping lp.

Example 3.6. Figure 2 shows a database DB and its
DataGuide DG(DB). Nodes of DB and DG(DB) are labeled
with numeric information for the child-balanced numering
scheme that is introduced below.

Definition 3.7. Let DB = 〈N, Child, NextSibling, L, nr〉
be a database. A function f : N → IN is compatible with the
preorder <pre on DB iff m <pre n implies that f(m) < f(n),
for all m, n ∈ N .

4. THE FAMILY OF BIRD NUMBERING
SCHEMES

BIRD numbering schemes for the nodes of a database DB
as introduced below are always compatible with the pre-
order relation on the database in the sense of Definition 3.7.
When enumerating the nodes, for each node n ∈ N of the
database we will need a certain interval size, or weight, to
number all nodes in the subtree with root n. Our number-
ing schemes are based on a structural summary Ind of DB
with index mapping Φ. We unify all interval sizes needed for
database nodes with the same index node m, selecting the
maximal interval size among all members of the equivalence
class Φ−1(m). This unified interval size is attached to the
associated node m of the structural summary. When enu-
merating the nodes of the database, we reserve this interval
size for all subtrees rooted at any of the nodes in Φ−1(m).
Since in general not all these subtrees are of the same size,
some numbers remain unused in the enumeration.3

Because of obvious space limitations, we only consider
“balanced” variants of the BIRD scheme. Here the weights

3 Unused numbers may also be reserved deliberately for fu-
ture node insertions into the database.
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for index nodes are unified among all children (or grand-
children, etc.) of a given index node. There also exists an
unbalanced variant, which yields the smallest weights and
node numbers, but is less expressive. In our experiments
we found the the storage requirements for balanced variants
are modest, hence larger numbers obtained from balanced
schemes are tolerable.

4.1 Balanced weights of index nodes
Let n denote a node of a tree with root nr, let s ≥ 1. By

the s-step ancestor of n, we mean the ancestor of n that is
reached in exactly s parent steps. As a matter of fact, the
s-step ancestor of n is defined if and only if n is a node in
depth s′ ≥ s, using the standard notion of the depth of a
node in a tree. Since balanced weights are based on maximal
interval sizes of siblings, cousins, grand-cousins, etc. in a
tree, we need the following definition of s-equivalent nodes.
Basically, two nodes are 1-equivalent, iff they are siblings,
2-equivalent, iff they are siblings or cousins (i.e. share the
same grandparent) etc.

Definition 4.1. The equivalence relations ∼s (s ≥ 1) on
the set of nodes N of a given tree are inductively defined as
follows:

1. for all n, n′ ∈ N : n ∼1 n′ iff the 1-step ancestors (i.e.
parents) of n and n′ are defined and coincide.

2. Let s ≥ 1. For all n, n′ ∈ N : n ∼s+1 n′ iff n ∼s n′,
or the s+1-step ancestors of n and n′ are defined and
coincide.

If n ∼s n′, we say that n and n′ are s-equivalent. By [n]s
we mean the equivalence class of node n w.r.t. ∼s.

Definition 4.2. Let DB = 〈N, Child, NextSibling, L, nr〉
be a database, let n ∈ N . Let n1, . . . , nk (k ≥ 0) denote
the sequence of all children of n in the canonical left-to-
right ordering as specified by the NextSibling relation. Let
Ind be a structural summary for DB with index mapping
Φ. The index node sequence of the children of n is the se-
quence insc(n) := Φ(n1) · · ·Φ(nk). Let m denote a node of
Ind. The set of index node sequences associated with m is
INS(m) := {insc(n) | n ∈ Φ−1(m)}.

Definition 4.3. Let DB denote a database, let Ind de-
note a structural summary for DB. Let s ≥ 1. The s-
balanced pre-weight w′s(m) and the s-balanced weight ws(m)
of an index node m are recursively defined in a bottom-up
manner as follows:

w′s(m) :=

8<: ws(m1) ·max{|χ|+ 1 | χ ∈ INS(m)}
iff m has any child m1,

1 otherwise,

ws(m) := max{w′s(m′)) | m ∼s m′}.

Here |χ| denotes the length (number of elements) of the se-
quence χ.

The fact, that weights of s-equivalent nodes are equal due
to the maximum operation over the pre-weights yields the
name of balanced indexing schemes.
This guarantees also the well-definedness of pre-weights w′s(m),
since two children m1 and m2 of m have the same s-balanced
weights ws(m1) = ws(m2).
1-balanced weights are also called child-balanced weights. If
s = h denotes the height of the database DB, then ws(m) is
called the totally balanced weight of the index node m.

Example 4.4. Consider the database DB with the sum-
mary DG(DB) shown in Figure 2 (a) and (b), respectively.
Each node m of the DataGuide (Figure 2 (b)) is annotated
with its child-balanced weight w1(m) and, for convenience,
with its child-balanced pre-weight w′1(m) (numbers in brack-
ets). We also depict all index node sequences for m (rect-
angles) and the number max{|χ| + 1 | χ ∈ INS(m)} (right
side of rectangles). To simplify notation we only write the
last symbol of each label path in an index node sequence.

We will now show for the left-most path (racbc) in the
DataGuide (Figure 2 (b)), how the depicted pre-weights and
weights are computed. The procedure runs bottom-up and
begins with leafs racbc and racbb, which have pre-weights
w′1(racbc) = w′1(racbb) = 1 since they have no children.
The maximum pre-weights w′1 among the two siblings is 1,
therefore w1(racbc) = w1(racbb) = 1.
Now we go up one step and compute the pre-weight of in-
dex node racb, which is associated via Φ−1 with database
nodes 111, 114, and 282 (big numbers4 in Figure 2 (a)).
111 and 282 have no children, but for 114 we can com-
pute insc(114) = racbc racbb (abbreviated as c for racbc
and b for racbb in the bottom left rectangle). Therefore
INS(racb) = {racbc racbb}. The maximum length of se-
quences in INS(racb) is 2, increased by 1 yields 3 (next
to the bottom left rectangle). The children of racb have
weight 1, therefore the pre-weight w′1(racb) = 3. Now the
weight w1(racb) is computed: The bottom-up algorithm has
already computed the pre-weights for the siblings racc and
racd, which is 1 for leaves. The weight of each of the three
siblings racb, racc, and racd is the maximum of their pre-
weights, i.e. 3. Note that, due to this maximum operation,
the weight of racc and racd has been increased to 3 compared
to their pre-weight of 1.
In the next level, we first compute the pre-weight for rac,
which is associated with database nodes 90, 105, 135, 152,
270, 330, 345, 380. They have two distinct index node se-
quences of children, namely racc racb racb for 105 and for
285 racd racc racd racb. The maximal length of these two
sequences is 4, increased by 1 results in the 5 next to the
middle left rectangle. This value is now multiplied with the
weight w1(racb) = 3 of the children of rac, resulting in a
pre-weight value w′1(rac) = 15 for rac. Node rac has two
siblings, both with pre-weight 1, therefore w1(rac) = 15.
In the following levels, pre-weights and weights are computed
in exactly the same way, until we reach the root with weight
w(r) = 450.

In the remainder of the paper, Indws denotes the variant
of the structural summary Ind for the database DB where
each index node m is labeled with its s-balanced weight
ws(m), as illustrated in Figure 2 (b) for the DataGuide.

4.2 Balanced enumeration of database nodes
We now describe the s-balanced numbering scheme, which

assigns an integer Ids(n) to each node n of DB, given the
annotated index Indws . In the special case where s = h
represents the height of the database, the scheme is called
the totally balanced numbering scheme.

Definition 4.5. Let s ≥ 1. The number Ids(nr) for the
root nr is any multiple of ws(Φ(nr)). Let n denote an ar-

4For convenience, we use these numbers in this explanation,
although the procedure how they are computed is explained
later, in the next section.
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bitrary node of DB. Let n1, . . . , nk (k ≥ 1) denote the se-
quence of all children of n in the canonical left-to-right or-
dering. Given the number Ids(n) for the parent node n and
the balanced weight w = ws(Φ(n1)) = . . . = ws(Φ(nk)), the
number Ids(n1) for the first child n1 is the smallest multiple
of w larger than Ids(n). The number for the i-th child ni

for 2 ≤ i ≤ k is Ids(ni) := Ids(n1) + (i− 1) · w.

Example 4.6. In Figure 2 (a), each database node n is
annotated with Id1(n) (large number). The enumeration
started with 0 for the root node, and went top-down through
the tree in manner described above. Note that weights for
index nodes and identifiers of database node are defined in
a way that all node identifiers in the subtree of a node n are
guaranteed to fall into the interval [Ids(n), Ids(n)+ws(lp(n))[
where lp(n) is exactly Φ(n). This important relation between
weights of index nodes and database node identifiers is es-
tablished in Lemma 4.9. The right border of the interval of
each node is denoted with the small numbers in brackets in
Figure 2 (a).

Example 4.7. In Figure 3 (a), each database node n is
annotated with its totally balanced enumeration number Id4(n)
(large number) and with Id4(n) + w4(lp(n)) (small number
in brackets).

The following two lemmas show that index node weights
define intervals for the identifiers of nodes and their subtrees.
This lemma is important, since it guarantees that identifiers
for nodes are indeed unique. In addition, it shows that the
function Id is compatible with the preorder <pre in the sense
of Definition 3.7.

Lemma 4.8. Let s ≥ 1. Let n be a node of DB, let
n1, . . . , nk denote the sequence of all children of n in the
canonical left-to-right ordering. Let w := ws(Φ(n1)) = . . . =
ws(Φ(nk)). Then we have

Ids(n) < Ids(n1) < . . . < Ids(nk)

< Ids(nk) + w ≤ Ids(n) + ws(Φ(n)).

Lemma 4.9. Let s ≥ 1. Let DB be a database with set of
nodes N and root nr. Let Ind be a structural summary for
DB with index mapping Φ. Regardless of the initial assign-
ment of Ids(nr),

1. for all n ∈ N : Ids(n) ≡ 0 mod ws(Φ(n)),

2. the mapping Ids is injective and compatible with the
preorder.

Proof. 1) follows immediately from Definition 4.5, and 2)
from Lemma 4.8.

The following lemma shows how the growth of node IDs
is limited by the height and branching degree of the tree:

Lemma 4.10. Let s ≥ 1. Let DB be a database with height
h, maximal branching degree b, set of nodes N and root nr.
Assume that we assign to nr the value Ids(nr) := 0. Then
Ids(n) ≤ (b + 1)h for all n ∈ N .

Proof. Let m be an index node. Let d(m) denote the depth
of m in the index tree, let h(m) := h − d(m). Starting
from leaves of the index tree, a simple induction shows that
ws(m) ≤ (b + 1)h(m). We have ws(Φ(nr)) ≤ (b + 1)h. The
result follows from Lemmata 4.8 and 4.9.

5. RECONSTRUCTING THE TREE STRUC-
TURE

We discuss how parts of the tree structure of the database
can be reconstructed without accessing the database, given
the number of a node and the corresponding index node with
its weight. In what follows, DB denotes a database, Ind
denotes a structural summary for DB with index mapping
Φ.

Lemma 5.1. [Parent and ancestor reconstruction] Let s, i ≥
1. Assume that for some database node n we are given its
number Ids(n) and the index node m := Φ(n). Then, us-
ing Indws we may solve the following tasks without access
to DB: Decide if there exists an ancestor n′ of n that is
reached from n with exactly (at least) i parent steps. In the
affirmative case, compute the number Ids(n

′) and the index
node m′ := Φ(n′) corresponding to n′.

Proof. Obviously, n has an ancestor n′ that can be reached
with exactly i parent steps iff m := Φ(n) has such an ances-
tor, m′. Using Indws we may decide this question, finding
m′ in the affirmative case. By Lemma 4.9, Ids(n

′) is a mul-
tiple of ws(m

′). It follows from Lemma 4.8 that Ids(n
′) is

the greatest multiple of ws(m
′) smaller than Ids(n).

Lemma 5.2. [Reconstruction of i-th child] Let s, i ≥ 1.
Assume that for some database node n we are given its num-
ber Ids(n) and the index node m := Φ(n). Then, using
Indws we may compute the number Ids(ni) of the i-th child
ni of n, assuming that this child exists, without access to
DB.

Proof. Using Indws we fetch the weight w = ws(m
′) of

the children m′ of m. By definition, Ids(n1) is the smallest
multiple of w larger than Ids(n), and for i > 1 we have
Ids(ni) = Ids(n1) + w(i− 1).

In general, we cannot directly compute the index node
Φ(ni) corresponding to the i-th child ni, unless we have
further information (when using the DataGuide we need the
label). Note, however, that we know the weight of Φ(ni)
since the scheme is child-balanced.

Lemma 5.3. [Reconstruction of i-th left sibling] Let s, i ≥
1. Assume that for some database node n we are given its
number Ids(n) and m = Φ(n). Then, using Indws we may
solve the following task without access to DB: Decide if n
has at exactly (at least) i siblings that precede n in the left-to-
right ordering. If n has at least i preceding siblings, compute
the number Ids(ni) of the i-th preceding sibling ni of n.

Proof. We may assume that n has a parent node n′. Let
Ids(n

′) denote its number, calculated as described in Lemma 5.1.
Let w = ws(m). By Lemma 4.8, n has at least i pre-
ceding siblings iff Ids(n

′) < Ids(n) − i · w. From Defini-
tion 4.5 it follows that n has exactly i preceding siblings iff
Ids(n) − (i + 1) · w ≤ Ids(n

′) < Ids(n) − i · w. If the i-th
preceding sibling exists, it has the number Ids(n)− i · w.

Similarly as for the i-th child, we cannot directly compute
the index node corresponding to the i-th left sibling ni, un-
less we have further information. Nodes ni and n have the
same weight.
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Figure 2: Child-balanced numbering scheme. (a) Database. (b) DataGuide for (a). For each node π of DG(DB), the number
max{|χ|+ 1 | χ ∈ INS(π̄)} is indicated, π is annotated with its child-balanced weights, cf. Examples 4.4 and 4.6.

Lemma 5.4. [Reconstruction of i-th right sibling] Let s, i ≥
1. Assume that for some database node n we are given its
number Ids(n) and the index node m := Φ(n). Then, using
Indws we may compute the number Ids(ni) of the i-th right
sibling ni of n, assuming that this sibling exists, without ac-
cess to DB.

An attractive feature of the totally balanced scheme is the
following.

Lemma 5.5. Let DB be a database of height h. Let m′ be
a child of the index node m. Then, wh(m) is a multiple of
wh(m′). Given the number Idh(n) for the parent database
node n with children n1, . . . , nk (in left-to-right ordering)
and the balanced weight w = wh(Φ(n1)) = . . . = wh(Φ(nk)),
we have Idh(ni) = Idh(n) + i · w.

Proof. The first statement is a simple consequence of the
fact that all index nodes with the same depth in the index
tree are assigned the same weight by wh. By Definition 4.3,
each pre-balanced weight w′h on the parent level is a multiple
of this weight. Hence the same holds for the maximum,
which yields the weight for the parent level. The second
statement follows easily.

Remark 5.6. The same is not always true if k < h. Fig-
ure 2 illustrates this for k = 1 and h = 4.

Remark 5.7. [Reconstruction of descendants] A simple
consequence of Lemma 5.5 is the following. Given a node
n with number Idh(n), the node number Idh(n′) of any de-
scendant n′ of n, specified in the form “im-th child of the

. . . of the i1-th child of n”, can be computed without ac-
cess to the database, using totally balanced weights stored
in DGwh(DB). Note, however, that in general we cannot
guarantee the existence of this node without accessing DB.

Remark 5.8. [Reconstruction of arbitrary weights] When
using the totally balanced numbering scheme, from the num-
ber Idh(n) of a database node n we can reconstruct the weight
wh(Φ(n)), given the list of the uniform weights of all levels
of the index tree. In fact wh(Φ(n)) is the largest weight w
stored in our list such that Idh(n) ≡ 0 mod w. (As a by-
product, the depth of n is obtained this way.) Hence, Lem-
mata 5.1, 5.2, 5.3 and 6.2 can be refined in the sense that
we do not need to know the index node m corresponding to
n.

Remark 5.9. The higher the balancing degree s, the fewer
DataGuide nodes are needed for storing weights. For s = h,
an h-tuple of weights suffices for tree reconstruction. In
special cases, however, it might be convenient to store the
weights redundantly in all nodes of the index. This is true,
e.g., when using the DataGuide as weight index and as a
path index during query evaluation.

Remark 5.10. The results obtained for the totally bal-
anced enumeration scheme are summarized in Figure 4 (a).
Given the number Idh(n) of a database node n, we imme-
diately know how many ancestors n′ of n there are, and we
can compute the numbers Idh(n′) of all these ancestors with-
out accessing the database. Furthermore we can deduce the
number of preceding left siblings n′′ for each of these nodes
as well as their numbers Idh(n′′). In the remaining regions
of the tree (indicated by small dots) we know the number
of each possible node; yet we cannot decide which numbers
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Figure 3: Totally balanced (here: 4-balanced) numbering scheme. (a) Database. (b) DataGuide for (a). Nodes of DG(DB)
are annotated with totally balanced weights, cf. Examples 4.7.

Figure 4: (a) The part of a database DB that can be recon-
structed from a node n with number Idh(n) (totally bal-
anced scheme) and Indwh with totally balanced weights.
(b) The corresponding part of DB that can be reconstructed
using a double enumeration, cf. Remark 5.10.

correspond to existing nodes and which numbers are unas-
signed. We can generalize this picture, using a symmetric
second enumeration based on the inverse postorder. The
inverse postorder behaves like a “right-to-left” preorder. As-
signing to each node a pair of numbers, according to a pre-
order (→) and a “right-to-left preorder” (←) traversal of
the tree, we can compute for each node n ∈ N with a pair
of numbers 〈Id→h (n), Id←h (n)〉 the number of left-hand and
right-hand siblings as well as their respective number pairs.

6. DECIDING GENERALIZED XPath RE-
LATIONS

In this section we consider the generalized5 XPath axes
Child, Child∗, Child+, NextSibling, NextSibling∗, NextSibling+,
and Following . If R is any of these relations and if DB is a
database with nodes n and n′, we write DB |= R(n, n′) iff
the relation R holds in DB between n and n′ (e.g., DB |=
Child(n, n′) iff n′ is a child of n). As always we fix a struc-
tural summary Ind with index mapping Φ.

The following lemma shows that using e.g. the child-balanced
scheme, a superset of all XPath axes6 is decidable without
any I/O operation (see Table 1).

Lemma 6.1. [Deciding generalized XPath axes] Let s ≥ 1.
Assume we are given

• the number Ids(n) of the database node n,

• the index node m = Φ(n) corresponding to n,

• the number Ids(n
′) of a second database node n′.

Let R be any of the following relations: Child, Child+,
Child∗, NextSibling, NextSibling+, NextSibling∗, Following.
Then, using Indws we may decide if DB |= R(n, n′) (or if
DB |= R(n′, n)) without access to the database DB.

Proof. See Table 1.

For the sake of completeness, we mention some other prob-
lems that may be decided with similar methods. Proofs are
simple.
5 NextSibling and NextSibling∗ are not supported in XPath
but nevertheless considered here.
6 Although we do not consider the attribute and
namespace axes here, they can be treated similarly to the
child axis.
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Figure 5: Characteristic properties of ID schemes.

Lemma 6.2. [Deciding proximity relations] Let s, i ≥ 1.
Assume we are given the number Ids(n) of the database node
n, the index node m = Φ(n), and the number Ids(n

′) of a
second node n′ ∈ N . Then, using Indws we may decide the
following questions without access to the database DB:

1. DB |= Parenti(n, n′)?

2. DB |= PreviousSiblingi(n, n′)?

3. DB |= NextSiblingi(n, n′)?

7. RELATED WORK: OTHER NODE IDEN-
TIFICATION SCHEMES

In this section we first describe the characteristic proper-
ties that distinguish identification schemes known from the
literature. We then analyze the schemes in more detail on
the basis of these properties before systematically comparing
their expressivity.

Characteristic properties.Node identification schemes used
for decision and reconstruction and their characteristic prop-
erties are illustrated in Figure 5. Number-based schemes
use atomic numbers to identify nodes, whereas path-based
schemes employ non-atomic number sequences as node IDs.
The latter essentially use a sequence of relative positions
of nodes among their siblings to identify a node, and con-
sequently have IDs of varying length. Many schemes use
a sparse ID set, i.e., the ID space is not contiguous and
contains unused IDs. Sparse ID sets have the advantage
that they can cope with limited updates and node inser-
tions without having to reassign node IDs. Number-based
schemes use either depth-first or breadth-first tree traver-
sal, the assignment of node IDs is multiplier-driven or not.
Multiplier-driven schemes are sparse ID schemes that as-
sign only multiples of a certain basic weight as node identi-
fiers. Exploiting certain arithmetic relations, they can com-
pute path decisions and reconstructions numerically. Fi-
nally, some ID schemes are DataGuide-based: they take ad-
vantage of extracting path-related information and storing
it in a DataGuide or a similar structural summary, using it
when necessary during path reconstruction or decision.

Other node identification schemes.Path-based node iden-
tification schemes such as Dewey Order [32] use the entire
root path 〈c0, . . . , ck〉 of a node at level k as node ID. Each

offset ci denotes the position of n’s ancestor at level i among
its siblings. This path encoding implies that node IDs have
no fixed size and may vary according to the depth of a node
and its position among its siblings. In [32], the individual
offsets ci are encoded in UTF-8 to reduce the overall ID size.
Since the offsets are independent of each other, Dewey Order
supports (limited) updates without altering all IDs assigned
to other nodes. As shown in [32], renumbering is restricted
to the descendants and following siblings of the node being
inserted.

The Dewey Order-based ORDPATH scheme [28] uses skew
binary encodings privileging smaller offsets, which occur
much more often than greater ones in Dewey Order. Still
ORDPATH consumed up to twice as much space as BIRD
in our experiments. For path reconstruction, the encoded
ORDPATH IDs are parsed and split into their offset com-
ponents. Ascending in the document tree by one level is
equivalent to removing the last offset component from the
ORDPATH ID. All path relations are decided by bit-wise
comparison of the encoded IDs. However, the IDs must be
decoded into their offset components first in order to find the
component boundaries in the bit string (except for deciding
NextInDocOrder+.) [28] describes an update mechanism
for ORDPATH which reserves unused IDs for future inser-
tions at any position in the document tree. By virtue of
this sparse encoding ORDPATH is the only known scheme
to allow for arbitrary updates without changing any exist-
ing ID. However, to achieve this robustness ORDPATH loses
some of its expressivity, supporting neither decision of the
NextSibling relation nor reconstruction of sibling or child
nodes (see below).

Another path-based scheme, similar to ORDPATH (with-
out updates), was proposed in [7]: binary Path Identifiers
(PIDs) encode complete root paths as sequences of offsets
among children with the same label (not all children as with
the ORDPATH scheme). To save space, offsets for children
which do not have any sibling with the same label are not
encoded. Information as to which path steps are skipped
this way is stored in a DataGuide [12]. In contrast to ORD-
PATHs, PIDs do not mark the boundaries of individual
offset components in the bit string, but store the number
of bits used to encode a given offset in the corresponding
DataGuide node. Updates in PID are not supported, but
only a local renaming of node IDs is necessary if new nodes
are inserted. The PID scheme is the least expressive scheme
among those supporting both path reconstruction and deci-
sion, but as our experiments showed, its node IDs are the
smallest in size. Note that without reference to the corre-
sponding DataGuide node, PIDs are not guaranteed to be
unique. If the DataGuide node is given, they still follow nei-
ther document order (unlike BIRD and most other schemes)
nor breadth-first order (as Virtual Nodes, see the next para-
graph).

The Virtual Nodes scheme [21] is the only number-based
scheme identifying nodes by their breadth-first rank. It uses
a sparse ID set: the document tree is regarded as having
a uniform arity k, i.e. all inner nodes are treated as having
exactly k children. This means that many IDs are reserved
for so-called virtual nodes which do not exist physically in
the document tree, since many nodes have less than k chil-
dren. The resulting sparse encoding leads to a significantly
higher space consumption compared to other schemes (see
Section 9). The advantage of assuming a uniform arity is
that for path reconstruction and decision multiplier-driven
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DB |= Child(n, n′)
child

We check if m has any child, say, m′, using Indws . In the negative case, n′ is not a child of
n. In the positive case let w = ws(m

′). Then DB |= Child(n, n′) iff Ids(n
′) is a multiple of w

and Ids(n) < Ids(n
′) < Ids(n) + ws(m). The numbers ws(m

′) and ws(m) are obtained from
Indws .

DB |= Child+(n, n′)
descendant

We retrieve ws(m) using Indws . Then DB |= Child+(n, n′) iff Ids(n) < Ids(n
′) < Ids(n) +

ws(m).

DB |= Child∗(n, n′)
descendant-or-self

Obviously this is a variant of the previous decision problem.

DB |= Child(n′, n)
parent

We proceed as in Lemma 5.1.

DB |= Child+(n′, n)
ancestor

We iterate the procedure described in Lemma 5.1 for i = 1 until reaching either n′ (positive
result) or a node n′′ where Ids(n

′′) < Ids(n
′) (negative result).

DB |= Child∗(n′, n)
ancestor-or-self

Obviously this is a variant of the previous decision problem.

DB |= NextSibling(n, n′) We obtain ws(m) and m’s parent m′′ from Indws and compute the number Ids(n
′′) of the

parent n′′ of n in DB (cf. Lemma 5.1). DB |= NextSibling(n, n′) holds iff Ids(n
′) = Ids(n) +

ws(m) and Ids(n
′) < Ids(n

′′) + ws(m
′′).

DB |= NextSibling+(n, n′)
following-sibling

We obtain ws(m), m′′ and Ids(n
′′) as above (cf. DB |= NextSibling(n, n′)). DB |=

NextSibling+(n, n′) holds iff Ids(n
′) − Ids(n) is positive and a multiple of ws(m) and if

Ids(n
′) < Ids(n

′′) + ws(m
′′).

DB |= NextSibling∗(n, n′) Obviously this is a variant of the previous decision problem.

DB |= NextSibling(n′, n) We proceed as in Lemma 5.3 (l = 1).

DB |= NextSibling+(n′, n)
preceding-sibling

We obtain ws(m) and m’s parent m′′ from Indws and compute the number Ids(n
′′) of the

parent n′′ of n in DB (cf. Lemma 5.1). DB |= NextSibling+(n′, n) holds iff Ids(n)− Ids(n
′)

is positive and a multiple of ws(m) and if Ids(n
′′) < Ids(n

′).

DB |= NextSibling∗(n′, n) Obviously this is a variant of the previous decision problem.

DB |= Following(n, n′)
following

The relation holds iff Ids(n) + ws(m) ≤ Ids(n
′), by Lemmata 4.9 and 4.8. The weight ws(m)

is obtained from Indws .

DB |= Following(n′, n)
preceding

The relation holds iff Ids(n
′) < Ids(n) and n′ is not an ancestor of n. The latter problem is

decided as described above (cf. DB |= Child+(n′, n)/ancestor).

Table 1: Proof for Lemma 6.1. Relations decidable using any s-balanced BIRD scheme with s > 0. Given node numbers
Ids(n) and Ids(n

′) as well as the index node m = Φ(n) holding the corresponding weight, all relations are decidable without
access to the database. Corresponding XPath axes are given with n as context node. For example, Child(n′, n) means n is a
child of n′, corresponding to the parent axis. For notation, see Lemma 6.1.
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formulae can be used: Simple arithmetic computations de-
cide tree relations or determine parent (and, applied itera-
tively, any ancestor) or sibling of a node.

Besides the aforementioned approaches, several number-
based node identification schemes have been proposed which
only support path decision. Node IDs in the pre-/postorder
encoding are pairs 〈pre, post〉 consisting of the node’s pre-
order and postorder ranks. As mentioned in [10], simple
comparison operations on the interval [pre, post] decide the
Child+ (and Child∗) relations. [15] shows how to decide
Following and After. It also shows how the pre-/postorder
encoding is used in XPath Accelerator: being equipped with
appropriate index structures and embedded into a relational
system, it can decide the remaining XPath axes. Although
this requires access to database tables, it performs very effi-
ciently due to its tight integration with the database system.

A related scheme is the interval encoding [22, 34], whose
IDs are pairs 〈pre, size〉 where pre is the node’s preorder
rank and size is an integer equal to or larger than the num-
ber of descendants of that node. (Actually, [34] essentially
replaces the size component with pre+size.) In both cases,
path decision operates on the interval [pre, pre + size]. In
contrast to pre-/postorder encoding, interval encoding fea-
tures a mechanism for limited updates, since it uses a sparse
ID set.

Expressivity.As mentioned in the introduction, the qual-
ity of a node identification scheme can be measured looking
at three criteria: Expressivity, efficiency, and storage con-
sumption. The discussion of storage consumption and ef-
ficiency is postponed to the next section. Expressivity of
the various schemes is desribed in Table 2: A bullet in a
cell indicates that a node identification scheme supports the
evaluation of the tree relation defining the column without
access to any database table. Table 2 is divided into node
identification schemes supporting path reconstruction (the
first four rows) and ones supporting decision only. Numbers
in the table cells describe the following restrictions: (1) Path
reconstruction in forward direction, i.e. construction of chil-
dren or right siblings, is hypothetical in the sense that node
identifiers can be constructed that do not correspond to ac-
tual nodes of the database tree. (2) ORDPATH can recon-
struct siblings only in its non-dynamic form, that abandons
its update capability. (3) For pre-/post, the child decision
problem can only be solved with additional information in
the form of level information.

Table 2 contains two functions not yet defined, but use-
ful in actual XPath implementations: j-th-child(n) denotes
the j-th child of n, and i-th-commonAnc(m, n) i-th com-
mon ancestor of m and n (bottom-up). The values for i are
positive or negative integers for all relations in the decision
part, whereas the values for i and j are restricted to positive
integers for all functions in the construction part.
For most of the schemes it is either described in the orig-
inal literature how they treat a given decision or recon-
struction problem, or it is straightforward: The functions
i-th-commonAnc and lowest-commonAnc for example can
be constructed by path-based identification schemes by sim-
ply following the two sequences up to a given level, or un-
til they diverge. For number-based schemes, iterative steps
have to be applied with subsequent comparisons.

In the decision part, BIRD, ORDPATH, and Virtual Nodes
support most problems. ORDPATH cannot decide hori-
zontal proximity (e.g. following-sibling::*[1] in XPath)

scheme path decision path reconstruction
BIRD • • • • • • • 3 • 3 •
ORDPATH • • 2 • • • • 2, 3 2 2, 3 •
Virtual Nodes • • • • • 3 • 3 •
PID • • • •

pre-/postorder 1 • • • •
interval encod. 1 • • •
preorder • •
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Table 2: Expressivity of different ID schemes.

• supported 2 non-dynamic version only
1 requires level 3 supported, but may not exist physically

in its original (dynamic) version. Since Virtual Nodes is
based on a preorder enumeration of the tree, it can de-
cide order only on a sibling basis, but not the more gen-
eral NextInDocOrder and Following relations. BIRD, ORD-
PATH, and Virtual Nodes have roughly the same expres-
sivity in the reconstruction part, with ORDPATH being
slightly inferior, since it can not reconstruct siblings in its
original form. ORDPATH can reconstruct siblings only in
its non-dynamic form, which abandons its update capability.

8. UPDATES WITH THE BIRD SCHEME
Updates of indexed document collections may affect the

IDs assigned to individual document nodes, depending on
(1) where the update occurs (e.g., inside an existing doc-
ument or in a new document), (2) which kind of update
occurs (insertion vs. removal of a node) and, in case of an
insertion, (3) how many nodes are added at a given posi-
tion. A node removal can be handled by simply leaving that
node’s ID unassigned. In the following, we therefore focus
on node insertion.

In some scenarios, updates occur either rarely (like in
static databases containing, e.g., medical, juridical, geograph-
ical or historical information), or new data are first collected
and then added to the database in a bulk update once in a
while (e.g., in digital archives, linguistic corpora, encyclo-
pedias and dictionaries, product catalogues, or digital li-
braries). Under such circumstances, robustness is a minor
concern, whereas storage demands and runtime performance
are much more important. A straightforward solution is to
reindex the entire document collection from time to time.
On the other hand, in dynamic databases whose contents
change frequently, like news repositories, auction servers, or
flight booking services, such a strategy is clearly infeasible.
Here node insertions must be done incrementally, i.e., with-
out affecting too many of the nodes indexed before.

Although a thorough investigation of updates with BIRD
is outside the scope of this work and remains to be done,
we sketch two different strategies here to illustrate that the
BIRD scheme is appropriate not only for static databases,
but capable to adapt to different kinds of dynamic data. The
second strategy is also interesting from a theoretical point
of view since it generalizes the update technique of Dewey
encoding.

Sparse ID encoding.As illustrated in Figure 2, a bal-
ancing degree s ≥ 1 causes a certain amount of IDs to be
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left unassigned. For instance, with the child-balanced BIRD
scheme (s = 1), 75 IDs are reserved for the subtree rooted at
the node with the ID 150 in Figure 2 (a) although the sub-
tree contains only two nodes. This is because the node 150
inherits the weight 75 via child balancing from its left sibling,
whose subtree is much greater. When inserting nodes in the
subtree below node 150, the odds are that the corresponding
IDs are still unassigned such that no reindexing is necessary.
Of course, inserting a node in a subtree whose ID space is
exhausted causes an overflow. As a result, the weight not
only of the overflowing node, but also of its siblings in the
DataGuide changes (again due to child balancing). This
update may propagate up through the DataGuide and thus
spoil the weights of all document nodes. Because overflows
cause a periodical reindexing of the entire document collec-
tion, BIRD’s inherent update capabilities due to the sparse
encoding just described should be relied upon only when the
data is known to remain reasonably homogeneous over time,
with only little difference in the size of subtrees below the
same label path. To reduce the overflow risk further, one
may also deliberately leave some extra IDs unassigned, as
suggested by [22], at the expense of an increased ID size (see
below).

In many applications node insertions do not occur at ar-
bitrary positions in the document tree, but only at the end
of the collection (i.e., after the last node visited in a pre-
order traversal). This further reduces the risk of overflow.
As a special case, consider collections of bibliographic data
like DBLP [9] or the large Internet Movie Database (IMDb)
[17] (see also Table 3), where the bulk of insertions hap-
pen when adding new documents (i.e., in the case of IMDb,
new files describing movies, actors, directors, or producers).
This does not alter the nodes in existing documents (unless,
for a balancing degree s ≥ 1, the new document changes
the weights of one or more label paths, in which case the
node IDs of at least all nodes with that path throughout the
database are affected). Hence for such collections of more or
less homogeneous documents with updates at the document
level only, incremental updates are not mandatory.

As an example of a large real-world document collection
of the kind just described, we had the IMDb collection con-
verted to XML and indexed the resulting 8.4 GB of XML
data (nearly 2,000,000 documents) in chunks of 1,000 doc-
uments (about 4-6 MB per chunk). Figure 6 shows BIRD’s
overflow behaviour and space consumption as more and more
documents are added. In a first experiment, no future in-
sertions were anticipated, i.e., the weight of a given label
path is always just as large as it must be to accommodate
the largest known subtree below that path. We then in-
dexed IMDb once again, this time reserving extra IDs for
100 potential child node insertions below any overflowing
node during the weight computation (“BIRD + 100” in the
figure).

The plot on the left in Figure 6 illustrates how many times
at least one weight in the DataGuide was changed while
adding 100,000 documents, thus causing a reindexing of the
entire collection. The two large peaks at the beginning in-
dicate that the BIRD weights were reasonably stable after
indexing the first 400,000 documents, or 20% of the data.
Up to that point, a large number of overflows occurred in
the first experiment (dashed line), which was reduced sig-
nificantly by applying the extra-sparse encoding (solid line).
Note that in these early stages reindexing is much cheaper
than later on, after many documents have been added to

Figure 6: Robustness and ID size on IMDb.

the collection. In the sequel, the need for reindexing dwin-
dles quickly, especially for BIRD + 100 which triggers only
one more weight update before adding 1,300,000 documents
without overflow.

In the right plot in Figure 6 we observe an early satura-
tion of the ID sizes (the maximum was mostly reached after
indexing less than 20% of the documents) and a very low
overall space consumption for BIRD (at most 45 bits per
ID, given more than 83,000,000 nodes). Obviously reserving
extra IDs to increase the robustness of the scheme is not
expensive in terms of storage: the greatest BIRD ID in the
extra-sparse encoding (“BIRD + 100”, at most 54 bits per
ID) still occupies far less than 64 bits, a critical boundary in
our runtime experiments (see Section 9.3). Although with a
maximum depth of five the IMDb collection is fairly shallow,
ORDPATH IDs grow rapidly beyond the 64-bit line (max.
ID size 73 bit), even when the sparse encoding for future up-
dates is disabled, which keeps the IDs as small as possible
(“ORDPATH non-dyn” in Figure 6; max. ID size 68 bit).
The latter is similar to Dewey Order, but with the more
compact ORDPATH binary encoding applied.

Layered BIRD scheme.As mentioned in Section 7, Dewey
Order gracefully handles node insertions because altering a
given component, or layer, of a Dewey ID does not affect the
remaining parts of the ID. One can regard Dewey Order and
its derivates, such as ORDPATH, as a special case of layer-
based ID schemes where each layer corresponds to one level
in the document tree. Yet in general, multiple levels may be
subsumed by the same layer and therefore represented by
the same component of a multi-layer ID.

Figure 7 (a) depicts the same document collection as Fig-
ures 2 and 3 before, but with two layers covering the five
levels in the documents and, consequently, with BIRD IDs
consisting of two components. The upper layer covers the
three topmost levels. Nodes on these levels in the documents
have as first ID component ordinary BIRD IDs and as an
implicit second component 0 (omitted in the figure). Lower-
level nodes inherit the first ID component from their lowest
ancestor on the upper level, while the second component is
also an ordinary BIRD ID. For instance, all nodes below
node 7 on the lower layer in Figure 7 (a) have 7 as their
first ID component. Similar to Dewey Order encoding, the
second component of their IDs is independent of the upper-
layer component, which facilitates incremental insertions on
any layer. For instance, any number of children may be
added below node 7 (with IDs 7/12, 7/15, . . . , according to
the BIRD scheme on the lower layer), without affecting the
IDs of any node on the upper layer or any of their descen-
dants on the lower layer. In fact, overflows may only occur
inside a document subtree on a given layer (e.g., if a right
sibling of node 7/11 had to be added). But since there may
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Figure 7: Layered child-balanced numbering scheme with two layers. (a) Database. (b) DataGuide for (a).

be any number of subtrees on any layer, the layered BIRD
scheme still supports arbitrary many insertions (though not
at all positions in the document tree).

The BIRD weights on each layer are easy to determine
using the bottom-up procedure described in Section 4.1. A
new layer is introduced in the DataGuide as soon as a suit-
able insertion point is reached (e.g., right above the “movie”
level in the IMDb collection). Thus any number of layers
may be created, up to the extreme case where each docu-
ment level is on a different layer, and layered BIRD coincides
with Dewey Order. Layering also helps to prevent individ-
ual weights from growing too large: when the desired upper
bound is reached, the current layer is closed, and weighting
restarts with a leaf value of 1. In fact, any layer may even
span only part of a level in the document tree, and different
label paths may cross a different number of layers. Thus
the IDs of two nodes on the same document level need not
consist of the same number of components, e.g., if the first
node is part of a much richer subtree requiring more lay-
ers than the second one. The exact number and position of
the layer boundaries in the DataGuide determines the size
of the resulting layered BIRD IDs as well as the positions
in the document tree where unlimited insertions are sup-
ported. As other Dewey derivates, layered BIRD benefits
from a suitable ID encoding (e.g., UTF-8 as proposed by
[32], or ORDPATH’s binary encodings [28]) for storing the
variable-sized ID components in a compact manner.

Finally, all decision and reconstruction operations on BIRD
IDs are easily adapted to the layered variant. As a matter
of fact, only one ID component is manipulated like in the
unlayered case, whereas all other components are either ig-
nored or removed from the ID. For instance, in order to
reconstruct the parenti(n) relation, one first goes up i levels
in the DataGuide to determine the weight of the ancestor

to be reconstructed. If one or more layer boundaries are
crossed, the ID components corresponding to the layers be-
low the boundaries are discarded. The ancestor ID’s compo-
nent on the target layer is computed from the corresponding
descendant component as usually, for the number of levels
covered by that layer; any higher-layer components remain
unchanged. Consider, e.g., the node 7/10 in Figure 7 (a).
If i = 1 then no layer boundary is traversed, and the ances-
tor ID of 7/10 is computed as 7/(10 − (10 mod 3)) = 7/9.
For i = 2, the second ID component is removed, and BIRD
reconstruction computes 7 = 7− (7 mod 1) as the first com-
ponent of the ancestor ID. Similarly, all higher ancestors of
7/10 are reconstructed: parent3(7/10) = 7− (7 mod 5) = 5,
and parent4(7/10) = 7 − (7 mod 30) = 0. For deciding
Child+(m, n), we check whether the relation holds for m’s
and n’s ID components on m’s layer and whether all preced-
ing components are equal in both IDs. Comparing document
nodes according to the NextInDocOrder+(m, n) relation is
done component-wise in top-down direction, as with Dewey
Order.

9. EXPERIMENTS AND EVALUATION
This section reports on our experimental evaluation of dif-

ferent identification schemes, namely BIRD (child-balanced,
i.e. s = 1), ORDPATH [28] (encoded with max. 9 bits for
length and max. 20 bits for offset components), Virtual
Nodes [21], and PID [7]. We applied each scheme to the
first three document collections listed in Table 3, which dif-
fer considerably in size and structural complexity (in terms
of the number and length of the label paths occurring in the
documents). We implemented the four schemes to be com-
pared as described in the original literature. In line with
the quality criteria mentioned in Section 1, we examine the
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name XML size # nodes # label paths depth

Cities 1.3 MB 36,375 253 7
DBLP 157 MB 5,390,160 129 7
XMark 1,145 MB 20,532,979 549 13
IMDb 8,633 MB 83,404,825 276 5

Table 3: Document collections.

storage consumption (see Section 9.1) and the runtime per-
formance of all identification schemes, both for individual
reconstruction and decision operations (see Section 9.2) and
for entire tree queries (see Section 9.3). Experimentals re-
sults on the robustness of BIRD are given in Section 8.

As testbed we used the native XML retrieval system X2

[25]. X2 is implemented in Java (J2SDK 1.4.2) and accesses
a relational database backend via JDBC. Query evaluation
and join algorithms manipulate trees in main memory after
sets of document nodes have been fetched from the RDBS.
Since the algorithms may be further optimized, we focus on a
comparison of the retrieval results for different ID schemes,
rather than on absolute performance numbers, which are
machine-dependent anyway. All tests were carried out se-
quentially on an i686 computer with an AMD Athlon XP
2600+ CPU running at 2138 MHz with 256 kB cache. The
machine has 1 GB RAM and runs Slackware Linux 1.9 with
kernel 2.4.26. The relational backend is PostgreSQL 7.3.2
running on the same machine as X2, with database cache
disabled. Apart from these two processes, the computer
was idle during the experiments.

9.1 Storage consumption
The storage consumption of various identification schemes

on the four document collections are given in Tables 4 to 6.
The first three columns after the scheme name contain the
minimum, maximum, and average number of bits used for a
single ID, respectively. The remaining columns list the stor-
age needed for all IDs together, both as an absolute value in
MB (kB for Cities) in columns five and seven, and relative
to the corresponding result obtained for the preorder scheme
(columns six and eight), which is the baseline in our exper-
iments. The relative values are computed on bit counts,
whereas the absolute values are rounded to the nearest MB
(kB for Cities).

We apply two different methods to compute the total stor-
age consumed by a given identification scheme. On the one
hand, we sum up the exact bit counts needed for the IDs,
assuming that IDs can be stored with variable size. This
produces the absolute (relative) values in the fifth (sixth)
column, which follow the average ID sizes in column four.
On the other hand, it is more realistic to assume that when
stored in the database, all IDs assigned to nodes in the
same document collection take up the same space. The
total storage taken up by such fixed-size IDs is the prod-
uct of the maximum ID size, as given in column three, and
the total number of nodes in the collection (see Table 3).
The resulting values appear in columns seven (absolute) and
eight (again relative to the values obtained for the preorder
scheme).

We found that the BIRD scheme almost always takes up
considerably less space than ORDPATH and especially Vir-
tual Nodes, the two schemes which are closest to BIRD in
terms of expressivity (see Section 7). When assigning fixed-
size IDs BIRD reduces the space consumption by nearly a
factor 2 for ORDPATH and between 2.2 and 4.5 for Virtual
Nodes. The reason is that for BIRD the maximum ID size

scheme
ID size (bits) total storage (kB)

min. max. avg.
variable ID size fixed ID size

absolute % pre absolute % pre
BIRD 1 24 22 104 161 113 150
ORDPATH 2 49 33 151 232 223 305
(non-dyn) 2 41 27 123 189 186 255
Virtual N. 1 58 37 168 261 264 363
PID 1 14 11 50 78 64 88

preorder 1 16 14 65 100 73 100

Table 4: Storage consumption for Cities.

scheme
ID size (bits) total storage (MB)

min. max. avg.
variable ID size fixed ID size

absolute % pre absolute % pre
BIRD 1 37 36 25 170 25 161
ORDPATH 2 53 37 26 186 36 240
(non-dyn) 2 52 36 25 179 35 233
Virtual N. 1 95 37 25 174 64 413
PID 1 28 21 14 99 19 122

preorder 1 23 21 14 100 15 100

Table 5: Storage consumption for DBLP.

scheme
ID size (bits) total storage (MB)

min. max. avg.
variable ID size fixed ID size

absolute % pre absolute % pre
BIRD 1 44 43 113 188 113 177
ORDPATH 2 86 48 124 207 221 345
(non-dyn) 2 77 43 111 185 198 309
Virtual N. 1 198 81 210 350 508 794
PID 1 29 20 54 90 74 116

preorder 1 25 23 60 100 64 100

Table 6: Storage consumption for XMark.

is much closer to the average size than for ORDPATH and
Virtual Nodes, which therefore incur a significant storage
overhead for fixed-size IDs. For variable-size IDs this factor
decreases, but BIRD IDs still are clearly smaller than those
of other schemes.

As the only approach (except preorder) with smaller IDs
than BIRD, the PID scheme optimizes storage at the ex-
pense of expressivity, as shown in Table 2. Remarkably, PID
occupies less space than the preorder scheme in our experi-
ments, at least when assuming variable-size IDs. In the un-
derlying trade-off between expressivity and space consump-
tion, the PID scheme chooses an intermediate position be-
tween schemes with high expressivity and storage consump-
tion, such as Virtual Nodes, on the one hand and schemes
with low expressivity and storage consumption, such as pre-
/postorder encoding or interval encoding, on the other hand.

In further experiments with more deeply nested, text-
oriented document collections, such as the INEX benchmark
corpus consisting of extremely heterogeneous and layout-
polluted research articles [18], we observed that on average
BIRD IDs grow larger than ORDPATH IDs (97 vs. 60 bits;
Virtual Nodes 78 bits), whereas their maximum size is still
smaller than that of ORDPATH (98 vs. 135 bits; Virtual
Nodes 217 bits). Child-balancing here blows up the weights
of label paths leading to subtrees which greatly vary in size.
Obviously, this could be avoided if equal weights were as-
signed to nodes with a similar number of descendants, rather
than with equal label paths. Designing the corresponding
weight index to be used as structural summary clearly de-
parts from the DataGuide, but as mentioned in Section 3,
BIRD may be combined with any index structure provid-
ing efficient access to the weights. Preliminary experiments
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Figure 8: Reconstructing ancestors from varying levels.

Figure 9: Reconstructing ancestors in varying proximity.

show that for the INEX collection, the maximum ID size
may be reduced to 64 bits, i.e., below the performance-
critical boundary discussed in the next section, although
the resulting weight index is huge. The exact size of the IDs
as well as of the weight index depends on which document
nodes share the same index node and weight, being regarded
as equivalent in terms of their subtree sizes. The finer the
underlying equivalence relation, the better the weights re-
flect the actual subtree sizes, but the more index nodes are
needed. Future work may be concerned with methods to
optimize this trade-off between ID size and index size.

9.2 Decision and reconstruction speed
The first set of runtime experiments measure the efficiency

of decision and reconstruction with different ID schemes.
Figures 8 to 11 plot the computation time needed for vari-
ous decision and reconstruction problems on the DBLP and
the XMark collection. Results for Cities are not shown,
but reveal similar tendencies. All four schemes (excluding
preorder, for obvious reasons) were tested with the same
set of synthetically generated problems. Since the speed
of individual operations cannot be measured with sufficient
confidence, the figures represent the accumulated time (in
milliseconds) needed for 50,000 repetitions of each decision
or reconstruction. Note that this subsumes all necessary
operations including, e.g., DataGuide accesses for BIRD or
PID and ID comparison during decision.

Reconstruction.Figure 8 shows the time needed to recon-
struct the parents of nodes at different levels. For DBLP
(left-hand side) and XMark (right-hand side), PID is almost
as fast as BIRD, whereas ORDPATH and Virtual Nodes are
slower by at least a factor 4. On XMark, the difference be-
tween BIRD and ORDPATH is up to one order of magni-
tude. Obviously the performance of both BIRD and PID
is independent of the level of the source node. For ORD-
PATH, the computation time grows with the depth of the
source node. The reason is that ORDPATH bit strings must
be parsed top-down (i.e., from left to right) down to the level
of the source node. The deeper the source node is located in

Figure 10: Deciding fixed ancestor from varying levels.

Figure 11: Deciding varying ancestors from fixed level.

the tree, the longer the parsing takes. We observe the same
effect for Virtual Nodes on DBLP and XMark although in
theory its ancestor reconstruction works in constant time
(see below). Presumably the data structure representing
numbers of arbitrary size, used for Virtual Nodes here be-
cause of the sheer length of the IDs, creates an overhead for
arithmetic operations on ID values. Since breadth-first IDs
grow larger on deeper levels, this explains why the perfor-
mance of Virtual Nodes degradates in Figure 8. The effect
is not observed for Cities where Virtual Nodes IDs fit in 64
bits (not shown in the figure).

Figure 9 illustrates the orthogonal situation: here the
parenti(n) relation is reconstructed from source nodes at
a fixed depth in the tree (level 7 for DBLP, 13 for XMark),
with varying distance i. As in Figure 8, BIRD and PID are
much faster than ORDPATH and Virtual Nodes (nearly one
order of magnitude; mind the different scales) and reveal no
dependency on the number of levels to be traversed. Using
the DataGuide as a path summary, both schemes climb up
a path in the index (which takes practically constant time),
rather than reconstructing all ancestors iteratively like Vir-
tual Nodes which therefore suffers from a linear degradation
for bigger distances i. ORDPATH’s bit shift operations are
indifferent to proximity.

Decision. Figures 10 and 11 are based on a similar set-
ting as Figures 8 and 9, but this time for the decision of the
Childi(m, n) relation. We observe the same dependencies on
the level of the source node and the distance to the target
node as before. BIRD is as fast as for reconstruction (3 ms
for 50,000 iterations), whereas PID is one order of magni-
tude slower. On DBLP, BIRD outperforms ORDPATH and
Virtual Nodes by a factor 30 or 40, respectively (up to 100
for Virtual Nodes with a level difference of 7); on XMark,
the difference is nearly two orders of magnitude (up to 400
for Virtual Nodes with a level difference of 13).

Asymptotic behaviour.Table 7 summarizes the dependen-
cies of all ID schemes on different properties of the nodes
involved in a decision or reconstruction problem. The re-
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scheme path decision path reconstruction
BIRD • • • • • • • • • • d

ORDPATH l • l l • • l • l l l-d
Virtual Nodes p d • • p • • • l-d
PID • • • d

pre-/postorder • • • • •
interval encoding • • • •
preorder • •
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Table 7: Asymptotic behaviour of different ID schemes.

• constant l linear in source node level p linear in proximity
d linear in distance to target node

sults are based on a theoretical analysis and were mostly
confirmed in our experiments with BIRD, ORDPATH, PID,
Virtual Nodes and preorder. For any given ID scheme (row)
and decision or reconstruction problem (column), • means
computation in constant time (i.e., no dependency), l means
linear degradation with growing depth of the source node,
and p linear degradation with growing proximity distance
(e.g., for parenti(n), the number i of levels to be traversed
upward). For Child+(m, n) and i-th-commonAnc(m, n), d
indicates a linear dependency on the actual distance to the
target node (i.e., m or the i-th common ancestor of m and
n), which in the latter case depends partly on the proximity
i. Unsupported problems are left unmarked (as in Table 2).

As shown in the first row of Table 7, BIRD solves all deci-
sion and nearly all reconstruction problems in constant time.
For Childi(m, n), Child+(m, n) and parenti(n), we assume
that ancestor nodes in the DataGuide are practically acces-
sible in constant time, which our experiments confirm (see
above). BIRD computes i-th-commonAnc(m, n) by recon-
structing part of the root path of either m and n bottom-up,
intertwined with constant-time decisions, until the i-th com-
mon ancestor is found. Therefore this operation depends
only on the distance d to the target node.

Due to its left-

Table 8: Runtime performance for tree
queries against DBLP (avgms).

to-right bit encod-
ing, ORDPATH’s per-
formance depends
linearly on the level
of the source node
in most cases. De-
ciding Childi(m, n),
NextSiblingi(m, n),
NextSibling+(m, n)
or reconstructing their
counterparts requires
access to a certain
level relative to the
source node’s level,
which means that
the entire bit string
down to that level
must be parsed—
unlike PID where
the number of bits
to be shifted is available bottom-up in the DataGuide. The
same is true for i-th-commonAnc(m, n). Unlike BIRD, ORD-

PATH reconstructs the common path prefix of m and n top-
down. Since the length of this prefix is l−d, higher common
ancestors are reconstructed faster than lower ones.

The Virtual Nodes scheme needs time linear in the prox-
imity parameter i for deciding Childi(m, n) or reconstruct-
ing parenti(n), as shown in Figures 9 and 11. Analogously,
Child+(m, n) depends linearly on the distance d to the tar-
get node. All three problems are solved by iterative parent
reconstruction, which explains this behaviour. As discussed
above, the strong dependency on the source node level ob-
served in our experiments for Childi(m, n) and parenti(n)
on DBLP and XMark (see Figures 8 and 10) is not jus-
tified theoretically and therefore omitted in Table 7 (but
nevertheless relevant in practice). As for BIRD, deciding or
reconstructing the sibling relations and j-th-child(n) with
Virtual Nodes is trivial and works in constant time. For
i-th-commonAnc(m, n), combining reconstruction and deci-
sion like with BIRD would lead to a complexity of O(d2)
because deciding Childi(m, n) is already linear in d. As a
remedy, one can reconstruct the complete root paths of m
and n and then locate the i-th common ancestor at level
l − d top-down, as with ORDPATH.

PID supports Childi(m, n), Child+(m, n) and parenti(n)
in constant time, again assuming instant access to ances-
tors in the DataGuide. Consequently, the scheme solves
i-th-commonAnc(m, n) in time linear in the target node dis-
tance, regardless of the source node level, like BIRD (but
unlike ORDPATH and Virtual Nodes).

All decision and reconstruction problems supported by
pre-/postorder encoding, interval encoding and preorder re-
quire only constant-time arithmetic operations.

9.3 Runtime performance for tree queries
To quantify how much the differences in decision and re-

construction speed observed in Section 9.2 affect the overall
performance for entire tree queries, we evaluated four sample
queries using the same schemes as in the previous section,
both against the DBLP and the XMark collection (see Ta-
ble 12). To avoid artefacts due to file system cache effects,
the best and the worst result of six consecutive iterations of
each query were discarded. The remaining four iterations of

the same query (oc-

Table 9: Runtime performance for
tree queries against XMark (avg ms).

casionally fewer for
some long-running
queries) were then
averaged. Tables 8
and 9 and contain
the total evaluation
times (without pro-
filing). A second
set of runs was used
to measure the con-
tribution of individ-
ual query stages, as
given in Tables 10
and 11. Due to the
nature of X2’s na-
tive tree query lan-
guage, the tests in-
volve the decision
of Childi(m, n) and
the reconstruction

of parenti(n) only (see Appendix B). Our query language
corresponds to a subset of XPath supporting the axes child,
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attribute and descendant. Nodes can be selected based on
their label and/or textual content. Note that an answer to a
query comprises the matches to all nodes in the query tree,
not just one focussed node as in XPath. The same evaluation
algorithm is used for all ID schemes, just the reconstruction,
decision, and comparison operations vary. The only excep-
tion is that schemes which do not preserve preorder (i.e.,
PID and Virtual Nodes) cannot benefit from certain opti-
mizations (see below and Appendix B). As a baseline, we
use preorder IDs with brute-force reconstruction and deci-
sion: reconstructing the i-th ancestor of a node requires i
look-ups in a parent/child index mapping the preorder ID
of any node to the ID of its parent node. The parent/child
index is stored as a table in the relation backend.

In order to estimate the benefits of reconstruction op-
erations (which are not supported by all ID schemes, see
Section 7), we implemented and tested the three path join
strategies ALWAYS, FIRST, and NEVER which differ in
their use of reconstruction of the parenti(n) relation. Ap-
pendix B explains the strategies in detail. In short, AL-
WAYS means that the matches of any branching node in
the query tree are joined with those of its child nodes by
reconstructing the ancestors of the child matches and test-
ing whether they are contained in the branching node’s set
of matches. Since X2 evaluates queries bottom-up, the first
child of any branching query node does not undergo the path
join (which would fail for the empty set of parent matches),
but simply propagates its matches up to the parent node
by reconstruction. The same is true for the second strategy,
FIRST, which treats only subsequent children differently.
Here the path join decides for each pair of matches to the
branching node and its child node whether the Childi(m, n)
relation holds. No test for set containment is needed, and
schemes respecting document order may benefit from opti-
mizations saving the decision for some pairs of nodes. The
third strategy, NEVER, avoids reconstruction altogether,
even for the first child of a given branching node. Instead of
propagating matches upward in the query tree, all nodes in
the documents with a path matching the path of the branch-
ing node are retrieved and then joined with the matches of
its first child query node by deciding the Childi(m, n) rela-
tion. Subsequent children are handled as described for the
FIRST strategy.

Summary.The following key results sum up the outcome
of our experiments (see below for a detailed analysis):

Result 1. The BIRD scheme performs best for virtu-
ally all queries and path join strategies, both on DBLP and
XMark.

The overall performance in all tests against the DBLP
and XMark collections is given in Tables 8 and 9. Each
of the three rightmost columns corresponds to one of the
three path join strategies explained above. BIRD almost
always outperforms the other schemes, beaten only once by
PID (DBLP : Q3 FIRST ; XMark : Q0 FIRST ) and twice
by preorder (DBLP : Q0 FIRST and NEVER; XMark : Q2
FIRST and NEVER). The most efficient schemes compared
to BIRD are PID (DBLP : factor ≤ 1.6; XMark : factor
≤ 1.2) and ORDPATH (DBLP : factor ≤ 1.6; XMark : factor
≤ 3.3). In terms of absolute numbers, the greatest difference
between BIRD and PID is 1.2 seconds on DBLP and 1.5 sec-
onds on XMark. ORDPATH is on DBLP up to 0.6 seconds
slower and on XMark up to 30 seconds. The distance to

Virtual Nodes is considerable (DBLP : factor ≤ 58; XMark :
factor ≤ 704 compared to BIRD). In extreme cases, Virtual
Nodes is one order of magnitude slower than the baseline,
preorder, and even more compared to the other schemes, es-
pecially when reconstruction is disabled (e.g., Q1 NEVER
in Table 9). The exact performance differences vary dramat-
ically with the time spent on ID comparisons (see also the
following results). In terms of absolute numbers, the great-
est difference between BIRD and Virtual Nodes is more than
one hour. As could be expected, brute-force reconstruction
and decision with preorder IDs is usually very slow, espe-
cially when other schemes benefit from extensive use of in-
memory reconstruction. Evaluation with preorder IDs takes
up to 40 times or 10 minutes longer than with BIRD IDs.

Result 2. The efficiency of ID comparisons has a greater
impact on the overall performance than reconstruction and
decision, and can be affected by the ID size.

A detailed profiling of different evaluation ingredients (see
Tables 10 and 11) proves that most of the query evaluation
time is spent on comparing node IDs, both during decision
and, most prominently, when manipulating the sets of po-
tential matches fetched or reconstructed before. While deci-
sion and reconstruction contribute up to one second to the
total evaluation time, ID comparison easily takes two orders
of magnitude longer. Accordingly, the time spent on recon-
struction and decision differs by one second or less among
the schemes (ignoring cases where Virtual Nodes must per-
form far more decision operations than the other schemes,
see Result 4), whereas the efficiency of ID comparison can
make a difference of 20 seconds and more. As the differ-
ence between Virtual Nodes and the other schemes on DBLP
shows, the size of the IDs can have a huge impact on the
performance of all ID operations (most notably, the frequent
comparisons): as the only scheme whose IDs do not fit the
native 64-bit data types provided by most high-level pro-
gramming languages, Virtual Nodes suffers from a consid-
erable overhead even for the strategy ALWAYS (a second
handicap of Virtual Nodes for the other two strategies is
subsumed under Result 4). ORDPATH is subject to the
same effect on XMark where its IDs grow larger than 64
bits, too. While the impact of the ID size depends on the
underlying computer architecture as well as the data struc-
tures used, schemes exceeding a certain ID size will always
incur some runtime overhead, not to speak of the disk space
they occupy.

Result 3. Reconstruction is of paramount importance to
efficient query evaluation because it saves ID fetching and
comparison.

A comparison of the three path join strategies ALWAYS,
FIRST and NEVER (see Section 9.3) clearly shows that
reconstruction is key to efficient query evaluation. Perfor-
mance decreases dramatically for all schemes and almost all
queries when reconstruction is disabled (strategy NEVER,
as opposed to FIRST and ALWAYS). The fact that the huge
overhead incurred by NEVER is mainly due to ID compar-
isons rather than node fetching illustrates that our results do
not only apply to native retrieval systems like X2 but also,
perhaps to a lesser extent, to other engines where fetch-
ing is cheaper (such as purely relational systems). BIRD,
ORDPATH and PID prefer FIRST with its mixture of re-
construction and decision, owing to their efficient decision
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Table 10: Profile of the runtime performance for tree queries against the DBLP collection (avg. ms).

Table 11: Profile of the runtime performance for tree queries against the XMark collection (avg. ms).

techniques. Virtual Nodes, by contrast, suffers from a mas-
sive join overhead for this strategy, caused by the breadth-
first order of its IDs (see Result 4). With its different join
algorithm, ALWAYS brings Virtual Nodes a little closer to
the other three schemes.

Result 4. ID schemes preserving document order benefit
greatly from path join optimizations.

The path join strategies involving decision, i.e., FIRST
and NEVER, locate ancestor/descendant pairs in sets of
matches to two given query nodes. Processing these ID
sets in document order has the advantage that not all pos-
sible ID pairs (i.e., the full Cartesian product) need to be
checked, which may save many decision (and, consequently,
comparison) operations, as explained in Appendix B. Obvi-
ously schemes like BIRD, ORDPATH and preorder benefit
from this optimization whereas Virtual Nodes, whose IDs
are assigned in a breadth-first traversal of the document
tree, typically must decide ancestorship for many more ID
pairs. The resulting overhead explains why for FIRST and
NEVER, Virtual Nodes is far less competitive than for AL-
WAYS. The PID scheme, although violating the document

order between arbitrary nodes, is also amenable to the op-
timization provided that only sets of nodes with the same
label path are joined (because among these nodes, the doc-
ument order is preserved). Since our test system X2 always
retrieves and joins nodes belonging to the same DataGuide
node, this condition is satisfied and PID can be handled as
if it were fully compatible with document order.

Detailed analysis.Table 12 lists the eight queries we run
against the XMark and DBLP collections, four against each.
Queries with equal number resemble each other to a certain
extent: both XMark ’s and DBLP ’s Q0 queries are small
trees with a single branching node, a textual constraint and
a moderate number of results (where matches for all query
nodes are counted as mentioned above). The Q1 queries are
structurally similar but lack the textual constraint, which
makes them less selective than their Q0 counterparts. The
Q2 queries stress the path join capabilities of the system,
whereas each of the Q3 queries consists of only one path.

The detailed performance results for all queries against
the DBLP and XMark collections are given in Tables 10
and 11, respectively. For each of the three path join strate-
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Table 12: Tree queries run against the collections DBLP (left) and XMark (right).

gies, there are five columns listing the average time in mil-
liseconds spent by a given ID scheme in different evaluation
stages for a given query. Each of the five stages accumulates
all instances of one of the following problems that occur
during evaluation of a single query:

REC. reconstruction of the parenti(n) relation

DEC. decision of the Childi(m, n) relation7

JOIN path join (subsumes part of REC., DEC. and COMP.)

FETCH retrieval of document nodes from the RDBS8

COMP. node ID comparison

Running Q0 against the both collections produces largely
similar results. When applying the ALWAYS strategy, BIRD
outperforms ORDPATH and PID and is 2-3 times faster
than Virtual Nodes thanks to faster reconstruction, whereas
preorder is prohibitively slow. This changes when the FIRST
strategy introduces decision. On DBLP, preorder evaluation
of Q0 is even slightly faster than BIRD (2.2%) and outper-
forms Virtual Nodes by far. The latter Virtual Nodes is
especially handicapped during the join. On XMark, pre-
order is clearly inferior to any other scheme for FIRST. PID
and BIRD are more than twice as fast as ORDPATH and
beat Virtual Nodes by one order of magnitude. Applying
NEVER slows down evaluation roughly by a factor 2 on
DBLP and much more on XMark. Due to faster decision,
BIRD remains on the top.

Evaluating Q1 on XMark takes somewhat longer than
evaluating Q0 (typically one order of magnitude) because
due to the missing textual query constraints, far bigger node
sets must be joined. The size of the query results differs by
two orders of magnitude. BIRD and PID retrieve more than
14,000 nodes in less than 3 seconds, followed by ORDPATH
(6 seconds). As before, performance breaks down when re-
construction is disabled. Thus the performance ranking is
similar to Q0 except that for FIRST and NEVER, Virtual
Nodes is far slower even than the baseline since its join hand-
icap weighs particularly heavy for this query. On DBLP, Q1
reveals as pattern similar to Q0 but is evaluated much faster.
The reason is that the number of matches to all three query
nodes in Q0, ignoring the textual constraint, exceeds that
for Q1 by two orders of magnitude (e.g., 157,382 titles in Q0
vs. 1,195 titles in Q1). Therefore joining is much easier for
Q1 even though the final result is bigger than that of Q0.
As a consequence, nearly 5000 nodes are retrieved in only a
few hundred milliseconds by most schemes and strategies.

7This subsumes part of COMP.Note that the Virtual Nodes
scheme decides Childi(m, n) by reconstructing parenti(n)
and then testing whether the reconstructed ancestor ID
equals m. This extra reconstruction is subsumed by DEC.
and not included in REC. values.
8Note that since preorder IDs support neither decision nor
reconstruction, REC., DEC. and JOIN may subsume con-
siderable portions of fetching time in the baseline tests.

The evaluation of Q2 on XMark is lengthy despite the
small number of final matches. After all, joining sets of some
100,000 name, 100,000 bold, and 380,000 category nodes
with the 102 keyword nodes containing the query keyword
puts the system to a hard test. Without decision, BIRD
and PID do the job in 14 seconds, saving 20 seconds com-
pared to ORDPATH and Virtual Nodes. As for Q0 and Q1,
the baseline is not competitive. With the FIRST strategy,
where decision comes into play, the former three schemes
are not affected whereas the response time of Virtual Nodes
grows by a factor 1.8 due to the join overhead. Interestingly,
preorder benefits largely from decision for joining, increas-
ing its performance by a factor 40 compared to ALWAYS,
and evaluates Q2 slightly faster than BIRD. The top-down
join algorithm applied by FIRST (see Appendix B) saves
preorder much time for reconstruction (and hence fetch-
ing). Disabling reconstruction decreases the performance
by roughly a factor 3, but the scheme ranking remains the
same.

On DBLP, the task is somewhat easier (as long as re-
construction is allowed) because the //title//i branch has
only 664 matches, which quickly narrows down the 3,747
candidates of the leftmost branch in the Q2 tree. Con-
sequently, performance figures for ALWAYS and FIRST
hardly change compared to Q0 (BIRD before ORDPATH,
PID, as well as Virtual Nodes and preorder). With re-
construction disabled, however, fetching 157,382 article

matches slows down the evaluation and increases the dif-
ferences between individual ID schemes. As observed for
XMark ’s Q2 query, BIRD outperforms ORDPATH and PID
by 1 second, preorder by 4.5 seconds, and Virtual Nodes by
5 minutes. The latter again suffers from the join overhead.

Finally, the queries Q3 are degenerated trees each con-
sisting of a single path, such that there are no decision and
join costs for ALWAYS and FIRST. As could be expected,
differences between these two strategies in the performance
of any given ID scheme are negligible on either collection.
BIRD retrieves 1,777 matches from XMark in 30 millisec-
onds on average, more than three times as fast as ORD-
PATH. PID comes close behind. Disabling reconstruction,
the NEVER strategy entails fetching for all inner nodes on
the query path. While on DBLP this causes 3,748 nodes
to be fetched, which affects only the performance of Vir-
tual Nodes and preorder whose decision is less efficient, on
XMark 382,316 nodes undergo fetching and joining. Again
BIRD and PID cope best with the decision problem (10 and
11 seconds, respectively), followed by preorder (14 seconds),
ORDPATH (25 seconds, due to ID comparison), and Virtual
Nodes (3.8 minutes, due to the join overhead).

10. CONCLUSION
In this paper we introduced the BIRD family of tree num-

bering schemes based on structural summaries that allows
to efficiently decide and reconstruct tree relations with sim-
ple arithmetic operations. We showed that decision and re-
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construction of tree relations is a central building block of
most query strategies. We analyzed and compared prop-
erties and expressivity of other node identification schemes
and identify a trade-off between evaluation time, storage
consumption and expressivity, where BIRD appears to be
a favourable choice. Finally, we presented the results of
extensive tests, proving that BIRD is almost always faster
than identification schemes of comparable expressivity (up
to two orders of magnitude in extreme cases), while being
reasonably small in size.

Future work includes a generalization of the notion of
structural summaries in order to further reduce the stor-
age consumption of BIRD IDs. Besides, the update mecha-
nism sketched in this paper need to be elaborated in detail.
We also plan to analyze how BIRD can be integrated in
constraint-based evaluation of tree queries.
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APPENDIX

A. NODE IDENTIFICATION WITH BIRD
Indexing with the BIRD ID scheme goes through three

phases: first, all nodes in the document tree are visited once
in order to have their label path added to the DataGuide in-
dex, if necessary, and to find the maximal number of children
of any node with a given label path. The latter information
is necessary for weight creation, which takes place in the sec-
ond phase in a bottom-up traversal of the DataGuide tree
created in phase 1. Finally, all document nodes are assigned
BIRD IDs based on the weights computed in the previous
phase.

The top-level indexing procedure in Listing 1 follows this
outline by calling for each phase one of a set of dedicated
subroutines to be explained in the following sections. Be-
forehand the root nodes of both the document tree and the

index tree are stored in global variables. Note that the index
root is one level higher than the root of the document tree
and does not represent any document node. The mapping I
is used to obtain access to all index nodes at a specific level
in the DataGuide tree during weight creation. The mapping
C stores for each index node the maximal child count of all
document nodes represented by that index node. Needed
for weight creation only, both data structures are discarded
after the node identification is finished. The global variable
b holds the last assigned BIRD ID.

1 // createBIRD: node identification with BIRD

2 proc createBIRD ()
3
4 // initialize global variables

5 dr := the root ID of the document tree
6 ir := the root ID of the empty DataGuide tree
7 I := an empty map: level 7→ index node
8 C := an empty map: index node 7→ child count
9 b := −1

10
11 // phase 1: create the DataGuide index (cf. Listing 2)

12 call createDataGuide (dr, ir)
13
14 // phase 2: create the index node weights (cf. Listing 3)

15 call createWeights ()
16
17 // phase 3: create the document node IDs (cf. Listing 4)

18 call createIDs ()
19
20 end proc

Listing 1: Node identification with BIRD.

A.1 DataGuide creation
The procedure createDataGuide in Listing 2 recursively

traverses the document tree in preorder and updates the
DataGuide where necessary. Newly created DataGuide nodes
are added to the global mapping I (line 39). Furthermore,
each index node is associated with the maximal number of
children of any document node represented by that index
node. To this end, the global mapping C is updated for
each document node being indexed (line 45).
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21 // createDataGuide: creates the DataGuide, and collects the

22 // maximal child tuple size of each index node

23 // (1st top-down pass through the document tree)

24 // → d: the root of the document subtree to be processed

25 // → ip: the index node representing the parent of d

26 proc createDataGuide (d: document node, ip: index node)
27
28 // get the DataGuide node i representing d

29 if ip has a child with d’s label then
30 i := the child of ip with d’s label
31 c := the child count associated with i in C
32
33 // if there is no such node, update the DataGuide

34 else
35 i := a new index node with d’s label
36 add i to ip’s children in the DataGuide
37 l := d’s level in the document tree
38 Il := the index nodes associated with l in I

→ 39 Il := Il ∪ {i}
40 c := 0
41 end if
42
43 // update the maximal child count for i

44 c := max (c, number of children of d)
→ 45 map i to c in C

46
47 // recursively process the subtree rooted at d

48 for all children dc of d from left to right do
49 call createDataGuide (dc, i)
50 end for
51
52 end proc

Listing 2: DataGuide creation.

A.2 Weight creation
Both the pre-weights and the final weights from Defini-

tion 4.3 are computed by the procedure createWeights. The
code shown in Listing 3 assumes a balancing degree s ≥ 1.
Index nodes are visited in a levelwise bottom-up iteration
to make sure that final weights are already available for all
children of any node being weighted. First, the pre-weight
of an index node i is computed (lines 62 to 70), as specified
in Definition 4.3. While leaves have a fixed pre-weight of 1,
for inner index nodes it is computed from the uniform final
weight of any of their children and the maximal child count
stored in the global mapping C.

The final weight of i (lines 73 to 82) is the maximum of
the pre-weights of all nodes which are s-equivalent to i (see
Definition 4.1). The set [i]s is easily computed by navigating
the DataGuide. Since all s-equivalent nodes are on the same
level by definition, the pre-weights of all nodes in [i]s are
guaranteed to be available when weighting i. All nodes in
[i]s (including i) are assigned the same final weight and then
discarded to avoid duplicate computation and weighting of
nodes in the same equivalence set (line 80).

53 // createWeights: computes the BIRD weight of each

54 // index node (bottom-up pass through the DataGuide)

55 proc createWeights ()
56
57 // visit all index nodes bottom-up

58 for all levels l in I in descending order do
59 Il := the index nodes associated with l in I
60
61 // create pre-weights

� 62 for all index nodes i ∈ Il do
63 if i has children then
64 ic := any child of i
65 c := the child count associated with i in C
66 i.weight := ic.weight · (c + 1)
67 else
68 i.weight := 1
69 end if�

70 end for
71
72 // create weights for s-equivalent index nodes

� 73 for all index nodes i ∈ Il do
74 w := 1
75 for all is ∈ [i]s do
76 w := max (w, is.weight)
77 end for
78 for all is ∈ [i]s do
79 is.weight := w

→ 80 Il := Il \ {is}
81 end for�

82 end for
83
84 end for
85
86 end proc

Listing 3: BIRD weight creation.

A.3 ID creation

87 // createIDs: assigns a BIRD ID to each document node

88 // (2nd top-down pass through the document tree)

89 // → d: the root of the document subtree to be processed

90 // → ip: the index node representing the parent of d

91 proc createIDs (d: document node, ip: index node)
92
93 // assign an unused BIRD ID to d

94 i := the child of ip with d’s label
→ 95 d.id := smallest multiple n of i.weight with n > b

96 b := d.id
97
98 // recursively process the subtree rooted at d

99 for all children dc of d from left to right do
100 call createIDs (dc, i)
101 end for
102
103 end proc

Listing 4: BIRD ID creation.

Assigning BIRD IDs based on the weights computed in
Listing 3 is straightforward. The procedure createIDs in
Listing 4 again traverses the document tree in preorder, as-
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signing each document node the smallest free ID which is a
multiple of that node’s final weight (line 95). The fact that
the IDs are created in preorder makes BIRD compatible with
the document order.

B. PATH JOIN STRATEGIES
This section explains the three different path join strate-

gies we applied in our experiments for entire tree queries.
Recall from Section 9.3 that only the relations Childi(m, n)
and Child+(m, n) can be expressed in the queries. In the
sequel, we assume that nodes in the query tree are matched
bottom-up and that there is a means to retrieve document
nodes with a given label path and/or textual content from
the documents (i.e., in the case of X2, the relational back-
end). We use a DataGuide variant called CADG [33] for
this purpose. The DataGuide also provides the level of any
document node being fetched, such that Child+(m, n) rela-
tions in the query actually entail decision of the Childi(m, n)
relation or reconstruction of parenti(n).

The three strategies differ in how often nodes are fetched,
and how two sets of nodes matching a parent and a child
query node are joined to find out which node pairs satisfy
the Childi(m, n) relation. For the sake of simplicity, the
algorithms given below assume that any match to the child
query node has at most one ancestor matching the parent
query node. This may not be true for recursive collections or
XPath queries involving the * node test and the ancestor

axis. To cope with these cases, all three join procedures
listed below are actually called multiple times for the same
pair of query nodes, each time joining two sets of nodes
containing only nodes with the same label path. This makes
sure that no two ancestors of a given node are in the same
set being joined.

B.1 ALWAYS
The path join strategy ALWAYS applies reconstruction of

parenti(n) to all query nodes. When the procedure recAlways
is called for a query node qp and some child node qc for the
first time, the set of matches for qp is still empty. The an-
cestors of all matches to the child node qc are reconstructed
(lines 12 to 15 in Listing 5) and used as qp’s set of matches
in subsequent calls to recAlways.

If qp has been processed before for some sibling of qc,
matches to qp are already available in the set Ep (other-
wise the query would have been rejected as unsatisfiable).
The loop in the else branch in Listing 5 reconstructs the
ancestor at the level of qp of any match ec to qc (line 21)
and tests whether it is a member of Ep. If so, subsequent
matches to qc are checked by decision (line 25) until a match
is found which is not a descendant of the ancestor just recon-
structed for ec. This technique saves reconstruction time for
nodes whose ancestor may already be available and works
for both schemes in preorder (e.g., BIRD and ORDPATH)
and breadth-first schemes (like Virtual Nodes). If the an-
cestor reconstructed for ec is not a member of Ep, then ec

is discarded.

1 // recAlways: using reconstruction for all child query nodes

2 // → qc: the child query node to be joined

3 // → qp: the parent query node to be joined

4 proc recAlways (qc: query node, qp: query node)
5
6 // get matches for qc and qp

7 Ec := matches retrieved for qc, in ascending order
8 Ep := matches retrieved for qp, in ascending order
9

10 // first child query node

11 if Ep = ,/ then

� 12 for all ec ∈ Ec do
→ 13 ep := ec’s ancestor matching qp

14 Ep := Ep ∪ {ep}�

15 end for
16
17 // subsequent child query nodes

18 else
19 ec := the first member of Ec

20 loop
→ 21 ep := ec’s ancestor matching qp

22 if ep ∈ Ep then
23 repeat
24 ec := the next member of Ec

→ 25 until ec is not a descendant of ep

26 else
27 Ec := Ec \ {ec}
28 ec := the next member of Ec

29 end if
30 end loop
31 end if
32
33 end proc

Listing 5: Path join strategy ALWAYS.

B.2 FIRST
The next strategy, FIRST, restricts reconstruction to the

first child of a query node qp, which is processed as for AL-
WAYS (see Section B.1). Matches to any subsequent child
node qc are joined with matches to qp in a nested loop, as
shown in the else branch in Listing 6. The outer loop iter-
ates in ascending ID order through the set Ep of matches to
qp, which is advantageous when joining restricted sets of an-
cestor matches with large sets of descendant matches. This
explains why most ID schemes perform better with FIRST
than with ALWAYS (see Section 9.3).

For any ep ∈ Ep, the matches to qc which are smaller
than ep are discarded since they are definitely not part
of ep’s subtree (neither for preorder nor for breadth-first
schemes). Matches greater than ep undergo decision of the
Childi(m, n) relation with ep (not reconstruction as in the
procedure recAlways). Note that for ID schemes following
document order (such as BIRD, ORDPATH and preorder),
all descendants of ep, if any, appear in a contiguous sequence
directly after the greatest match to qc which is smaller than
ep. These descendants are identified by repeated decision
of Childi(m, n) (line 58). Under certain conditions this also
applies to the PID scheme (see Result 4 in Section 9.3).
By contrast, breadth-first schemes like Virtual Nodes must
check all descendant candidates greater than ep (line 66),
including breadth-first successors of nodes outside ep’s sub-
tree, because a breadth-first traversal of a tree may enter and
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leave the subtree of any node more than once. As a minor
optimization compatible with breadth-first IDs, we mark the
first match to qc right of ep’s subtree as the starting point for
the next iteration of the outer loop, since nodes between ep

and that node (in breadth-first order) are guaranteed to be
descendants of ep (and hence not of ep’s breadth-first succes-
sor in Ep, which is itself not a descendant of ep as explained
above). But still Virtual Nodes experiences a considerable
overhead when joining large sets of descendant matches us-
ing recFirst, as discussed in Section 9.3.

34 // recFirst: using reconstruction for the first child query node

35 // → qc: the child query node to be joined

36 // → qp: the parent query node to be joined

37 proc recFirst (qc: query node, qp: query node)
38
39 // get matches for qc and qp

40 Ec := matches retrieved for qc, in ascending order
41 Ep := matches retrieved for qp, in ascending order
42
43 // first child query node

44 if Ep = ,/ then
45 . . . (cf. recAlways, lines 12 to 15 in Listing 5)
46
47 // subsequent child query nodes

48 else

� 49 ec := the first member of Ec

50 for all ep ∈ Ep do
51 while ec < ep do
52 Ec := Ec \ {ec}
53 ec := the next member of Ec

54 end while
55
56 // BIRD, ORDPATH, preorder

57 if IDs are assigned in document order then
→ 58 while ec is a descendant of qp do

59 ec := the next member of Ec

60 end while
61
62 // Virtual Nodes

63 else
64 pos := |Ec|
65 loop

→ 66 if ec is not a descendant of qp then
67 Ec := Ec \ {ec}
68 if pos = |Ec| then
69 pos := the position of ec in Ec

70 end if
71 end if
72 ec := the next member of Ec

73 end loop
74 ec := the member of Ec at position pos
75 end if
76�

77 end for
78 end if
79
80 end proc

Listing 6: Path join strategy FIRST.

B.3 NEVER
The third path join strategy, NEVER, eliminates the re-

maining reconstruction step for the first query child node
from recFirst. The resulting procedure recNever, given in
Listing 7, processes matches to all children of a query node
qp alike – by deciding Childi(m, n) as in recFirst – after the
matches for qp have been fetched in the first place (line 12).
The experiments in Section 9.3 discourage the use of this
strategy, not only because of the additional fetching cost,
but mainly due to the extra join for the first query child
node.

1 // recNever: using decision for all child query nodes

2 // → qc: the child query node to be joined

3 // → qp: the parent query node to be joined

4 proc recNever (qc: query node, qp: query node)
5
6 // get matches for qc and qp

7 Ec := matches retrieved for qc, in ascending order
8 Ep := matches retrieved for qp, in ascending order
9

10 // first child query node

11 if Ep = ,/ then
→ 12 Ep := all elements matching qp’s path

13 end if
14
15 // all child query nodes

16 . . . (cf. recFirst, lines 49 to 77 in Listing 6)
17
18 end proc

Listing 7: Path join strategy NEVER.
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